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Abstract

Detecting the waveform of a noisy signal is a key problem in the detection of early bearing faults under
actual plant conditions. Mixture de-noising is found to be a useful technique for identifying bearing signals
and greatly improves the fault diagnostics of the bearings. The mixture de-noising technique consists of an
adaptive noise-canceling filter and a wavelet-based de-noise estimator. The mixture de-noising technique
can substantially improve the signal-to-noise ratio when the signal is contaminated by noise. The
performance of mixture de-noising under different noise ratios, bearing failure sizes and shaft speeds are
discussed in this paper. This paper shows that the diagnostic role of failure diagnosis and analysis
techniques can be made more effective with the application of mixture de-noising.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration signature-based diagnostics are mainly concerned with the extraction of features
from a diagnostic signal which can indicate whether the vital components of a machine are good
or defective [1]. Vibration monitoring is based on the principle that all systems produce vibration.
When a machine is operating properly, vibration is small and constant; however, when faults
see front matter r 2004 Elsevier Ltd. All rights reserved.
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develop and some of the dynamic processes in the machine change, the vibration spectrum also
changes.

For the localized defects of rolling element bearings, each time the rolling element passes over
the localized defect, an impulse of vibration is generated. The impulses are related to the defect
and its severity, and all vibration-monitoring techniques are essentially based on the recording
and quantification of these vibration impulses [2]. Numerous methods have been developed for
detecting the localized faults of bearings: for example, statistical methods [3], time and frequency
domain analyses [4], adaptive noise canceling [1,5–7] (ANC), and neural network identification
methods [1,8]. However, there is still no ideal way to diagnose the early failure of bearings from
noisy signals. One main reason is that the signal-to-noise ratio is lower, and the impulse signal is
more difficult to extract when the bearings are running under actual plant conditions.

The time wave of a typical bearing failure is similar to that shown in Fig. 1. Although there is a
defect on the outer race of the bearing in Fig. 2, the fault is not easily identified from the time
waveform and enveloping spectrum of the vibration signal. This is because the vibration signal of
the bearing includes the heavy background noise of normal bearing vibration and the noise from
the vibration of the machine.

Although adaptive filtering can be applied to remove the machine noise [1,5,7], the noise
cancellation is not significantly successful because the noise from the normal bearing vibration is
stronger than the noise from other sources. Mixture de-noising, with its noise-cancellation
capability, can separate the bearing fault signal from noise in actual plant conditions.

Section 2 of this paper formulates the problem of bearing fault signals and noise, and briefly
describes the algorithm for mixture de-noising. The performance of mixture de-noising by
simulation is discussed in Section 3, and experimental results are presented in Section 4.
Conclusions are provided in Section 5.
Fig. 1. Typical time wave form of noise signal of faulty bearing.
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Fig. 2. Noise vibration signal of bearing with local defect.
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2. The mixture de-noising principle

The general mixture de-noising concept is shown in Fig. 3. The mixture de-noising technique
consists of an adaptive noise-canceling filter and a wavelet-based de-noise estimator. The mixture
de-noising technique can substantially improve the signal-to-noise ratio when the signal of interest
is contaminated by noise.
2.1. Review of adaptive noise canceling

A signal S corrupted with noise N0 is received at the primary sensor while the bearing runs
under faulty conditions, as shown in Fig. 3. S is the fault signal of the bearing and N0 is the noise
of normal bearing vibrations. A reference noise N1, which is related to noise N0 in some unknown
way but not correlated with signal S, is received at the reference sensor. The filter output y is then
adaptively filtered to match N0 as closely as possible. Then, the filter output is subtracted from the
primary input S þ N0 to produce the system output �:

� ¼ S þ N0 � y. (1)

Then

�2 ¼ S2 þ ðN0 � yÞ2 þ 2SðN0 � yÞ. (2)

Taking the expectation of both sides of Eq. (2)

Eð�2Þ ¼ EðS2Þ þ EððN0 � yÞ2Þ. (3)
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Fig. 3. Mixture de-noising in a machine noise canceling.
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The adaptive filter output is

y ¼ WTX, (4)

Eð�2Þ ¼ EðS2Þ þ EððN0 �WTXÞ2Þ, (5)

where W is the weight vector and X is the input vector. The signal power E(S2
) will be unaffected

as the filter weights are adjusted to minimize Eð�2Þ:

min Eð�2Þ ¼ EðS2Þ þmin EððN0 �WTXÞ2Þ. (6)

For an optimal set of filter weights, the output y is the best least-squares estimate of primary noise
N0. From the following equation:

ð�� SÞ ¼ ðN0 � yÞ (7)

the adjustment of the filter weights to minimize the output power causes � to be the best least-
squares estimate of the signal S.

The ANC filter is easily implemented by computer software. The implementation method is the
same as that of the LMS (least-mean-squares) algorithm. This algorithm is shown by the
following equation [9]:

Wjþ1 ¼ W j þ 2l�jXj, (8)

where Wj is the weight vector at the jth instant of time, Xj is the reference input vector at the jth
instant of time, �j is the error signal at the jth instant of the output of the noise canceler, and l is
the gain constant that regulates the speed and stability of adaptation. To ensure the convergence
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of the adaptive algorithm, the value of l should be chosen such that [9]

0olo
1

ðL þ 1Þðsignal powerÞ
, (9)

where L is the index of the last filter weight.
2.2. Review of wavelet de-noising

The classical additive model of a signal f ðxnÞ corrupted with noise zn is shown as follows [10]

sn ¼ f ðxnÞ þ szn; n ¼ 1; 2; 3; . . . ;N, (10)

where sn ¼ ðs1; s2; s3; . . . ; sNÞ represents the observed signal, and f ðxnÞ is the purely deterministic
signal. The zn values are identically and independently distributed Gaussian random variables. It
is assumed that f can be well represented by a linear combination of P wavelet basis functions fp;
as follows [11]:

f ðxÞ �
XN

p¼1

apfpðxÞ, (11)

where a ¼ ða1; a2; a3; . . . ; apÞ are wavelet coefficients. Orthogonal wavelets are used in this paper.
This principle is also the basis for the popular wavelet threshold method that reduces the noise

in signals. Small wavelet coefficients are assumed to be dominated by noise and carry little
information. Replacing these coefficients by zero eliminates a major part of the noise without
affecting the signal very much. The new wavelet coefficients can be estimated by the hard and the
soft function [11] of Eq. (12):

Zhardb ðxÞ ¼ x1ðjxj4bÞ,

Zsoftb ðxÞ ¼ signðxÞðjxj � bÞ, ð12Þ

where b is the smoothing parameter, or the threshold. Several ways of selecting b have been
proposed for the Gaussian noise [10–12]. The b of Eq. (13) [10] was selected in this paper:

b ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log M

p
, (13)

where M is the number of samples.
2.3. A simplified machine model for the signal of bearing vibration

The detected signal from the sensor for the defective bearing can be divided into three parts: the
signal of a normal bearing, the signal of other rotating components, and the signal of the fault
bearing. The signal of the defective bearing is defined as the ‘‘signal’’ in this paper. Fig. 4 shows a
simplified model for noise canceling in a machine. It is assumed that there is an equivalent noise
source corresponding to the various noise sources, and this noise reaches the primary and
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reference sensors through equivalent channels. All propagation paths are assumed to be
equivalent to linear time-invariant filters.

For actual test operation, two cases are considered for the fault diagnosis of bearings. In the
first case, the noises in the primary and reference inputs are correlated and the signals are
relatively uncorrelated or weakly correlated. In the second case, some noises in the two inputs are
uncorrelated (these noises are assumed to be random noise).

According to the mixture de-noising principle, the noises from nearby rotating components will
be canceled by the adaptive filter, and uncorrelated random noise and normal bearing vibration
will be canceled by wavelet de-noising. The defective bearing will be easily detected from the signal
by the mixture de-noising.
3. Simulations

The performance of the mixture de-noising estimator was examined by a simulation signal. The
simulation was presented with a Gaussian impulse of a periodic signal with a cosine signal (15Hz)
and the random signal in the primary input. The random signal includes a standard deviation of 1
and a standard deviation of 4. The reference input includes a cos signal (15Hz) and a random
signal of standard deviation 4. The relationship between the de-noising ability and the noise ratio
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of the signal (from 30% to 90%) is discussed in this section. The noise ratio of the signal is defined
as follows:

k ¼
XN

n¼1

jznj

,XN

n¼1

jsnj � 100%, (14)

where zn is the Gaussian noise signal, and sn is the contaminated signal. The noise ratio of the
signal in this paper is typical of the ratio of Gaussian noise and the contaminated signal in the
primary input shown in Fig. 4; it does not include other types of noise (for example, the noise of
the periodic signal).

The kurtosis factor was chosen to evaluate the performance of the mixture de-noising. The
kurtosis factor is defined as follows:

kurtosis factor ¼

Zþ1

�1

jxj4pðxÞdx

, Zþ1

�1

jxj2pðxÞdx

0
@

1
A

2

, (15)

where pðxÞ is the probability density function. The value of the kurtosis factor of the Gaussian
impulse is 8.1 in this study. The de-noised signal will contain the noise signal if the value of the
kurtosis factor of the signal is smaller than 8.1, and the de-noised signal will be distorted if the
value of the kurtosis factor of the signal is greater than 8.1.

3.1. Mixture de-noising applied to simulated data

The noisy signal is shown in Fig. 5. The result of de-noising with the signal of Fig. 4 using an
adaptive filter is shown in Fig. 6. Fig. 6 shows that there are some noises in the estimated signal
after application of the adaptive filter. The result of de-noising the signal of Fig. 4, using mixture
Fig. 5. Noisy signal with a noise ratio of 50%.
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Fig. 6. Output signal of adaptive filter.

Fig. 7. De-noised signal by mixture de-noising.
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de-noising, is shown in Fig. 7. A comparison of the waveform of the de-noised signal in Fig. 7 with
the signal in Fig. 6 shows that the two waveforms are very similar, but the noise of the signal has
been canceled in Fig. 7. The value of the kurtosis factor is 3.2 in Fig. 4. The value of the kurtosis
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factor is 4.9 in Fig. 6 after application of the ANC, but the value of the kurtosis factor reaches 8.0
in Fig. 7. Fig. 7 shows that, when the signal is contaminated by noise, mixture de-noising produces
good results.

3.2. The relationship between learning ratios and noise ratios

The adaptive filter is a key step for mixture de-noising because wavelet de-noising is weak when
the noise ratio is more than 90% [12], or when the noise signal contains non-Gaussian noise. The
relationship between the learning ratios of the adaptive filter and the noise ratios of the signal is
discussed as follows.

The relationship between the learning ratios of adaptive filtering and the noise ratios of the
signal is shown in Fig. 8. The noise ratios range from 0% to 100%, and the learning ratios of the
adaptive filter range from 0.0 to 0.06. Fig. 8 shows that the signal will be distorted after de-noising
when the learning ratio of the adaptive filter is over 0.05, because the values of the kurtosis factor
are bigger than 8.1.

A zoomed view of the graph of Fig. 8 is shown in Fig. 9. In Fig. 9, there are two phases of
increases and decreases as the noise ratio increases. The values of the kurtosis factor increase when
the noise ratio ranges from 60% to 80%. The peak ratio is a decreasing process when the noise
ratio ranges from 80% to 100%. Fig. 9 shows that the value of the kurtosis factor is almost the
same as the values (near 8.0) when the noise ratio is less than 60%, and the signal is hard to
reconstruct from the noisy signal when the noise ratio is more than 90%.

The values of the kurtosis factor increase when the noise ratio range is 60–80% because the
signal is distorted in the de-noised signal. The de-noised signal for the 70% noise ratio is shown in
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Fig. 9. A zoomed view of Fig. 8.

Fig. 10. De-noised signal by mixture de-noise (noise ratio 70%).
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Fig. 10. A comparison of the waveforms of the de-noised signal in Fig. 10 and the signal in Fig. 7
shows that the two waveforms are very similar, but the de-noised signal is distorted because the
value of the kurtosis factor is more than 8.1 in Fig. 10. These results show the effect of mixture de-
noising relative to the noise ratio of the observation signal.
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3.3. The relationship between levels of wavelet decomposition and noise ratios

Fig. 11 shows the relationship between the levels of wavelet decomposition and noise ratios
when the learning ratio of the adaptive filter is 0.008. There are three phases of stable, increasing
and decreasing values of the kurtosis factor as the noise ratios increase and the levels of wavelet
decomposition are more than 5. The values of the kurtosis factor are near 7.8 in the stable phase,
when the noise ratios range from 0% to 60%. The values of the kurtosis factor range from 7.8 to
8.7 in the increasing phase, when the noise ratios range from 60% to 80%. The values of the
kurtosis factor range from 8.7 to near 3 in the decreasing phase, when the noise ratios range from
80% to 100%. These results show that de-noising works well for different noise ratios when the
levels of wavelet decomposition are greater than 5.

3.4. The variation of mixture de-noising with filtering time

The variation of adaptive neural filtering with filtering time is shown in Fig. 12. Fig. 12 shows
that the process of mixture de-noising is stable after 2 s when the learning ratio is 0.008 and the
level of wavelet decomposition is 8. This result shows that the process of mixture de-noising is not
fast, but the result is very good.
4. Mixture de-noising applied to actual machine data

Fig. 13 shows the experimental arrangement, which includes a motor, pulley system, two types
of bearings, housing, and a load device. The motor was controlled by an alternating governor
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system (FUJI Frenic 5000 G9S/P9S), and the bearing load and rotating speed were adjusted
according to experimental requirements. Since the motor and bearings were housed in the same
foundation, it was possible to simulate the noise conditions of the vibration under different loads
and speeds. One defective bearing was installed in the center position. The type of bearings used in
the study was NSK N210. The bearing defects were artificially localized in a rectangular shape in
the outer race and roller. The failure sizes (length mm�width mm) were as follows: small
(8.7� 0.3), medium (3.3� 0.9), and large (1.9� 0.9). The test bearings were subjected to two loads
of 5 and 8 kN. The defective bearing signature was recorded by placing the sensor on the bearing
housing 165mm from the center position of the defective bearing at shaft speeds of 200, 500 and
1700 rev/min.
4.1. The effect of mixture de-noising

Fig. 14 shows the time waveform of the noisy signal of the defective bearing. Fig. 15 shows the
result of the adaptive filter for the actual machine data, which shows that the failure occurred in
the outer race with the following characteristics: failure size small; shaft speed 1700 rev/min; load
8 kN. Generally, the fault is hard to find using spectral or envelope analysis [13]. The impulse of
the defective bearing is also hard to identify in Fig. 15, even after the signal was processed using
adaptive filtering. However, the impulse of the defective bearing is easy to identify in Fig. 16,
when the signal was processed using mixture de-noising. The value of the kurtosis factor is 2.7 in
Fig. 14 and 3.3 in Fig. 15, but the value is 4.3 in Fig. 16 after the application of mixture de-noising.
The results show that mixture de-noising has the ability to cancel the machine noise.

Fig. 17 shows the time waveform of the normal signal from the bearing (shaft speed 600 rev/
min; load 8 kN). The de-noised normal signal by mixture de-nosing is shown in Fig. 18. The
Fig. 14. Time waveform of the noisy signal of the defective bearing.
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Fig. 15. Output signal of adaptive filtering.

Fig. 16. Output signal of mixture de-noising.
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features of the bearing fault cannot be identified from this figure, although the value of the
kurtosis factor has increased from 3.02 (in Fig. 17) to 3.63 (in Fig. 18).

4.2. The relationship between kurtosis factor and different experimental conditions

Fig. 19 shows the influence of shaft speeds and failure sizes on the kurtosis factor when the
failure of the bearings occurs in the outer race and the measurement distances are 165mm from
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Fig. 18. De-noised normal signal of a bearing.

Fig. 17. Normal signal of a bearing.
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the sensors to the failure bearings. The shaft speeds of 200, 600, 1100 and 1700 rev/min are shown
as 0.1, 0.2, 0.3 and 0.4, respectively, in Fig. 19. The normal, small, medium and large faults of the
bearing condition are shown as 1, 2, 3 and 4, respectively, in Fig. 19.

The change in the values of the kurtosis factor for different shaft speeds follows an increasing
trend as the shaft speeds increase from low to high, and the range of the increase becomes very
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small when the shaft speed is more than 1100 rev/min. The change in the values of the Kurtosis
factor for different failure sizes also follows an increasing trend with the increase of failure sizes.

The values of the kurtosis factor of the normal bearing are close to 3. The results in Fig. 19
show that the values of the kurtosis factor of the faulty bearing under different test conditions are
more than 4.0; therefore, the detection of bearing defects becomes easier after the application of
mixture de-noising.

4.3. The relationship between learning ratios and failure sizes

Fig. 20 shows the relationship between learning ratios and failure sizes for the shaft speed of
1100 rev/min. Experimental results show that the learning ratios follow a decreasing trend as the
failure size of the bearing increases. The reason may be that the noise ratio of the bearing
vibration signal decreases with increasing shaft speed. The experimental result is the same as the
simulation result.

4.4. The relationship between learning ratios and shaft speeds

Fig. 21 shows the relationship between learning ratios and shaft speeds for the medium fault.
Experimental results show that the learning ratios follow a decreasing trend as the shaft speed
increases, but there is a sudden change at 500 rev/min. The reason may be that the signal at
500 rev/min contains the high amplitudes of low frequencies from the increasing amplitudes of the
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vibration of the pulley transmission system, because it is close to the natural frequencies of the
transmission system and so the learning ratio must be a small value to trace the change of the
signal. The experimental result shows that the learning ratios need to change according to the
different experimental conditions.

4.5. Comparison of performance of mixture de-noising and adaptive filtering

The kurtosis factors of the three failure sizes (for failure occurring in the outer race) for the two
noise-canceling algorithms are shown in Fig. 22. Generally, the kurtosis factor is 3 when the
bearing is running under normal conditions. Fig. 22 shows that the kurtosis factor is greater than
3.5 and over 4.0 for the three sizes of bearing failure, and that the mixture de-noising algorithm is
more suitable for identifying bearing faults than is the adaptive filtering. These results show that
mixture de-noising is more capable of fault detection when the signal includes heavy noise
conditions, but the deference of the kurtosis factor is not big at small sizes compared with



ARTICLE IN PRESS

0

2

4

6

8

10

12

14

K
ur

to
si

s 
F

ac
to

r Adaptive Filtering

Normal   Small  Medium Large

Mixture De-noising

Failure Size

Fig. 22. The kurtosis factors of the three failure sizes for two noise-canceling algorithms.

Y. Shao, K. Nezu / Journal of Sound and Vibration 282 (2005) 899–917916
adaptive filtering, as shown in Fig. 22. The reason may be that the impulse signal is weak at small
defect sizes and the background noises from bearing running contain many non-Gaussian signals.
So, in order to improve the performance of mixture de-noising, the development of new wavelet
de-nosing algorithms for non-Gaussian noise is necessary. This study has begun [14].
5. Conclusions

It has been shown that mixture de-noising is a powerful method for identifying faults in
bearings, depending on the speed of the bearing and the size and location of the defect, especially
when extracting early fault features of bearings under heavy noise conditions. Experimental
results show that the noise-canceling ability of mixture de-noising is stronger than that of adaptive
filtering.

The experimental results also show that there is a wide, stable range (0.0001–0.07) of learning
rates for mixture de-noising, but the learning ratios change according to different experimental
conditions. The selection method of optimum learning for the de-noising problem will be
discussed in our next paper.
References

[1] G.K. Chaturvedi, D.W. Thomas, Bearing fault detection using adaptive noise cancelling, Journal of Mechanical

Design 104 (1982) 280–289.

[2] I.E. Alguindigue, A.L. Buczak, R.E. Uhrig, Monitoring and diagnosis of rolling element bearings using artificial

neural networks, IEEE Transactions on Industrial Electronics 40 (2) (1993) 209–217.

[3] D. Dyer, R.M. Stewart, Detection of rolling element bearing damage by statistical vibration analysis, Journal of

Mechanical Design 100 (1978) 229–235.

[4] J. Matthew, R.J. Alfredson, The condition monitoring of rolling element bearings using vibration analysis, Journal

of Vibration, Acoustics, Stress, and Reliability in Design 106 (1984) 447–453.

[5] Y. Shao, K. Nezu, Detection of self-aligning roller bearing fault using asynchronous adaptive noise cancelling

technology, JSME International Journal, Series C 42 (1) (1999) 33–43.



ARTICLE IN PRESS

Y. Shao, K. Nezu / Journal of Sound and Vibration 282 (2005) 899–917 917
[6] Y. Shao, K. Nezu, Extracting symptoms of bearing faults from noise using a non-linear neural filter, Proceedings of

the Institution of Mechanical Engineers Part I, Journal of Systems and Control Engineering 216 (2002) 169–179.

[7] J. Antoni, R.B. Randall, Optimization of SANC for separating gear and bearing signals, Proceedings of the 14th

International Congress, Vol. 1, UK, 2001, pp. 89–96.

[8] Y. Shao, K. Nezu, Feature extraction of machinery diagnosis using neural network, Proceedings of IEEE

International Conference on Neural Networks, Vol. 1, Perth, Australia, 1995, pp. 459–464.

[9] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Upper Saddle River, NJ, 1996.

[10] D.L. Donoho, De-nosing by soft-thresholding, IEEE Transactions of Information Theory 41 (3) (1995) 613–627.

[11] S. Sardy, P. Tseng, A. Bruce, Robust wavelet denosing, IEEE Transactions on Signal Processing 49 (6) (2001)

1146–1152.

[12] Y. Shao, H. Kumehara, K. Nezu, Bearing fault diagnostic using wavelet transforms, Transactions of the Japan

Society of Mechanical Engineers, Series C 69 (687) (2003) 2957–2969.

[13] R.B. Randall, Bearing diagnosis in helicopter gearboxes, Proceedings of the 14th International Congress, Vol. 1,

UK, 2001, pp. 89–96.

[14] A. Antoniadis, D. Leporini, J.C. Pesquet, Wavelet thresholding for some classes of non–Gaussian noise, Statistica

Neerlandica 56 (4) (2002) 434–453.


	Design of mixture de-noising for detecting �faulty bearing signals
	Introduction
	The mixture de-noising principle
	Review of adaptive noise canceling
	Review of wavelet de-noising
	A simplified machine model for the signal of bearing vibration

	Simulations
	Mixture de-noising applied to simulated data
	The relationship between learning ratios and noise ratios
	The relationship between levels of wavelet decomposition and noise ratios
	The variation of mixture de-noising with filtering time

	Mixture de-noising applied to actual machine data
	The effect of mixture de-noising
	The relationship between kurtosis factor and different experimental conditions
	The relationship between learning ratios and failure sizes
	The relationship between learning ratios and shaft speeds
	Comparison of performance of mixture de-noising and adaptive filtering

	Conclusions
	References


