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Abstract

In this paper, the relationship between the nonlinear normal modes (NNMs) of conservative vibratory
systems and the geodesics of the corresponding Riemannian manifolds with the Jacobi metric is
investigated and a modified Adomian decomposition method for constructing the NNM:s is proposed. It is
indicated that NNMs in the configuration space are special geodesics of the corresponding Riemannian
manifold. These geodesics pass through the origin of the configuration space and with specific directions
determined by the total energy of the system. Geodesic equations describing the NNMs become singular at
the intersection of the Riemannian manifold and the energy level plane. To solve these singular geodesic
equations, the Adomian decomposition method is used with a slight modification. The NNMs of strongly
nonlinear vibration systems are constructed via the analytic approximation of the solution of the geodesics.
Higher-order approximate NNMs can be constructed by a recursive procedure and the solution series is
convergent rapidly. Finally, two examples of nonlinear vibratory systems with two and four degrees of
freedom (dof), respectively, are given as illustration. Simulation results verified the effectiveness of this
method.
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1. Introduction

For multi-degree-of-freedom or continuous nonlinear vibratory systems, how to analyze their
qualitative and quantitative behavior is still a problem to be explored. As a possible approach, the
concept and method of nonlinear normal mode (NNM) were proposed and studied by Rosenberg
in 1960s [1], and especially, attracted extensive studies since 1990. For conservative vibratory
systems, there are basically two different approaches for constructing NNMs. One is the modal
configuration space method which uses one-dimensional manifolds to approximate each of the
NNDMs; see, for example, Refs. [2-7]. The other approach, proposed by Shaw and Pierre [8], is the
modal state space method which uses two (for non-internal-resonant case) or 2k (internal resonant
case)-dimensional manifolds to approximate each of the NNMs. For further reference, see
Refs. [9,10].

With the modal configuration space method, the NNMs of nonlinear conservative systems are
proved to be solutions of a nonlinear singular boundary value problem (BVP). Generally, singular
BVPs are global and can be solved by singular perturbation methods. Constructing the NNMs in
this way is not an easy task, because it involves much complicated manipulations. Although the
exact series solutions of the NNMs are obtainable in certain cases [11], it is still believed that the
scheme of exact series solution is impractical. This is true especially for high-dimensional
nonlinear systems. On the other hand, the modal configuration space method has such an
advantage that, theoretically, it is applicable to strongly nonlinear systems. With the modal state
space method, the velocity and the displacement of a specific mass point are chosen as reference
variables to express the NNMs as their Taylor series. This method is constructive and can be used
to obtain the approximate NNMs of conservative as well as damped vibratory systems. The
drawback of this approach is that, it is local and not applicable to strongly nonlinear systems.

In this paper, based on the Jacobi’s theorem [12], the NNMs are reformulated as the special
geodesics of the corresponding Riemannian manifold with the Jacobi metric. The dynamical
problem to construct the NNMs is converted to a purely geometric problem to determine the
special geodesics corresponding to NNMs, among infinite ones passing through the origin of the
configuration space. The equations of the geodesics are more suitable for constructing the NNMs,
although they are essentially identical to the motion equations of the systems. The obtained
geodesic equations become singular at the intersections of the Riemannian manifold and the total
energy level plane, so how to solve effectively the geodesic equations is still a problem to be
studied.

Customarily, such singular boundary value problems are solved by singular perturbation
methods, but in this paper the Adomian decomposition method (ADM) [13,14], which was
developed by Adomian since the beginning of 1980s, will be adopted. The traditional Adomian
decomposition method will be slightly modified and used to investigate the singular geodesic
equations which described the NNMs. In the past decade, a lot of attention has been devoted to
the application of ADM to a wide variety of stochastic and deterministic problems involving
(ordinary or partial) differential, integral, integro-differential, algebraic and systems of such
equations. For the application of the ADM to BVPs, see, for example, Refs. [15,16]. With the
ADM, firstly, the original solution of the differential equation is decomposed into an infinite sum
of components. Then a recursive procedure is built and each of the components can be easily
calculated by simple integration. The noticeable advantage of the ADM is that, analytic,
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approximate or even exact, solution could be obtained for rather general nonlinear systems with a
rapidly convergent series; it involves much less computation; no linearization and perturbation
methods which result in intensive computation are necessary.

In the following, first the NNMs are reformulated as special geodesics on a Riemannian
manifold with the Jacobi metric. Then the ADM is used for solving the geodesic equations.
Finally, two examples with two degrees of freedom (dof) and four, respectively, are given to
illustrate the effectiveness of the decomposition method.

2. NNMs as geodesics

For a given n-dimensional Riemannian manifold, suppose its metric is g;;, then the geodesics on

ijs
it would satisfy the following geodesic equation [17]:

dCu;p du; duy,
+ It (uy,. .. u)—2— =0, 1
ds? Z il 2 ds ds ()
Jik=1
where s is the arc parameter, u;, u,, ..., u, are the generalized coordinates on the Riemannian

manifold. The I, stands for the Christoffel symbol and can be computed from the given metric g;;
via the following formula:

agk[ ag il ag jke
I, = g" + L), 2
e 22 <6u] Ou,  Ouy )
If the arc parameter s is replaced by some generalized coordinate, for example, the first
coordinate u;, then the other generalized coordinates u;’s can be expressed as functions of ;. That
is
ui =u(uy), i=2,...,n 3)

Therefore

du;  du(uy) duwy  dPup Puun) (A duwiuy) PPuy
= = i=2,...,n 4)

ds  du ds’ ds?2 T di? \ds du; ds?’
Substitute these equations into Eq. (1), canceling the common factor of (du;/ ds)?, one obtains
the following ODEs for geodesics:

dzui(ul) du; (Ul)
du%

duj(ul) duy(ur)
du1

Zr (s (1), - - (1)

~ i dugj(u1) dugge(ur) .
+ Z I (ui, up(uy), .oy (1)) I P 0, i=2,...,n (5)

=1

This is another form of geodesic equations on a Riemannian manifolds.
For an n-dimensional conservative vibratory system, define the Jacobi metric [12] by

gix(h) = (h — V(u, . .., un))my, (6)
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where 2 and V(uy, ...,u,) are the total energy and the potential function, respectively. m; is the
original metric of the system and it is also the coefficients of the kinetic energy. That is, the kinetic
energy 7 of the vibratory system can be expressed as follows:

BN .
T = 3 Z M Uy, (7
Jk=1

According to Jacobi’s theorem [12], motions in a potential V(uy,...,u,) are actually geodesic
motions on a Riemannian manifold with the Jacobi metric.

In nonlinear vibration theory, for conservative systems, NNMs are defined as special motions
where all coordinates vary equi-periodically, reaching their extreme values at the same instants of
time. As indicated above, all motions in the potential V(uy,...,u,) are geodesic motions and
therefore satisfy the geodesic equation (5). With no exception, as special geodesic motions, the
nonlinear normal modal motions should also satisfy the geodesic equation (5) with the Jacobi
metric g;(h). All the geodesics describing NNMs pass through the origin of generalized
coordinate space; however, there are infinite geodesics passing through the origin, so the essential
problem is how to identify the nonlinear normal modal geodesics among the infinite candidates
described by Eq. (5).

Customarily, the NNMs are constructed by solving Eq. (5) as a BVP. Note that, for this type of
BVPs, singularities would always arise on the boundary of 2= V(uj, ...,u,). Because of the global
property of the BVP, it is not an easy task to find an analytic approximate solution, even a local
series solution near the origin where the BVP is regular locally. Singular perturbation methods are
often used to solve Eq. (5). Another approach is to find the exact solution to Eq. (5) by the series
method [11].

In principle, Eq. (5) can also be solved as an initial-value problem by the shooting method
through supplementing the following initial conditions:

du,-
du1

u;(0) =0, 0) = a, (8a,b)

where the a;’s are unknown parameters to be determined. The target conditions are as follows:

h_ V(ul:uZ:---:“n) = 0’ (93)

n

Q) _kzl F}k(ul,uz(ul), oo () (du(uy) /duy) (duge (ur) /duy)
i) jk=

B S T G, () ) ) ) () [l

Jik=1

i=2,...,n.  (9b)

Note that, in linear cases, the a;'s are just the linear normal modes’ components; however, in
nonlinear cases, these initial ‘velocity components’ are generally dependent of the total energy /4 of
the system and thus need to be determined.

The existence of the singularities on the energy surface 2= V(uy, ...,u,,) makes it hard to solve
Eq. (5), even by the shooting method. In the following, the ADM is used to solve Eq. (5), together
with the boundary conditions (8a) and (9a,b).
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3. Constructing NNMS via the ADM
3.1. ADM

The ADM has been used for solving various equations in mathematics and physics.
Extensive studies have already shown that this method has significant advantages: it pro-
vides a recursive procedure by which the original solution could be approximated analytically
via a rapid convergent series and each of the components could be easily computed. In the
following, the standard ADM will be simply reviewed. Consider the following differential
equation:

Lu+ Ru+ Nu = g(x), (10)

where L is an operator with the highest order derivative which is assumed to be easily
invertible, R is the remainder linear differential operators of less order than L, Nu represents
the nonlinear operators, and g(x) is the external exciting terms. Applying the inverse operator
L™, an integral operator, to both sides of Eq. (10), and using the given initial and/or boundary
conditions, one obtains

u=f(x)— L™ (Ru) — L' (Nu), (11)
where the function f{(x) stands for the response terms arising from integrating the external
exciting term ¢g(x) and from the given initial and/or boundary conditions, all of which are

assumed to be prescribed. For the convenience of constructing the approximate solution by a
recursive procedure, Eq. (11) is modified as follows:

u=f(x) — AL (Ru) + L™ (Nu)) = f(x) — AG(w), (12)

where the formal parameter /A is artificially introduced and has no specific meaning.
In the standard ADM, the solution u is decomposed into an infinite sum of components as
follows:

U= i wil, (13)
i=0

where the formal parameter 4 is the same as the one in Eq. (12). Substitute Eq. (13) into
Eq. (12) and expand the right hand side function G(u;,A) of Eq. (12) with respect to 4 as
follows:

Gu,2) =Y Aiug,un, -+, up) 2. (14)
i=0
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Substituting Eq. (14) into Eq. (12) and setting the coefficients of 4 of the same order to be zero,
respectively, the following recursive formula can be easily deduced:

= f(x),
= Ao(up),
= A (uo, uy),

Um =Am,1(uo,u1,...,um,1), (15)

where the A4;’s are the so-called Adomian polynomials. Note that, the Adomian polynomial 4;
depends only on the components ug, u, ..., u;, so it can always be explicitly calculated via the first
components of u. Finally one gets the approximate solution as follows:

~Su (16)

i=0

Note that, in Eq. (16), the formal parameter 4 is set to be 1.

3.2. Constructing NNMs via the ADM

First of all, note that the singularities appearing in Eq. (5) are caused just by the inverse of the
Jacobi metric g]k(h) in the Christoffel symbol (2), and this would lead to a divisor of the form of
(h—W(uy, ...,uy)) in Christoffel symbol Iy i . Obviously, these I ’k’s would become singular near the
energy surface of h=WMuy,...,u,). To cancel this factor in I ;k’s simply multiply Eq. (5) by
(h—W(uy, ...,u,)), thus one obtains

d? ul(ul) dui(un) & ; duj(uy) duy (ur)
— e, Uy ' (uy, N :
(h—V(u,... ,u,(u1))) du; j§k—:1 s wa(u), - (1)) T
1 : dui(uy) dug(uy) .
+ I'T (uy,usx(uy), . .., u,(u J =0, i=2,...,n, 17
j’kE_l U, ua(uy) (u1)) dn du 17)

where I'T’ ;k ==V, -, u,(u))l ,lk Thus, there would no singularities appearing in I'[’ }k’s,
however, (h—V (uy,...,u,)), the coefficient of the highest derivative term, would become zero on the
energy surface hi=V(uy, ... u,(u1)). Eq. (17), together with the boundary conditions (8a) and (9a,b),
still constitutes a singular BVP.

By a comparison between Egs. (17) and (10), one can easily identify that

2

d
L= du 2dlag[ 1](n Dx(n—1)> (188-)
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dui(uy)
Ui

du;(uy) duge(uy)
du1 du1

duy(ur) duy(ur)
dul dul ’

Fi(u) =

n
> LG, w), . ()
Jk=1

— Z F;k(ul’ ur(uy), .. ., up(uy))

Jhe=1

i=2,....n (18b)

Theoretically, following the standard ADM, the corresponding Adomian polynomials A;’s
could be calculated by procedure (14) and consequently the NNMs, as the approximate solutions
of Eq. (17) together with Egs. (8a) and (9a,b), could be obtained, but in such cases, since
the functions Fiu)’s take the form of a polynomial fraction, the actual computation for A;’s
is much tedious and the resulting solution series (16) converges slowly. A close observation
of Eq (17) suggests that, here, being different from the standard ADM scheme, other choices
for the operator L and the functions Fy(u)’s are possible; for example, the following choice
is made:

2

d*
L= th{%dlag[l, o Hamxeys (19a)
FuiCu) | duin) O~ duj(u) dug (1)
Fii(u) = s Uy : ——2 N " T, /
() = Vu, ..., up(ur)) &P T 2= s ux (), - (1) dudu
=3 Ity S L) o (195)
jd=1 duy du

The main difference between the standard scheme (18) and the modified scheme (19) is that the
functions Fi(u)’s in Eq. (19) contain partially the highest order linear derivative terms but the
functions Fiu)’s in Eq. (18) do not contain such terms.

When applying the modified ADM (19) to concrete models, firstly Eqgs. (12)—(16) are used to
construct a formal approximate solution. Then conditions (8a,b) and (9a,b) are used to determine
the unknown parameters, such as the parameters «a,’s, etc. The obtained approximate analytic
solutions are just the NNMs of the system.

It should be noted that, in Egs. (5) and (17), the first mass point is actually chosen as the base
point of the NNMs. Similarly, any other mass point could be chosen as the base point, too. In
fact, as discussed in Ref. [9], even abstract points could be chosen as the base point of
the NNMs. The displacement of the abstract base point is defined as a weighted sum of the
displacements of all the mass points of the system. To the first-order approximation,
the components of the linear normal modes can be chosen as the weights. Since the abstract
base point scheme is superior to any other schemes, it is worthy to deduce the geodesic
equations with respect to the abstract base point. Let v denote the displacement of the
abstract base point, then for the ith NNM, define v; = > 7, c;u;, where the coefficients ¢;
represents the components of the ith linear normal mode and satisfies the normalization
condition that Z};lmijcfj =1 (i=1,...,n). The geodesic equations with respect to the abstract
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base point v are given as follows:

duj(v) duy(v)
dv

= V@) D O S 00,0
J» k, =1

du](v) duk(v)
Cdv

+ ) T (), ux(v), ., (V) =0, i=1,...,n (20)

=1

where for the ith NNM, v=uv;. Similarly, the corresponding operator L, and the function F»(u)
for the modified ADM, and the related boundary conditions, can be easily identified and hence
they are omitted here for simplicity. It should be noted that, when doing actual computation, it
is not necessary to compute the terms FF’k’s via the definition for Christoffel symbol. In fact,
such terms can be obtained directly via the original equations of motion.

In the next section, two examples are given to verify the effectiveness of the modified ADM.

4. Examples

To demonstrate the modified ADM for solving the NNMs, in the following, two nonlinear
vibratory models with two-dof and four-dof, respectively, are considered. In the first example, two
base-point schemes—the second mass-point scheme and the abstract base-point scheme—for the
NNDMs are used here for comparison; in the second example, for simplicity, but not accuracy, the
first mass-point scheme is adopted.

Example 1. The physical model to be considered here is a two-dof nonlinear vibratory system [§]
which is as follows:

¥ = —x1 — k(x1 — x2) — gx7,
Xy = —xp — k(x2 — x1), (21)

where k, g are parameters. The potential function V(xi, x,) is as follows:
k
V(xx) = 406} +9) + 3 (0 = )’ + vt (22)

Here, the mass matrix [m,] is just a 2 x 2 unit matrix. Let /2 denote the total energy of the system,
then the geodesic equations, which are equivalent to Eq. (21), on the Riemannian manifold with

the Jacobi metric g;(h) = (h—V(x,, x»))m;, can be deduced as follows:

dxi(x2)\?
1+< dx; ) ]

dXIchZ) = (01(x2) + k(x1(x2) = x2) + g1 (x2)) | =0, (23)

d? xi(x2) 1
x2 2

[h— V(x1(x2), x2)]

X | (x2 + k(x2 — x1(x2)))

where the displacement x, is taken as the reference variable. Although this equation can be
deduced in other way [6], the formulation of geodesics which provides us with more geometrical
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intuition is still adopted. According to Eq. (19), the linear operator L, and the function F;(u) are
chosen as follows:

d2
Li=h—s, 24
1 dx% ( a)
d? d :
Fi(x) = V1 (x62), x2) xl(xz) - ( Xl(x2)>
x2 2 dx,
dxp(x
[ G = 1) I ) k(0 = )+ g [ (24
By procedure (15), the components of the solution series (16), x;9, X11,..., X1,,, can be obtained
recursively:
X10 = d X2,
_ 2 2 3
X1 = 12Oh(1 + a®)(3ga’x —i— 10ka” — 10k)x;,
1
x1p = ——(1 + A)x3(Tg°ax3 + Tg°a’ x4 + 144ga° X2k + 104ga’x2k
12 13, 440h2( )x3(7g 2 9 2 ga " x; ga x;
— 96ga’x% — 96ga x%k 4Oga2x k — 96gd° x2 96ga5x§k
+ 280a5k2 — 224ka®* — 224k%a* — 280k*a + 224k + 224Kk?). (25)

Since the ADM involves only simple calculations such as polynomial integration and
expansion, the other components x;3, X4, ..., X1,,, can also be easily calculated. It is predictable
that these expressions would become comparatively complicated as the number of the solution
components increases, so only the expression for x;; is listed in Appendix A and the rest is
omitted. Then, the approximate solution with 4 components is x;(a) =x19+ x11 + x12 + X13, Where
the unknown parameter a is to be determined by the boundary conditions (9).

Next, the NNMs and the corresponding modal oscillator equations of model (21) for two
specific cases, the low-energy case with k=1, g=0.5, #=1; and the high-energy case with k=1,
g=0.5, h=3, are calculated, respectively.

Low-energy case (k=1, g=0.5, h=1)
Mode-1: Parameter a = 0.8174918014, modal amplitude (x2),.« = 1.022283479,

x1 = 0.8174918014x; + 0.0461153894x3 + 0.0036575128x; + 0.0007712539x
— 0.0044021603x3 + 0.0001445457x3" — 0.156026666 x 10~°x)°, (26a)

Modal oscillator 1:

%2 + 1.182508199x; — 0.0461153894x3 — 0.0036575128x5 — 0.0007712539x]
4 0.0044021603x)5 — 0.0001445457x3" 4 0.156026666 x 10~°x}* = 0, (26b)
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Mode-11: Parameter a = —1.070706302, modal amplitude (x2),.« = 0.5511812782,
x1 = — 1.070706302x; — 0.0261883699:x3 — 0.0045975704x; — 0.0078638712x)
+ 0.1452059425x5 — 0.0032813377x3" + 2.196999165 x 10~°x)°, (26¢)

Modal oscillator 11:

%2 +3.070706302x; + 0.0261883699x3 + 0.0045975704x3 + 0.0078638712x]
— 0.1452059425x3 + 0.0032813378x3" — 2.196999 x 10~°x}* = 0. (26d)
High-energy case (k=1, g=0.5, h=3)
Mode-1: Parameter a = 0.6527160761, modal amplitude (x2),,,x = 1.806758063,
x1 = 0.6527160761x; + 0.0227358719x3 + 0.0009071058x3 + 0.595081636 x 10~*x]
—0.7898780689 x 107*x3 + 0.1406169847 x 10~°x}! — 0.7466173435 x 10~8x)*.  (27a)
Modal oscillator 1:
%2 + 1.347283924x, — 0.0227358719x3 — 0.0009071058x3 — 0.595081636 x 10™*x]
4 0.7898780689 x 10™*x3 — 0.1406169847 x 107>x1! + 0.7466173435 x 10~8x}* = 0. (27b)

Mode-11: Parameter a = —1.253650016, modal amplitude (x2),,,x = 0.8486280685,
x1 = — 1.253650016x; — 0.0408346429x3 — 0.0038603627x3 — 0.002294722x]
4 0.0175055657x5 — 0.0005047968x3" + 0.4221805517 x 10~°x}°. (27¢)

Modal oscillator 11:
¥ + 3.253650016x, + 0.0408346429x3 + 0.0038603627x5 + 0.002294722x]
—0.0175055657x3 + 0.0005047968x3' — 0.4221805517 x 10™°x3° = 0. (27d)

Note that, Egs. (26) and (27) are the NNMs approximated with a four-component series and with
the x, as their reference variable. As a comparison, the NNMs approximated with a three-
component series and with abstract points as their base points, for the high-energy case, are also
listed in the following:

Mode-1: (k=1, g=0.5, h=23): Parameters a = 0.55764767;, b = 0.856565888, umax =
2.21003,

x1 = 0.5576476743u + 0.00867424161° — 0.41005 x 1071 — 0.386278 x 1044’ — 0.7044 x 107%°,

x2 = 0.8565658883u — 0.00867424161° + 0.41005 x 107%1° + 0.386278 x 10~*u" + 0.7044 x 107,
(28a)

Modal oscillator 1:
i+ +/2(0.7071067815u + 0.0433530538u° + 0.00202307771° + 0.305127 x 10~*’
—0.88756769 x 1074’ — 0.44478 x 10~ %" — 0.71582396 x 10~ %u'%). (28b)
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Mode-11: (k=1, g=0.5, h=23): Parameters a = 0.78971492; b = —0.62449864, un.x =
1.3682345,

x; = 0.789714921u + 0.0046519771 + 0.10313328 x 1073 — 0.26159489 x 10 u’ — 0.4739 x 1074/,

X = —0.6244986416u + 0.004651977° + 0.10313329 x 1073 — 0.00026159u” — 0.4739 x 107",
(28¢)

Modal oscillator 11:

i + ~/2(2.121320344u + 0.12312635981° + 0.0021759031° + 0.610568 x 10~*u/

—0.1217641 x 10734’ — 0.365022 x 1072u"" — 0.622827 x 10~ 7u'> + 0.39687 x 10~"u"?).
(28d)

Theoretically, all the NNMs and their modal dynamical equations obtained above could be
expressed by the parameters k, g, &, etc. of the system; however, these expressions, especially for
the high energy cases, are very complicated, so not pursued here.

Example 2. The physical model to be considered is a 4-dof nonlinear vibratory system which is as
follows:

¥ = —x1 — (¥ —x2) —ax; = f1,
X = —(x2 —x1) — (x2 — x3) = [,
X3 = —(x3 —x2) — (x3 — x4) =135,
Xg=—(x4 —x3) — x4 =f4, (29)

where o is a parameter describing the nonlinearity of the system. The potential function V(xq, x»,
X3, X4) is as follows:

x
V1,30, x5, X4) = 3047 + (11— x2) + (12 = x3)" + (x5 — xa)” +39) + 07 (30)

Here, the mass matrix [m,] is just a 4 x 4 unit matrix. Let /2 denote the total energy of the
system, then the geodesic equations, which are equivalent to Eq. (29), on the Riemannian

manifold with the Jacobi metric g;(h) = (h-V(x;, X2, X3, X4))m;;, can be deduced as follows:

2 .
[h — V(x1, x2(x1), x3(x1), X4(X1))]d zl(;cl)
X
I L (o) daGe)] _ o
_§[1+;<d_m> -[fl.—fl o ]_o, i=2.....4, 31)

where the displacement x; is taken as the reference variable and the f;’s are the right-hand side
functions of Eq. (29). According to Eq. (19), the linear operator L, and the function F;, () can be
chosen as follows:

2
L = hd—zdiag[l, 1,1], (32a)
dxy
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2 .
Fii(x1) = V(Xl,xz(xl),X3(x1),x4(x1))d z;gl)
1
1 4 /d(xan) dxi(x)] .
+5 H_]Z_;( dx ) '[fi—fl ax; ] i=2,...,4 (32b)

By procedure (15), the components of the solution series (16) for m=3, X,, Xi,..., X3, can be
obtained recursively:

Xo = [ar, a3,a4]" u, (33a)

_ 1
~ 480h
(36131/!2 + 40a; 4+ 40a4 — 40aya;3),

(Bagu® + 40az — 40aray)] . (33b)

X (1 + &3 + a3 + a)’[(3ayu® 4 40 + 40a; — 40a3),

The expression for X5 is listed in Appendix B. The expression for X3 is also obtained, but it is
comparatively complicated and so omitted here for saving the space. Thus, the approximate
solution with 4 components is X(a»,a3,a4) = Xo+ X| + X5+ X3, where the unknown parameters a;’s
are to be determined by the boundary conditions (9).

Next, the NNMs and the corresponding modal oscillator equations of model (29) for the case
that h =1, o =y are calculated.

Mode-1: Parameters {a, = 1.52955328, a3 = 1.768595637, a4 = 0.9453675745}, modal ampli-
tude (X)) = 0.5675187856,

X1 = U,
xy = 1.52955328u + 0.5264011867u + 0.1732627811° + 0.084211887u’
+ 0.6738555034u° + 0.286871147u'" + 0.02864469946u"3, (34a)

x3 = 1.768595637u — 028247364711 — 0.072765137u° — 0.04376138u’
+0.28976573361° + 0.2262207098u'! + 0.0331213637u'3, (34b)

x4 = 0.9453675745u + 0.3957931308u° + 0.1253004463u° 4 0.05786069671’
+0.4895348259° + 0.192678508u'! + 0.0177043653u'. (34c)

Modal oscillator 1:
it + 0.47044672u — 0.27640118671° — 0.1732627811° — 0.0842118871"

— 0.67385550341° — 0.286871147u'! — 0.02864469946u'* = 0. (34d)
Mode-11: Parameters {a; = 0.6553822099, a; = —0.6122097864, a; = —1.021722089}, modal
amplitude (x}),,,, = 0.5040802619,
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x> = 0.6553822099u — 0.01981219933° — 0.000959965161° — 0.00409812468u”
+0.11224822894° + 0.01752191178u"" + 0.0007109880997x"3,

x3 = — 0.6122097864u + 0.01656325458u° + 0.00136333401° + 0.004792707494
—0.113832331%° — 0.01694241071u'! — 0.0006641527126u"3,

xq = — 1.021722089u + 0.02725231551° + 0.00230438139° + 0.007958439424/
—0.18990052284° — 0.0282829997u'" — 0.00110841"3.
Modal oscillators II:

i + 1.34461779u + 0.2698121993u° + 0.000959965161° + 0.00409812468u"
—0.1122482289° — 0.01752191178ux'" — 0.0007109880997x'3 = 0.

983

(352)

(35b)

(35¢)

(35d)

Mode-111: Parameters {a, = —0.60021718, a3 = —0.6238747751, a4 = 0.9924507463}, modal

amplitude (x;),,x = 0.3736857474,

X3 = — 0.60021718u + 0.0072301124° + 0.002341204612° + 0.01052571574"
— 0.41268848381° — 0.03029564654u'! — 0.00057616887u'3,

x3 = — 0.6238747751u + 0.0080999585° + 0.002225873u° + 0.009915613u’
—0.41227701374° — 0.03095088614u'" — 0.0005988786u'3,

x4 = 0.9924507463u — 0.0128467524u — 0.003542261° — 0.0157550635u’
+ 0.65572569514° + 0.0492369089x!'" + 0.0009526872u'3.
Modal oscillators 111:
it + 2.60021718u + 0.24276988761° — 0.00234120461° — 0.0105257157u"
+0.41268848384° + 0.0302956465u'! + 0.00057616887u'> = 0.

Mode-1V: Parameters {a; = —1.611493199, a3 = 1.609022582, ay = —0.9937461995},
amplitude (x),,x = 0.1963277966

X = — 1.611493199u + 0.01448099628° + 0.01702423551° + 0.2620466921”
— 38.3056787u° — 2.040748273u'" — 0.02792797937u"3,

x3 = 1.609022582u — 0.014717954461° — 0.016648292:° — 0.254607342u’
+37.843474851° + 2.028425613u'! + 0.0278851623u'3,

(36a)

(36b)

(36¢)

(36d)

modal

(37a)

(37b)
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x4 = — 0.9937461995u + 0.00909507641> + 0.0102820048:° + 0.1572839561
— 23.37337744u° — 1.252772482u'! — 0.0172221163u", (37¢)

Modal oscillator 1V:

i+ 3.611493199u + 0.235519:° — 0.0170242351° — 0.2620466921
+ 38.3056787u° + 2.040748273u'" + 0.02792797937u'? = 0. (37d)

Note that Egs. (34)-(37) are the NNMs approximated with a four-component series and with

the x; as their reference variable.
In the next section, various numerical simulations will be done for models (21) and (29).

5. Simulation results and remarks

To confirm the effectiveness of the NNMs obtained above, numerical simulations for different
base-point schemes and/or different energy levels are done in the following. For models (21) and

VAAN ML
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@ (b)

ALAR
N

© (d)

Fig. 1. Numerical simulation of modal dynamical responses of model (21). All the curves are plotted for x; vs. t. ——,
The simulation based on the original Eq. (21); occcoco, the simulation based on the NNM oscillator Egs. (26) and (27). (a)
Mode-I, the low-energy case, =1, x, as the reference variable of NNMs; (b) Mode-II, same as (a); (c) same as (a),
high-energy case, & = 3; (d) same as (b), high-energy case.
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Fig. 2. Numerical simulation of model (21). All the curves are plotted for x; vs. £. ——, The simulation based on the
original Eq. (21); ooococooo, the simulation based on the NNM oscillator Egs. (28). (a) Mode-I, the high-energy case,
h=3, abstract point as the base point of NNMs; (b) Mode-II, same as (a).

(29) with specific energy level &, the parameter a or ¢;’s and the maximum modal displacements
(X2)max OF (X1)max can be easily calculated by using the Newton—Raphson iteration method. The
linear normal modes’ components could be suitably chosen as the initial values for the
parameter(s) a or «;’s. Similarly, the linear maximum modal displacement could be chosen as the
initial value for (x2)max O (X1)max-

In Fig. 1, model (21) is simulated. The second coordinate x, is chosen as the reference variable
of NNMs and the modified ADM with a four-component-solution series is used to approximate
the modal manifolds and the corresponding modal dynamics. The modal dynamics on mode-I and
mode-II are simulated for two different energy levels, 2= 1 and 3, respectively. The results indicate
that, even in the high energy case, the NNMs constructed by the modified ADM are quite
accurate.

As a comparison, in Fig. 2, the abstract base point scheme is adopted and the modified ADM
with a three-component-solution series is used for constructing the NNM manifolds and
approximating the modal dynamics. For simplicity, only the results for high-energy case, 7= 23, are
presented here. It can be seen that, this scheme which uses merely three components is more
accurate than the one stated above which uses four components. It should be noted that, for n-dof
conservative vibratory systems, the abstract base point scheme usually concerns n equations for
determining NNMs, but the x,-(or any other x;-)base point scheme involves only n—1 equations
for NNMs.

For further comparison, the state space method with the abstract base point scheme is used for
the same model (21). Similarly, only the high-energy case is presented here for saving the space.
From Fig. 3, it can be easily seen that, in this case, the error of the approximate solution based on
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(b)
Fig. 3. Numerical simulation of model (21). All the curves are plotted for x; vs. z. ——, The simulation based on the
original Eq. (21); ——, the simulation based on the NNM oscillator equations (cf. Ref. [9]). (a) Mode-I, high-energy

case, h = 3, abstract base point scheme, state space method; (b) Mode-II, same as (a).
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Fig. 4. Numerical simulation of modal dynamical responses of model (29). All the curves are plotted for x; vs. t. ——,
The simulation based on the original Eq. (29); coccoo, the simulation based on the NNM oscillator Egs. (34)—(37). In all
of the figures, h = 1/2, « = 1/4, x; is taken as the reference variable of the NNMs (a) mode-I; (b) mode-II; (c) mode-
I11; (d) mode-IV.
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the NNMs is significant, this is true especially for the mode-I. This indicates that the state space
method is not suitable for high-energy and/or strongly nonlinear vibratory systems.

In Fig. 4, model (29) is simulated. Figs. 4(a)—(d) are the simulation results with the first mass
point being chosen as the base point of the NNMs. It can be seen from these figures that, the
accuracy of the NNMs is quite good.

These numerical simulations indicate that, the modified ADM for NNMs is more effective than
the existing methods. The obtained NNMs are more accurate and less computation volume is
required. The obtained solution series with only few terms is convergent rapidly.

It should be indicated that, with the increase of the number m (the solution components) or the
number # (the dof of the systems), the resulting Eq. (17) or (20) for determining the parameters a;’s
would become more and more complicated.

6. Conclusions

For conservative vibratory systems, based on the analysis and the simulation results above, our
conclusions are as follows:

1. Nonlinear normal modal motions are special geodesic motions on the Riemannian manifold
with the Jacobi metric. NNMs are special geodesics on the manifold. All these geodesics pass
through the origin of the manifold with specific directions which depend on the total energy of
the system.

2. The modified ADM is more effective for constructing the NNMs. The NNMs obtained by this
method are more accurate and just need less computation volume and simple manipulations.
Higher-order approximate NNMs could be easily built in this way.

3. Based on the geodesic formulation, the modified ADM for NNMs is global, rapid convergent,
and applicable to strongly nonlinear vibratory systems. It can be applied to high-dimensional
conservative vibratory systems.

4. Theoretically, it is possible to combine the modified ADM with the state space method for
NNMs. However, since the state space scheme concerns system of partial differential equations
for determining NNMs, it is not easy to apply the modified ADM directly.

Appendix A. The expression for x;3 in Example 1

X3 = P (1 4 a*)x}(3,294,720ga° X3 + 3,294,720ka® + 6,589,440k*a°

691,891,200
+7,687,680ka® — 6,589,440k>a” + 7,756,320k>a® + 7,687,680k a> — 7,756,320k a*
— 7,687,680k3a + 4,804,800k%a® + 7,687,680k a — 1,853,280k a* — 7,687,680a° k>
+7623g°a’x§ — 198,432¢°a’ x5k + 297,6484%a'"x3k — 396,8649%a’ X3k
—198,432¢°a’ x5k + 162,864g°a’x3k + 527,904g°a®x3k — 67,392g%a* x5k
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+ 3,294,720a" gx3k + 6, 580,860a” gx3k?* — 2, 574,000a*gx3k?* + 431,860a° gx3k?

— 4,427,280a% gux3i* + 3,174,600d° gx3k* — 4,427,280a° gx3k 4 926,640a° gx3Kk*

+ 100, 100agx3k* + 3,738,020a°gx3k* — 7,927,920a°gx3k* — 7,687, 680k*a’

— 2,951,520k — 3,294,720k — 198,432¢%a° x3 — 396,864¢%a’ x5 + 1,647,360a" gx3
— 198,432¢°a°x5 + 7623g°a"' x5 + 15,2464° @’ x5 + 1,647,360ga’ x3

— 3,294,720ka’ + 3,294,720ka” + 7,687,680k a — 6, 589,440k — 7,927,920ga°x3k
— 2,574,000ga* x5k + 3,294,720ga’ x3k + 6,589, 440ga> x5k + 926,640ga” x5k

+ 6,589, 440ka* — 7, 687,680a°k?).

Appendix B. The expression for X, in Example 2

1
X, = m(l + a3 + a3 + a)u’[(7168 + 768ayu* — 4032a5a; — 4032a3a; + 336asu°

+ 7168aza3 + 448a3 — 736u*a; + 336u*a3 — 416u*as + 448a3 — 736u°a; + 3361 as

— 41617 a5 + 448a5a4 + 448a; — T168a;5 + T68u*a + 4480a3a3 + 448aya3 — 4928a3a;

— 4928a3ay + 4480a3a; + 320’ a3 + 7168asza; — T168a3a; — 7168a3a3 + 716843

+ 336u2a3a§ + 768u2a§a2 + 768u2aia2 — 4928a3a§a2 + 35a2u4aﬁ — 736u2a§aﬁ — 4928aza;
+ 35auta; + 35a* — 136utara; + 336utazag + 320u” + 35a3u’ + 320a3u” — 40324,

+ 7168as + 448a4 + 716843 + 7168a; + 4480a3),

(448 + 336aru” + 7168a5as + 7168a3a: + 768azu + 4480asa5a; — 4480arasa; + 4928aza3
+ 716843 + 33612 ay — 736a3au* — 7361 aras + 7681 a3 + T168d3ay + 716843

— T36arazaqu’ — 448a3a; — 4480a;5 + 336a3u* + 7168aya3 — 7168aza3 — 7168a3ay + 35a3u’
+35utazas + 35azaqut + 3361t asas + 3361t asa; — T36aza3u” + 448aza; — 4480a5a;

— 4928a3a3 + 44843 — 4480aray + 35u*a; + 336aju’ + T68azu’a; + 336aaiu® + 3361’ ara;
— 7168ara3a; — 7168axa; + 71681 aza; — 44845 — 4480ara;, — 4480a4a; + 4480a3d;

+ 4480a3a3 + T168a; + 448a;3 + 7168as — 403245 + 44843),
(—448a3a4 + 448ara; + 448d3ay + 336asu* — T168ara3a4 + T168aza3 + 448a3 + 768u’ay
+ 336u*a; + 4480a3a4 — 4480a3a; — 4480a3a; + 768U asas + 1681 azas — 4480a5a3ay

+ 35aqu* + 35a4a§u4 + 35u4a4a§ — 736ayasu’ — 736a2a2u2 — 736a4a§u2 — 736u2a§a2a4

+ 7168aza; + 716843 + 4480a3a; + 4480a5as — 448aya; — 448aja; — 7168aza4

+ 768u*a; + 35u’a; + 336aza3u’ — 4480ara3a; — 448a3azay — 4480a3a; + 336azagu’

— 7168ara — 7168a3ay + 448a; + 7168a3)]".
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