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Abstract

An efficient and modular numerical prediction model is developed to predict vibration and re-radiated
noise in adjacent buildings from excitation due to metro trains in tunnels for both newly built and existing
situations. The three-dimensional dynamic tunnel–soil interaction problem is solved with a subdomain
formulation, using a finite element formulation for the tunnel and a boundary element method for the soil.
The periodicity of the tunnel and the soil in the longitudinal direction is exploited using the Floquet
transform, limiting the discretization effort to a single bounded reference cell. It is demonstrated in the
paper how the boundary element method can efficiently be extended to deal with periodic media, reusing
the available three-dimensional Green’s tensors for layered media. The efficiency of the method is
demonstrated with a numerical example, where the case of harmonic and transient point loading on the
invert of a shallow cut-and-cover masonry tunnel in Paris is considered. The work described here was
carried out under the auspices of the CONVURT project sponsored by the European Community.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Ground-borne vibrations induced by underground railways are transmitted to adjacent
structures and are a major environmental concern in urban areas. Due to the highly complex
see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.04.010

ding author. Tel.: +32-16-32-16-67; fax: +32-16-32-1988.

resses: clouteau@mss.ecp.fr (D. Clouteau), geert.degrande@bwk.kuleuven.ac.be (G. Degrande).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

D. Clouteau et al. / Journal of Sound and Vibration 283 (2005) 173–199174
dynamic behaviour of such systems in the relevant frequency range between 0 and 100Hz, mainly
empirical methods have been considered in the past to characterize wave fields propagating away
from tunnels. The aim of this paper is to show that advanced numerical models are able to give
valuable insight and quantification of such phenomena in real situations. In particular, the case of
a cut-and-cover shallow masonry tunnel embedded in a layered half-space is analyzed in detail.
As far as deterministic modelling is concerned, theoretical models with varying degree of

sophistication have been proposed for trains running on the surface [1–3]. A model proposed by
Krylov [4] for wave propagation in a homogeneous half-space due to moving axle loads has been
extended [5–7] to include layered media and has been validated by means of experimental results.
Recent track models [8,9] account for all relevant excitation mechanisms and for dynamic
soil–structure interaction (SSI) at the track due to through-soil coupling of the sleepers on a
ballasted track.
A review of models for trains running in tunnels has been presented by Kraft [10] and

Hemsworth [11]. Two-dimensional finite element (FE) models with (local) absorbing boundary
conditions [12] or analytical models [13] have been used, but these require major simplifications to
translate the three-dimensional moving load into an equivalent line load and do not allow to
incorporate three-dimensional structures. Moreover, two-dimensional models underestimate
radiation damping in the soil and neglect wave propagation along the tunnel. These waves have
been accounted for by Hunt [14], modelling the tunnel as an infinite cylinder in an infinite
homogeneous full space. Alternatively, Stamos and Beskos [15,16] have used the boundary
element (BE) method to compute the seismic response of tunnels.
Clouteau et al. [17,18] have proposed a general approach to track–vehicle interaction for

translation invariant and periodic tracks. The fundamental ingredient of the models for
track–vehicle interaction and radiation away from the tunnel is the transfer or Green’s function of
the track–tunnel–soil system.
As proposed by Clouteau et al. [19] in the case of earthquake engineering, the problem of

tunnel–soil interaction is considered as a particular periodic case of a more general three-
dimensional soil–structure interaction problem [20]. In this model, effects of nearby structures are
neglected even though a periodic building model could have been included. The main objective
here is the modelling of an equivalent three-dimensional incident field on a three-dimensional
building. For the sake of simplicity, only point forces on the tunnel invert are accounted for and,
once the corresponding time-varying three-dimensional solution is available, the response due to
any moving load can be synthesized.
The objective of the present paper is to describe the development of an efficient and modular

numerical prediction model for vibrations and re-radiated noise in adjacent buildings from
excitation due to metro trains in tunnels for both newly built and existing situations, using recent
developments in the area of dynamic soil–structure interaction analysis. These developments are
one of the objectives of the EC Growth project CONVURT ‘‘The control of vibration from
underground railway traffic’’.
Section 2 gives a brief description of the numerical model that is based on a BE formulation

[18], modelling the soil as a three-dimensional horizontally layered medium, coupled with a FE
formulation and modal reduction techniques for the tunnel. Due to the periodicity of the problem
domain, the interaction problem can be transformed for any type of loading, including a point
force, to a set of independent analyses on a bounded reference cell using the Floquet theorem.
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Moreover, it is demonstrated that the proposed approach can reuse the existing three-dimensional
BE technology for layered media as the periodic Green’s kernels have the same singularities as the
three-dimensional Green’s kernels [21]. This is a major advantage compared to the so-called 2.5D
approaches where a translation invariant model is assumed and for which the analysis of all
singularities has to be repeated after the Fourier transform along the tunnel axis, except for
surface tracks where the singular stress kernel vanishes [1]. Compared to earlier work of Clouteau
et al. [21], a much more efficient way to compute the periodic Green’s functions is proposed here,
together with a novel way to build a modal basis on the tunnel that satisfies a priori the
generalized periodicity conditions.
Within the frame of the CONVURT project, the numerical model is validated by means of in

situ experiments at a site of the Cité Universitaire campus in Paris on the RER B line of RATP
and a site in Regent’s Park in London on the Bakerloo line of London Underground. Section 3
describes the first site and how it can be modelled using the proposed methodology. This section
also reports on the convergence analysis that has been performed for this numerical model.
The harmonic and transient response due to point forces on the tunnel invert are subsequently

discussed in Sections 4 and 5. Two simplified models are also used to explain the low-frequency
resonance of the tunnel roof and the high-frequency filtering of the far field by the soil layering.
Section 6 finally summarizes the major contribution of this work and suggests some future

refinements of the model.
2. Numerical modelling

2.1. Problem outline

The proposed model is based on the following hypotheses: (1) the tunnel is assumed to be
periodic in the direction of its longitudinal axis e2 with a period L; (2) the tunnel is embedded in a
horizontally layered soil, and (3) all displacements and strains remain sufficiently small so that
linear models can be used. These hypotheses allow for the use of integral transforms along infinite
directions of the model in order to restrict the analysis to bounded domains on which standard
numerical techniques such as Galerkin formulations result in bounded discretization errors. These
transforms are the Fourier transform with respect to time, the Floquet transform with respect to
the periodic direction of the structure and the Hankel transform for the layered soil. Integral
equations are used to express the coupling between the tunnel and the soil.
The physical domain is decomposed into two subdomains: the soil Os and the tunnel Ot; as

shown in Fig. 1. The interface between these subdomains is denoted by Sts: The other boundaries
are denoted by Gsa; Gta and Gts; respectively. On Gsa and Gta; free boundary conditions are
assumed. On the boundary Gts; a surface force ft is applied.

2.2. Governing equations

The permanent displacement fields on both subdomains Oa ða ¼ s; tÞ due to static loads are
assumed to be known, so that ua denote the dynamic perturbations of the displacements in the soil
and in the tunnel due to dynamic loads. These dynamic perturbations are assumed to be small
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Fig. 1. Problem outline and notations.
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enough to allow for a linear approximation of the constitutive equations in the vicinity of the
static state. The dynamic perturbations raðuaÞ of the stress tensors can be expressed as linear
functions of the dynamic fluctuation of the strain tensors eaðuaÞ; using Hooke’s law:

raðuaÞ ¼ laðdiv uaÞId þ 2maeaðuaÞ; ð1Þ

eaðuaÞ ¼ 1
2
½grad ua þ ðgrad uaÞ

T
�; ð2Þ

where la and ma are the Lamé parameters with a possible small imaginary part to model hysteretic
material damping and Id is the 3� 3 identity matrix. In the following, the traction vectors on an
interface with an outer normal vector n are denoted by taðuaÞ:

taðuaÞ ¼ raðuaÞn: (3)

In the frequency domain, the complete system of Navier’s equations and boundary conditions
can be written as

The soil:

divrsðusÞ ¼ �o2rsus in Os; (4)

tsðusÞ ¼ 0 on Gsa: (5)

The tunnel:

divrtðutÞ ¼ �o2rtut in Ot; (6)

ttðutÞ ¼ 0 on Gta; (7)

ttðutÞ ¼ ft on Gts: (8)

Compatibility and equilibrium:

us ¼ ut on Sts; (9)

tsðusÞ þ ttðutÞ ¼ 0 on Sts; (10)

together with radiation conditions for the displacement field in the soil.

2.3. Periodic approach of dynamic soil–tunnel interaction

The problem of dynamic soil–tunnel interaction is a three-dimensional problem with a
periodicity with period L in the longitudinal direction e2 along the tunnel axis. The position vector
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x of any point in the problem domain O is decomposed as

x ¼ ~xþ nLe2; ð11Þ

where ~x is the position vector in the reference cell ~O and n is the cell number. A Floquet
transformation is used to transform the distance nL between the nth cell and the reference cell ~O to
the wave number k and to restrict the model to periodic fields of the second kind defined on a
single reference cell [22]. Cells, periodic fields of the second kind and Floquet transforms have the
following definitions and properties:

Definition (Generic cell). The generic cell ~O of a periodic domain O is defined as

~O ¼ x 2 Oj �
L

2
px � e2pþ

L

2

� �
: (12)

Definition (Periodicity of the second kind). A complex valued function ~f ð ~x; kÞ; defined on a
periodic domain O; is periodic of the second kind with a period L in the direction e2 and
wavenumber k; if for all x 2 O;

~f ð ~xþ Le2; kÞ ¼ e�ikL ~f ð ~x; kÞ: (13)

It is strictly periodic or periodic of the first kind when L ¼ 0:

~f ð ~xþ Le2; kÞ ¼ ~f ð ~x; kÞ: (14)

This definition can be extended as follows to operators with periodic coefficients:

Definition (Periodic operator of the first kind). The operatorA with domain DðAÞ is periodic of
the first kind with period L in the direction e2 if

8u 2 DðAÞ 8x 2 O:Aðxþ Le2Þu ¼ AðxÞu: (15)

The periodicity of the first kind of A allows for a computation on the generic cell, with a
restriction of its domain to periodic fields of the second kind with support on that cell. Any field
on a periodic domain can indeed be transformed to periodic fields using the so-called Floquet
transform:

Definition (The Floquet transform). Let f ðxÞ be a function defined on a periodic domain O with
values in C and let L be the geometrical period along the direction e2: The Floquet transform
~f ð ~x; kÞ of the function f ðxÞ is the complex valued function of the spatial coordinate ~x on the
generic cell and of the wavenumber k:

~O�� � p=L;þp=L½! C : ~f ð ~x; kÞ ¼
Xþ1

n¼�1

f ð ~xþ nLe2Þe
inkL: (16)
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The inverse Floquet transform is defined as

f ðxÞ ¼
L

2p

Z þp=L

�p=L

~f ð ~x; kÞe�inkL dk: (17)

When (16) is extended to the entire domain O� R; the transformed function ~f ð ~x; kÞ is periodic
of the second kind with respect to ~x and periodic of the first kind with respect to k with a period of
2p=L:
By construction, the system of equations (4)–(10) defines a periodic operatorA of the first kind,

which can be restricted to a reference cell provided that a Floquet transform is applied to the
original fields. Once known, the displacement and traction fields obtained in the spatial-
wavenumber domain can be inverse Floquet transformed to their values in the spatial-frequency
domain.
2.4. Dynamic soil–structure interaction in the frequency-wavenumber domain

As mentioned, the problem is restricted to a single generic cell ~O: The domains Ot and Os are
restricted to the domains ~Ot and ~Os; respectively; the boundaries Gsa; Gta; Gts and the interface Sts

are restricted to ~Gsa; ~Gta; ~Gts and the interface ~Sts: All displacement and traction fields uðx;oÞ and
tðx;oÞ defined on the periodic domain O are transformed to the fields ~uð ~x; k;oÞ and ~tð ~x;k;oÞ
defined on the generic cell ~O:
The equilibrium of the tunnel is written in a weak sense. The tunnel displacements ~utð ~x;k;oÞ

must satisfy the equilibrium equation (10), transformed to the wavenumber domain. Multiplying
this equation with the complex conjugate of any virtual field ~vtð ~x; kÞ and integrating over the
domain ~Ot yieldsZ

~Ot

~rð~utÞ : ~eð~vtÞdV � o2
Z
~Ot

rt ~ut � ~vt dV ¼

Z
q ~Obt

~ttð~utÞ � ~vt dS þ

Z
~Gts

~ft � ~vt dS; (18)

where the boundary q ~Ot of ~Ot can be decomposed into the tunnel–soil interface ~Sts and S0 [ SL;
the two boundaries of ~Ot at the two edges ~y ¼ �L=2 of the generic cell. As the actual and the
virtual displacement fields are periodic of the second kind, the integral on the right-hand side of
Eq. (18) on the sum of the two boundaries S0 and SL vanishes [21]. Accounting for stress
equilibrium (10) along the tunnel–soil interface ~Sts; the equilibrium equation (18) becomesZ

~Ot

~rð~utÞ : ~eð~vtÞdV � o2
Z

~Ot

rt ~ut � ~vt dV þ

Z
~Sts

~tsð~usÞ � ~vt dS ¼

Z
~Gts

~ft � ~vt dS: (19)

Since the generic cell ~Ot of the tunnel is bounded, the displacement field ~utð ~x; k;oÞ can be
expanded with bounded error on a finite basis of displacement fields ~wmð ~x; kÞ ðm ¼ 1; . . . ;NÞ;
provided that these fields are periodic of the second kind:

~utð ~x;k;oÞ ¼
XN

m¼1

cmðk;oÞ ~wmð ~x;kÞ in ~Ot: (20)
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Accounting for the displacement compatibility equation (9) and the linearity of the problem, the
soil displacements ~usð ~x;k;oÞ can be written as

~usð ~x; k;oÞ ¼
XN

m¼1

cmðk;oÞ~udmð ~x;k;oÞ in ~Os; (21)

where the elastodynamic field ~udmð ~x; k;oÞ satisfies the radiation condition, the free boundary
condition and the following condition on the boundary ~Sts:

~udmð ~x;k;oÞ ¼ ~wmð ~x; kÞ on ~Sts: (22)

Each elastodynamic field ~udmð ~x;k;oÞ creates a traction field ~tdmð ~x;k;oÞ ¼ ~tsð~udmÞð ~x; k;oÞ on the
tunnel–soil interface, so that the tractions in the soil ~tsð~usÞð ~x; k;oÞ are decomposed as follows:

~tsð~usÞð ~x;k;oÞ ¼
XN

m¼1

cmðk;oÞ~tdmð ~x;k;oÞ on ~Sts: (23)

Expansions (20) and (23) are introduced in the variational formulation (19), with ~vtð ~x; kÞ ¼
~wnð ~x; kÞ: This results into the following system of equations for the vector of generalized degrees
of freedom cðk;oÞ; describing the dynamic tunnel–soil interaction problem in the frequency-
wavenumber domain:

½KtðkÞ � o2MtðkÞ þ Ksðk;oÞ�cðk;oÞ ¼ ftðk;oÞ (24)

with KtðkÞ andMtðkÞ the stiffness and mass matrices of the tunnel, Ksðk;oÞ the dynamic stiffness
matrix of the soil and ftðk;oÞ the generalized force vector applied on the tunnel invert, defined as

½Kt�nm ¼

Z
~Ot

~rð ~wmÞ : ~eð ~wnÞdV ; ½Mt�nm ¼

Z
~Ot

rt
~wm � ~wn dV ; ð25Þ

½Ks�nm ¼

Z
~Sts

~tdm � ~wn dS; ½ft�n ¼

Z
~Gts

~ft � ~wn dS: ð26Þ

Let us consider a finite element model of the tunnel’s reference cell with Mdof degrees of freedom
and define ~WðkÞ as the Mdof � N matrix containing the N modes ~wmðkÞ: If K

FEM and MFEM are
the standard Mdof � Mdof finite element stiffness and mass matrices, then the matricesMtðkÞ and
KtðkÞ are given by

KtðkÞ ¼ ~WðkÞ
T

KFEM ~WðkÞ; MtðkÞ ¼ ~WðkÞ
T

MFEM ~WðkÞ: (27)

2.5. Kinematic basis for the tunnel

To take into account the periodicity, the kinematic basis for the tunnel has to be determined in
such a way that the fields ~wmð ~x;kÞ are satisfying the following relationship between both ends of
the cell:

~wmð ~xþ Le2;kÞ ¼ e�ikL ~wmð ~x;kÞ 8 ~x 2 ~Ot j ~x � e2 ¼ �
L

2
: (28)
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Assuming that modes ~w
o

m can be built that satisfy for k ¼ 0:

~w
0

mð ~xþ Le2Þ ¼ ~w
0

mð ~xÞ 8 ~x 2 ~Ot j ~x � e2 ¼ �
L

2
(29)

the fields ~wmð ~x; kÞ that satisfy the periodicity condition of the second kind for non-vanishing
wavenumber k can be built as follows:

~wmð ~x; kÞ ¼ e
�ike2� ~x ~w

0

mð ~xÞ: (30)

In a finite element context, the phase term e�ike2� ~x can be interpolated at each node, generating an
Mdof -dimensional diagonal matrix KðkÞ: The wavenumber-dependent modes ~Wð ~x;kÞ are obtained by
multiplying the strictly periodic modes ~W

0
ð ~xÞ by KðkÞ: Moreover, the development of KðkÞ for small

wavenumbers shows that, at a given frequency o; the dynamic stiffness matrix of the tunnel is
quadratic with respect to the wavenumber k as it is quadratic with respect to the frequency for a given
wavenumber. These results show that the stiffness of the tunnel increases with increasing wavenumber.
It can be observed that, unless hysteretic or viscous damping is added in the model, the dynamic
stiffness matrix of the tunnel remains strictly real valued. These results will be totally different for the
dynamic stiffness matrix of the soil due to the unboundedness of the soil domain. Another numerical
technique than the standard finite element method is required to model the soil domain.

2.6. The periodic boundary element method

The dynamic stiffness matrix of a foundation embedded in a homogeneous or layered half-
space is classically computed using a boundary element method, as this numerical technique
directly gives the traction field tdm on the foundation as a function of the imposed displacement
field wm; allowing for a computation of the dynamic stiffness matrix Ks using Eq. (26). Following
this line of thought for the periodic case would consist in demonstrating that the Floquet
transform can commute with the standard boundary integral equation. This work has been
performed by Elhabre [22] who has built a new fundamental solution that satisfies the periodicity
condition and is referred to as the Green–Floquet function.

Definition (The Green–Floquet function). Let uGðx; y; a;oÞ be the Green’s function of a periodic
domain, e.g. the displacement at a point x generated by a point force a at a point y: The
Green–Floquet fundamental solution ~uGF ð ~x; ~y; a; k;oÞ is defined as the infinite sum of Green’s
functions at the point x for sources that are periodically located in space at ~yþ nLe2 and with a
phase shift eikL between two adjacent locations:

~uGF ð ~x; ~y; a; k;oÞ ¼
Xþ1

n¼�1

einkLuGð ~x; ~yþ nLe2; a;oÞ: (31)

The Green–Floquet fundamental solution is periodic of the second kind with respect to ~x and ~y
with a period L in the direction e2 and wavenumbers �k and k; respectively:

~uGF ð ~x; ~yþ Le2; a;k;oÞ ¼ e�ikL ~uGF ð ~x; ~y; a;k;oÞ; ð32Þ

~uGF ð ~xþ Le2; ~y; a;k;oÞ ¼ eikL ~uGF ð ~x; ~y; a; k;oÞ: ð33Þ
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Using this Green–Floquet fundamental solution, the following direct boundary integral
equation on the reference cell is obtained for a homogeneous or a layered medium [22]:Z

~Sts

~tð~uÞð ~xÞ � ~uGF ð ~x; ~n; aÞdS

�

I
~Sts

~tð~uGF ð ~x; ~n; aÞÞ � ~uð ~xÞdS ¼ Cð~nÞ : ð~uð~nÞ � aÞ; ð34Þ

where Cð~nÞ is the integral free term that is equal to 1=2Id for a locally homogeneous and smooth
interface.
It is worth noting that only the bounded tunnel–soil interface ~Sts appears in Eq. (34), whereas

the unbounded part of the boundary of ~Os; consisting of the two edges S0 and SL of the reference
cell, has disappeared. The major advantage of using the Green–Floquet fundamental solution is
indeed that the periodic boundary conditions on these boundaries are implicitly accounted for in
Eq. (34). This is similar as for the case of the free surface condition using the fundamental solution
of the half-space. The boundaries S0 and SL therefore do not need to be discretized.
The second advantage, compared to a translational invariant solution proposed by Aubry et al.

[1], is that the Green–Floquet solution ~uGF ð ~x; ~y; a;k;oÞ has the same singularities as the original
Green’s function uGðx; y; a;oÞ; so that the same numerical integration method can be used.
Consequently, the numerical implementation is straightforward: the bounded interface ~Sts is
meshed and a collocation or a variational method is applied, resulting into the following system of
equations for the traction vector ~tðk;oÞ with dimension 3Ne:

½ ~U
GF

ðk;oÞ�~tðk;oÞ ¼ bðk;oÞ (35)

with

½ ~U
GF

ðk;oÞ�EiFk ¼

Z
F

Z
E

ei � ~u
GF ð ~xE ; ~nF ; ek; k;oÞdSð ~xEÞdSð~nF Þ (36)

and

½b�Fk ¼

Z
F

I
E

u � ~tnð~u
GF Þð ~xE ; ~nF ; ek; k;oÞdSð ~xEÞdSð~nF Þ

þ

Z
F

eTkC~uð
~nF ÞdSð~nF Þ: ð37Þ

As far as the numerical implementation is concerned, the infinite series of Green’s functions in Eq.
(31) is approximated by a finite sum (n ¼ �Nc to Nc). The integrals in Eqs. (36) and (37) are
approximated numerically using Gauss quadrature. Eq. (36) yields

~U
GF

ðk;oÞ �
XþNc

n¼�Nc

einkL ~U
G

n ðoÞ; (38)

where

½UG
n ðoÞ�EiFk �

XNq

q¼1

XN 0
q

q0¼1

wEqwFq0u
Gð ~xq; ~nq0 þ nLe2; ek;oÞ � ei: ð39Þ
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The matrix ~U
G

0 ðoÞ is the standard 3D boundary element matrix, while the matrices ~U
G

n ðoÞ with
na0 are computed translating the sources ~nF over a distance nLe2: A moderate computational
effort is needed, as the computation of the matrices ~U

GF
ðk;oÞ for all wavenumbers k requires only

a single calculation of the matrices ~U
G

n ðoÞ: Moreover, when n is large enough, the distance
between the sources ~nq0 þ nLe2 and the receivers ~xq is large as well and the Green function varies
smoothly over elements E and F ; requiring very few Gauss points in the computation of the sum
in Eq. (39).
3. Numerical example

3.1. Problem outline

In this section, results of numerical computations of ground vibration at the site of Cité
Universitaire site in Paris will be presented. This site is located on the line RER B between the
metro stations Cité Universitaire and Gentilly and is one of sites that has been selected in the
CONVURT project to perform elaborate in situ measurements for the validation of the numerical
model.
The metro tunnel on the line RER B at Cité Universitaire is a masonry cut-and-cover tunnel

with two tracks at a shallow depth of about 9.3m below the free surface. Fig. 2 shows one
symmetrical half of the tunnel’s cross-section, as well as the modelled soil stratigraphy. The top of
the tunnel is 2.3m below the ground surface. The thickness of the tunnel is equal to 0.6m at the
top, while the slab thickness is equal to 0.4m and the wall thickness is equal to 1.5m.
In the model, the masonry is assumed to have a Young’s modulus of 14GPa, a Poisson ratio of

0.15, a mass density of 2400 kg/m3 and a hysteresis damping ratio of 2%.
The tunnel is considered to be infinitely long with an invariant cross-section. As discussed in

Section 2, the problem can be reduced to a single reference cell, as shown in Fig. 3. The period is
equal to L ¼ 0:3m in the y-direction. The tunnel is modelled using 8-node isoparametric brick
elements as shown in Fig. 3. For the sake of simplicity, the ballast, the sleepers and the track are
not (yet) included in the model, as their influence on the dynamic behavior of the tunnel–soil
system is only important for frequencies larger than 80Hz.
The soil stratigraphy is in accordance with preliminary results of SASW tests that have been

performed to determine the thickness and the dynamic characteristics of the shallow soil layers
[23]. The tests have been performed on two measurement lines perpendicular and parallel to the
tunnel. The results demonstrate the presence of a shallow layer with a thickness of approximately
1.4m and a shear wave velocity Cs ¼ 115m/s; a stiffer layer with a thickness of 2.8m and a shear
wave velocity Cs ¼ 220m/s on top of a half-space with a shear wave velocity Cs ¼ 315m/s: The
stratigraphy is summarized in Table 1. A hysteresis damping ratio of 5% is assumed for all three
materials.
In the following subsections, results are presented for the vibrations of the tunnel and the soil in

the free field due to a non-moving harmonic or transient excitation on the tunnel invert at a
position with coordinates ð�2:5; 0:0;�8:25Þ in the frame of reference defined in Fig. 3. This force
is Floquet transformed to the wavenumber domain, resulting into two equivalent forces applied
on two nodes of the finite element model of the generic cell (Fig. 3). The spectral content of these
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Fig. 3. Finite element model of the reference cell and position of the forces on the tunnel invert.

Fig. 2. Cross-section of the metro tunnel on the line RER B of RATP at Cité Universitaire.
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forces in the wavenumber domain is uniform and equal to 0.5. After the computation of the
response of the generic cell in the wavenumber-frequency domain, the results are transformed to
the spatial domain and animated on the mesh shown in Fig. 4.

3.2. Convergence analysis

A kinematic basis for the tunnel is determined, consisting of modes ~wmð ~x;kÞ derived from the
eigenmodes w0mð ~xÞ of the generic tunnel cell with free boundary conditions on Sts and satisfying
the supplementary periodicity constraints given by Eq. (30). Due to these constraints and
the symmetry of the cell, displacements in the y-direction are decoupled from displacements in the
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Table 1

The stratigraphy of the soil

Layer Thickness Cs Cp r
(m) (m/s) (m/s) ðkg/m3Þ

1 1.4 115 282 1700

2 2.8 220 539 1700

3 1 315 772 1700

Fig. 4. The tunnel, the non-moving force, and the free surface.
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x- and z-directions. Only four rigid-body modes are found instead of six, since the rigid-body
rotations around the x- and z-axis do not satisfy the periodicity conditions. Modes 11 and 17 are
shown in Figs. 5 and 6, respectively.
A convergence analysis is carried out to determine the number of modes needed for an accurate

representation of the harmonic response of the tunnel–soil system. The vertical displacement at
the point (0,0,0) on the free surface is considered. Fig. 7 shows the value of the integral of the
norm of this displacement over the frequency interval between 0.1 and 80.1Hz. It follows from
this figure that convergence is assured if 30 modes of the tunnel are accounted for. The
eigenfrequency of the 30th mode is equal to 224.8Hz.

3.3. The periodic boundary element method

The soil impedance is computed using the periodic boundary element method. The
Green–Floquet fundamental solution is computed using a summation on 2Nc þ 1 terms in
Eq. (39). Fig. 8 shows the real part of element (11,11) of the soil impedance matrix in the
frequency range from 0.1 to 80.1Hz, for k ¼ 0 and for Nc ¼ 43; 101 and 160, respectively. The
case of Nc ¼ 101; corresponding to 203 terms in the summation of Eq. (39), will be used in
the following.
According to Eq. (16), a computation in the range of wavenumbers from �p=L to p=L is

necessary. For the low frequencies (up to 15Hz), however, it has been observed that a
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Fig. 5. Mode 11 of the reference cell of the tunnel at 57.6Hz (displacements in the x- and z-directions only).

Fig. 6. Mode 17 of the reference cell of the tunnel at 101.5Hz (displacements in the y-direction only).
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computation in the wavenumber range from �0:6m�1 to 0:6m�1 is sufficient, since the solution is
rapidly decreasing for increasing k; as shown in Fig. 9. A sampling interval in the wavenumber
domain Dk ¼ 0:015m�1 is used. For the higher frequencies (from 15 up to 80 Hz), it is more
suitable to perform computations in the range of slownesses p ¼ k=o from �0:004 to 0.004 s/m, as
shown in Fig. 10, where slowness is defined as the inverse of the phase speed in the longitudinal
direction. A sampling interval Dp ¼ 10�4 s/m in the slowness domain is used.
Based on the symmetry of the generic cell, a solution strategy has been developed to avoid the

computation of the solution for negative wavenumbers or slownesses. The system of equations
(24) is only solved for the positive wavenumbers or slownesses. The inverse Floquet
transformation (16) is computed afterwards accounting for the symmetry. A trapezoidal
integration scheme is used.
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Fig. 7. Integral of the norm of the vertical displacement at the point (0,0,0) on the free surface over the frequency

interval between 0.1 and 80.1Hz as a function of the number of tunnel modes.
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Fig. 8. Real part of the element (11,11) of the soil impedance matrix for p ¼ 0 s/m as a function of the excitation

frequency computed with Nc ¼ 43 (dotted line), Nc ¼ 101 (solid line) and Nc ¼ 160 (dashed line) terms in the

summation for the Green–Floquet fundamental solution.
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3.4. The generalized impedance of the tunnel and the soil

Fig. 11 shows the real part of the element (11,11) of the tunnel impedance matrix KtðkÞ �
o2MtðkÞ in the slowness range from 0 to 0.007 s/m and the frequency range from 0.1 to 80.1Hz.
The impedance approximately increases with the square of the wavenumber k ¼ po: For small
values of the slowness p; the inertial term is dominant: the real part of the impedance becomes
negative and decreases with the frequency as o2 (Fig. 12).
Figs. 13 and 14 show the real and the imaginary part of the element (11,11) of the generalized

soil impedance matrix in the slowness range from 0 to 0.007 s/m and for frequencies between 0.1
and 80.1Hz. The shape of the soil impedance is less regular than the shape of the generalized
tunnel impedance. As for the tunnel, the soil is stiffer as k increases. The inertial effect can also be
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Fig. 9. Amplitude of the vertical displacement at the point ð�0:50;�0:15;�8:25Þ on the tunnel invert directly under the
force (solid line), the point ð�2:50;�0:15;�8:25Þ on the tunnel invert at 2m from the force (dashed line) and the point
ð0;�0:15;�2:30Þ on the tunnel roof (dotted line) as a function of the wavenumber for a harmonic excitation at 5Hz.

Fig. 10. Amplitude of the vertical displacement at the point ð�0:50;�0:15;�8:25Þ on the tunnel invert directly under
the force as a function of the slowness and the excitation frequency.
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observed for low values of the slowness. The damping almost disappears for large values of the
slowness.
4. Harmonic response of the tunnel–soil system

Harmonic loads at different frequencies are applied on the invert of the tunnel. Fig. 15 shows
the transfer functions for the displacements at the points ð0; 0; 0Þ; ð�2; 0; 0Þ; ð�10; 0; 0Þ and
ð�20; 0; 0Þ along the free surface in the same cross-section where the load is applied, while Fig. 16
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Fig. 11. Real part of the element (11,11) of the generalized tunnel impedance matrix KtðkÞ � o2MtðkÞ as a function of
the slowness and the excitation frequency.
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Fig. 12. Real part of the element (11,11) of the generalized tunnel impedance matrix KtðkÞ � o2MtðkÞ for a slowness
p ¼ 0 s/m as a function of the excitation frequency.

Fig. 13. Real part of the element (11,11) of the soil impedance matrix as a function of the slowness and the excitation

frequency.
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Fig. 15. Amplitude of the vertical displacement at the points along the free surface with coordinates ð0; 0; 0Þ (solid line),
ð�2; 0; 0Þ (dashed line), ð�10; 0; 0Þ (dotted line) and ð�20; 0; 0Þ (dashed–dotted line) as a function of the excitation
frequency.

Fig. 14. Imaginary part of the element (11,11) of the soil impedance matrix as a function of the slowness and the

excitation frequency.
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shows the transfer functions for the displacements at the point ð�2:50;�0:15;�8:25Þ on the tunnel
invert, at the point ð0;�0:15;�2:30Þ at the tunnel apex and at the point ð0; 0; 0Þ on the free surface.
Figs. 15 and 16 show an important peak at 14Hz. This maximum appears for points on the free

surface close to the tunnel and on the tunnel roof.
The displacements are also computed in all points of the mesh of Fig. 4 in order to visualize the

harmonic response of the tunnel and the soil. In this figure, the generic cell is repeated 80 times in
the positive y-direction. For post-processing purposes, three additional surfaces in the soil have
been meshed: the free surface S1, the horizontal surfaces S2 at the depth of the tunnel, and a
vertical surface S3 between the free surface and the middle of the tunnel top. First, the
displacements of all points in the generic cell are computed in the wavenumber-frequency domain
using the elastodynamic representation theorem. Second, when all displacements in the generic
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Fig. 16. Amplitude of the vertical displacement at the point ð�2:50;�0:15;�8:25Þ on the tunnel invert directly under
the force (solid line), the point ð0;�0:15;�2:30Þ at the tunnel apex (dashed line) and the point ð0; 0; 0Þ on the free surface
above the tunnel apex (dotted line) as a function of the excitation frequency.

Fig. 17. Real part of the displacements of the tunnel and the soil due to a harmonic excitation on the tunnel invert at

14Hz at t ¼ 0 (left) and t ¼ T=2 (right).
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cell are known, the inverse Floquet transform is used to compute the displacements in all points of
the mesh over a length of 24m. When all transfer functions are known in the wavenumber-
frequency domain on the generic cell, a computation of the Floquet inverse transform gives the
transfer functions for all points of this mesh.
Fig. 17 shows the displacements of the tunnel and the soil in all points of this mesh due to a

harmonic excitation on the tunnel invert at 14Hz at t ¼ 0 and T=2; with T ¼ 1=14 s the period of
the excitation. The grey shading on the figure is relative to the vertical displacements and is 10
times exaggerated on the surfaces in the soil if compared to the tunnel displacements. The figure
demonstrates that the soil above the tunnel and the tunnel roof move in phase. At this frequency,
the soil above the tunnel can be considered as an equivalent mass, while the tunnel is an equivalent
spring. The peak at 14Hz corresponds to the resonance peak of this mass–spring system, while
damping is due to the radiation of waves away from the tunnel (Fig. 17).
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At higher frequencies, the propagation of waves away from the tunnel dominates, as shown in
Fig. 18. Starting from the source point, bending waves are propagating on the tunnel invert along
the longitudinal axis of the tunnel, as well as in the perpendicular direction, before they are
reflected by the tunnel walls. In the soil, propagation along and perpendicular to the tunnel axis
can be observed. On the free surface above the tunnel, higher phase velocities are observed along
the tunnel axis than in the direction perpendicular to the tunnel, resulting in an elliptical
wavefront (Fig. 18). Waves propagating away from the tunnel at the depth of the tunnel invert can
also be observed on the surface S2.
Fig. 19 shows the variation of the phase of the vertical displacements at the free surface along

the line x ¼ �4m parallel to the y-axis at an excitation frequency of 80Hz. A wavelength of 24m
can be estimated along the y-axis, corresponding to a phase velocity of 1920m/s. Similarly, the
phase velocity along the x-axis perpendicular to the tunnel can be estimated as 650 m/s. The high
phase velocities along the y-axis correspond to leaky waves of the system consisting of the roof
Fig. 18. The displacements of the tunnel and the soil due to a harmonic excitation on the tunnel invert at 80Hz: (1) fast

wave propagation along the tunnel axis and (2) slower wave propagation in the direction perpendicular to the tunnel

axis.
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Fig. 19. The phase of the vertical displacements at the free surface along the line x ¼ �4m as a function of the distance

y along the tunnel due to a harmonic excitation on the tunnel invert at 80Hz.
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Fig. 20. Simplified model of an infinite layer on an infinite plate.

Fig. 21. Response of the tunnel as a function of the slowness and the excitation frequency. Superimposed on the same

graph are the dispersion curves of the simplified model.
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vault and the top soil layer. This can be demonstrated by comparing the dispersion curves of an
infinite soil layer on an infinite plate, as shown in Fig. 20, and the displacement response of the
tunnel. The dispersion curves are computed for a soil layer with the average characteristics of the
two soil layers above the tunnel, on top of a plate with the characteristics of the tunnel roof. The
dispersion curves are plotted in Fig. 21 on top of the tunnel response. The maxima of the response
are found in the vicinity of the dispersion curves.
5. Transient response of the tunnel–soil system

This section is devoted to the transient response of the tunnel–soil system due to a hammer
impact on the tunnel invert. The impact force is modelled in the time domain by means of a very
narrow Gaussian function. The Fourier transform of a Gaussian function is a Gaussian function,
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however, with a non-vanishing quasi-static component. Due to the limitations related to the
computation of the Green functions of a layered half-space, the 3D tunnel–soil interaction model
cannot compute the quasi-static response. In order to overcome this problem, two hammer
impacts are applied, the first in the downward z-direction and the second in the upward z-
direction, so that the quasi-static component vanishes. The applied force has the following form in
the time domain:

f ðtÞ ¼ � exp �
ðt � t1Þ

2

T2

� �
þ exp �

ðt � t2Þ
2

T2

� �
: (40)

Fig. 22 shows the time history of this force with parameters t1 ¼ 0:1 s; t2 ¼ 1:1 s and
T ¼ 0:0025 s: The Fast Fourier Transform algorithm is used to perform the transformation
between the time and the frequency domain. As this technique requires a finer sampling in the
frequency domain, a period of 2 s is chosen, corresponding to a narrow bandwidth of 0.5Hz. The
time step is equal to 0.0025 s, corresponding to a Nyquist frequency of 200Hz. Fig. 23 shows the
frequency content of the impact force. The oscillating behavior is due to the application of two
pulses.
Figs. 24 and 25 show two snapshots of the displacements due to the first (downward) hammer

impact at times t ¼ 0:1 s (moment of impact) and t ¼ 0:16 s; respectively. Fig. 25 shows that, after
the impact, a strong and fast front of vertical downward displacements propagates away from the
tunnel, immediately followed by a front of vertical upward displacements.
Fig. 26 shows a seismogram of the vertical displacements at the free surface on the line y ¼ 0

with negative x-coordinates. Five different types of waves can be identified. All waves are emitted
by the tunnel and are propagating in the layered half-space.
The wave field can be compared to waves that are induced by single forces at different depths of

the layered half-space. The same Gaussian impact forces are therefore also applied at depths
z ¼ 0; �3 and �9m in a layered half-space, corresponding, respectively, to the free surface, the
depth of the tunnel roof, and the depth of the tunnel invert. The transfer functions in the
slowness-frequency domain are presented in Figs. 27, 29 and 31, while the seismograms with the
vertical displacements at the free surface are given in Figs. 28, 30 and 32.
Fig. 22. Time history of the Gaussian impact force applied to the tunnel invert (t1 ¼ 0:1 s; t2 ¼ 1:1 s and T ¼ 0:0025 s).
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Fig. 23. Frequency content of the Gaussian impact force applied to the tunnel invert.

Fig. 24. Displacements of the tunnel and the soil at t ¼ 0:1 s (moment of impact) due to a Gaussian impact force on the
tunnel invert.

Fig. 25. Displacements of the tunnel and the soil at t ¼ 0:16 s (0.06 s after impact) due to a Gaussian impact force on
the tunnel invert.
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Fig. 26. Seismogram of the vertical displacements at the free surface on the line y ¼ 0 with negative x coordinates due

to a Gaussian impact force on the tunnel invert.

Fig. 27. Transfer function in the o–p domain for a Dirac impulse at a depth of 0m.
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Fig. 28. Seismogram of the vertical displacements at the free surface for a Gaussian impact force at a depth of 0m.
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Fig. 30. Seismogram of the vertical displacements at the free surface for a Gaussian impact force at a depth of 3m.

Fig. 29. Transfer function in the o–p domain for a Dirac impulse at a depth of 3m.

Fig. 31. Transfer function in the o–p domain for a Dirac impulse at a depth of 9m.
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Fig. 32. Seismogram of the vertical displacements at the free surface for a Gaussian impact force at a depth of 9m.
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As observed on these figures, only forces at the free surface are generating Rayleigh waves of
the first slow layer at high frequencies (event (5) in Figs. 27 and 28), whereas for an excitation at
depth, the Rayleigh waves of the underlying half-space at low frequencies are excited (event (3) in
the o–p domain and in the seismograms). Two important peaks (4) and (6) in the o–p domain
cause highly dispersive waves (4) in the seismograms, related to the Rayleigh wave of the
stratigraphy between the Rayleigh wave of the first layer and the Rayleigh wave of the half-space.
Waves (1) and (2) are classical refracted waves on top of the underlying stratified half-space.
It can now be understood that the tunnel’s bottom plate excites the Rayleigh resonance of the

half-space at low frequencies (event (3) in Fig. 26) and generates body waves in the fast half-space
(event (1) in Fig. 26). The upper parts of the tunnel walls and the tunnel roof generate refracted
waves in the layered half-space (event (2) in Fig. 26). The upper part of the tunnel still contributes
to Rayleigh waves of the half-space at low frequencies, but also to the dispersive Rayleigh waves
(4) at medium frequencies and to the high-frequency Rayleigh waves (5) of the first layer.
6. Conclusion and discussion on future work

To the authors’ knowledge, this paper is the first attempt to model, both in the frequency and
the time domain, the wave field radiated in a horizontally layered soil by a point force applied on
the invert of a shallow cut-and-cover tunnel, fully accounting for the three-dimensional geometry
of the tunnel, as required in the frequency band between 1 and 100Hz. The periodic approach,
originally proposed for applications in earthquake engineering in the frequency range between 0
and 10Hz, allows to model wave propagation over tens of wavelengths both in the longitudinal
and the transverse directions of the tunnel, which would have been impossible with standard
three-dimensional finite element and boundary element formulations.
The convergence of the numerical results has been assessed. It has been shown that the response

of the tunnel and the soil, in the immediate vicinity of the tunnel, is strongly affected by the
presence of the free surface and the layering. In particular, a low-frequency resonance of the soil
mass above the tunnel has been identified. Moreover, the results have revealed a high anisotropy
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of the propagation of waves in the directions along and perpendicular to the tunnel. High-phase
velocities in the longitudinal direction have been attributed with a reasonable agreement to guided
waves inside the system of the tunnel roof and the top layers. It has also been shown that the
radiated wavefield at some distance from the tunnel is mainly governed by refracted waves and
generalized Rayleigh waves in the layered medium. The high-frequency filtering induced by the
embedment of the source is governed by the depth of the tunnel roof rather than the depth of the
tunnel invert. As a conclusion, the wavefield induced by a point force applied at the bottom of the
tunnel cannot be approximated by an equivalent force in the soil at the corresponding depth, as an
additional force at the depth of the tunnel roof is needed to mimic the coupled numerical solution.
As mentioned already in the introduction, the 3D Green functions of the coupled tunnel–soil

system are the basic ingredient for a more complex model that incorporates moving sources,
accounting for vehicle–track interaction and transmission to nearby buildings. These transfer
functions can also be compared with experimental results since they are not affected by the
randomness of rail–wheel contact or the uncertainties on the dynamic response of passing trains.
Such a comparison will soon be carried out in the CONVURT project. However, such a
validation still highly depends on the uncertainties on the soil and tunnel properties. It is believed
that model updating using the first identified resonance of the tunnel roof will allow for a good
calibration of the tunnel stiffness, whereas SASW and down-hole tests are providing reliable
estimations of the dynamic soil properties. A systematic analysis of the propagation of
uncertainties has to be carried out, as proposed by Clouteau et al. [24] and Lombaert et al. [25]. In
particular, the efficiency of the proposed periodic approach will allow for Monte Carlo
simulations with random properties of the soil and the tunnel, including random fluctuations with
a correlation length that is smaller than the length of the periodic cell.
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