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Abstract

In a companion paper (Input torque balancing using a cam-based centrifugal pendulum: design procedure
and example, J. Sound Vib.), the cam-based centrifugal pendulum (CBCP) was introduced as a simple, cam-
based, input torque balancing mechanism. The differential equation that governs the CBCP cam design was
derived and a methodology for solving it was developed. Furthermore, in a design example, the CBCP was
applied to balance the input torque of a high-speed cam-follower mechanism, driving the sley of a weaving
loom. The present paper firstly shows how the design parameters for this particular design example can be
optimized, so as to obtain a compact and technologically feasible mechanism. The formulation of the
optimization problem is based on a parameterization of the CBCP rotor and coupler shape. Because of its
nonconvex nature, the optimization problem is solved using a multi-start sequential quadratic programming
(SQP) approach. A design chart, based on an exhaustive analysis, is introduced which (i) allows the designer
to perform the design optimization in a quick and approximative way, and (ii) gives considerable insight into
the behavior of the SQP-algorithm. Secondly, the CBCP is applied to an industrial case study, that is, a
weaving loom. The robustness of the CBCP is illustrated by showing that input torque balancing solely the
sley movement enhances the overall dynamic machine behavior, despite the presence of the non-balanced
shed motion. A particular contribution of this part is the determination of the weaving loom regime behavior
in the frequency domain, an approach which is believed to be novel in mechanism literature.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

t time (s)

(.) first derivative w.r.t. time t

(..) second derivative w.r.t. time t

T period of motion (s)

Lr half of rotor length (m)

Lc coupler (pendulum) length (m)

Rb rolling body radius (m)

Jr rotor centroidal moment of inertia
(kgm2)

mc, Jc coupler mass (kg) and centroidal mo-
ment of inertia (kgm2)

mb, Jb rolling body mass (kg) and centroidal
moment of inertia (kgm2)

Xc location of the coupler center of mass
along the line o2–o3 (m)

oi points defined in Fig. 1 ði ¼

f1; 2; 20; 3; 30gÞ and Fig. 3 ði ¼

f2a; 2b; 2c; 3a; 3bgÞ

g(t) rotor rotation angle w.r.t. X-axis (rad)

q(t) coupler rotation angle w.r.t. X-axis
(rad)

s(t) €qðtÞ cos 2p
T

t � qðtÞ
� �

�

_q sin 2p
T

t � qðtÞ
� �

2p
T
� _qðtÞ

� �
q0 qðt ¼ 0Þ (rad)

Mc(t) CBCP input torque (Nm)

Tc(t) CBCP kinetic energy (J)

Mo(t) original mechanism input torque (Nm)

To(t) original mechanism kinetic energy (J)

m*
generalized mass (kg)

Ji
*

generalized moments of inertia (kgm2)
ði ¼ f1; 2; 3gÞ

Jeq combined system equivalent inertia
(kgm2)

Jeq,o(t) original mechanism equivalent inertia
(kgm2)

f(t) cam follower angular position (rad)

J follower moment of inertia w.r.t. o5

(kgm2)

R*,d*
radius (m) and length (m) of additional
coupler cylinder

Rc1;Rc2;Rc3 secondary parameters defining
coupler shape (m)

dc1; dc2; dc3; dc4 secondary parameters defining
coupler shape (m)

Rr1;Rr2; dr1; dr2 secondary parameters defin-
ing rotor shape (m)

pb vector of rolling body secondary para-
meters

pc vector of coupler secondary parameters

pr vector of rotor secondary parameters

D safety tolerance for collision constraint
(m)

i1 collision flag no.1 (m)

i2 collision flag no.2 (m)

dð�; �Þ distance between two points (m)

Nc(g) contact force between cam and rolling
body (N)

sHðgÞ Hertzian pressure in the cams (MPa)

( � )max maxtA[0,T]( � ) or maxgA[0,2p]( � )

( � )min mintA[0,T]( � ) or mingA[0,2p]( � )

( � )M
upper bound on ( � )

( � )m
lower bound on ( � )

Lb lifetime of coupler-rolling body bearing
(h)

Lc lifetime of rotor-coupler bearing (h)

r(g) radius of CBCP cam profile (m)

Ms(t) shaking moment exerted by CBCP on
mechanism frame (Nm)

gsley(t) sley axis rotation angle (rad)

gshed(t) shed axis rotation angle (rad)

Tfly(t) flywheel kinetic energy (J)

Tsley(t) sley kinetic energy (J)

Tshed(t) shed kinetic energy (J)

Jfly wheel centroidal moment of inertia
(kgm2)

Jsley sley centroidal moment of inertia
(kgm2)

Jshed shed mass (kg)

k coeffficient of drive speed fluctuation
(dimensionless)
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1. Introduction

This section summarizes the main theoretical results developed in the companion paper [1], as
well as the characteristics of the high-speed cam-follower mechanism to be balanced.

The cam-based centrifugal pendulum (CBCP) of Fig. 1 constitutes of (i) a rotor, revolving
around the ground point ô1; (ii) the couplers c and c0, both connected to the rotor through a
revolute joint, and (iii) the rolling bodies b and b0, connected to the corresponding couplers by a
revolute joint. Rotation of the rotor generates centrifugal forces that push b and b0 against the
internal cams p and p0, respectively. The cams are fixed to the mechanism frame. g(t) (rad) and q(t)
(rad), respectively, denote the rotor’s and coupler’s rotation angle w.r.t. the X-axis.

The cams are designed in such a way that the input torque Mc(t) (Nm) required to drive (with
constant speed) the CBCP is opposite to the input torque Mo(t) (Nm) to drive the original1

system, such that the net input torque to drive the combined system equals zero. This is expressed
by the following nonlinear, second-order, explicit, ordinary differential equation (ODE) in q(t):

1

2p=T
J	

2 _q €q þ J	
3s þ MoðtÞ ¼ 0, (1)

where

sðtÞ ¼ €q cos
2p
T

t � q

� �
� _q sin

2p
T

t � q

� �
2p
T

� _q

� �
, (2)

J	
2 ¼ 2ðJc þ mcX

2
c þ m	L2

cÞ, (3)

J	
3 ¼ 2ðmcX cLr þ m	LcLrÞ, (4)

m	 ¼
Jb

R2
b

þ mb. (5)

Even though this is a second-order ODE, it has only one independent initial condition, that is,
qð0Þ ¼ q0: mb (kg), Jb (kgm2) and Rb (m), respectively, denote the mass, centroidal moment of
inertia and radius of the rolling bodies. mc (kg) and Jc (kgm2), respectively, denote the coupler
mass and centroidal moment of inertia, whereas X c (m) determines the coupler center of mass
location (see Fig. 1). 2Lr (m) and Lc (m), respectively, represent the rotor and coupler length. T (s)
denotes the mechanism’s period of motion.

Assuming that the original system is conservative, the combined system has constant energy
such that it can be considered as an equivalent flywheel with inertia Jeq (kgm2), turning at 2p=T
(rad/s). It can be shown that Jeq is independent of T, provided that the original mechanism is
purely inertial. In that case, its value is determined as

Jeqð2p=TÞ
2

2
¼ ToðtÞ þ TcðtÞ ¼ To;0 þ Tc;0, (6)
1Throughout this paper, the term original system will denote the mechanism to be input torque balanced, whereas the

combined system is the ensemble of the original mechanism and the CBCP.
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Fig. 1. Cam-based centrifugal pendulum (CBCP): kinematic scheme. The Z-axis is defined to be parallel to the drive

shaft.
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where To(t) (J) and Tc(t) (J), respectively, denote the original system’s and the CBCP’s kinetic
energy. Tc(t) equals

TcðtÞ ¼
J	

1ð2p=TÞ
2

2
þ

J	
2 _q

2

2
þ J	

3

2p
T

� �
_q cos

2p
T

t � q

� �
, (7)

where

J	
1 ¼ Jr þ 2ðmcL

2
r þ m	L2

r Þ. (8)

Jr (kgm2) denotes the rotor centroidal moment of inertia.
The mechanism to be balanced is a high-speed, conjugate cam-follower system, driving the sley

of a weaving loom. Its oscillating, statically balanced follower has a centroidal moment of inertia
J of 0.2633 kgm2. The mechanism’s period of motion is T ¼ 0:0667 s; which corresponds to an
average drive speed o ¼ 2p=T ¼ 94:2 rad=s; or 900 rev/min. Fig. 2 shows one period of its desired
motion f, which is a Fourier series containing six harmonics. The cam-follower system’s kinetic
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Fig. 2. Desired position, velocity and acceleration of the design example’s cam follower.
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energy To and input torque Mo equal:

ToðtÞ ¼
J _f

2

2
, (9)

Mo ¼
1

2p=T
J _f €f . (10)

Combining Eqs. (9) and (7) with Eq. (6) yields

Jeq ¼ J	
1 þ

T

2p

� �2

ðJ	
2 _q

2 þ J _f
2
Þ þ

T

p
J	

3 _q cos
2p
T

t � q

� �
. (11)

It was chosen to input torque balance this mechanism using two identical CBCPs. This
results in smaller cams, since each CBCP has to deliver half of the required torque.
Secondly, using two CBCPs allows mutual cancellation of their bending moments exerted on
the drive shaft.
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2. Design optimization: outline

An inspection of the describing equation (1) shows that, given the torque Mo(t) to be balanced
and the period of motion T, q depends on three fundamental parameters: J2

*, J3
* and the initial

condition q0. Since Eqs. (3)–(5) show J2
* and J3

* to depend on Lc, Lr, Rb, mc, mb, Jc, Jb and Xc, the
following nine design parameters affect q and hence the shape and the technological properties of
the CBCP: the kinematic parameters Lc, Lr and Rb, the mass parameters mc, mb, Jc, Jb and Xc and
the initial condition q0. These parameters can be determined based on an optimization problem so
as to obtain a compact and technologically feasible mechanism. In the following, first of all, the
optimization parameters are identified. Then, the goal function is introduced and the optimization
constraints are determined. Lastly, the optimization algorithm is discussed.
2.1. Optimization parameters

The aforementioned nine design parameters could be used as the optimization parameters.
However, in order to reduce the number of optimization parameters, the following assumptions
are made. Firstly it is assumed that some given bearing, chosen from a catalogue, implements the
revolute joint between the rolling body and the coupler. This determines mb, Jb and Rb, since these
are properties of the outer bearing ring. These parameters are grouped into the parameter vector
pb 2 R3:

pb ¼ ½mb Jb Rb
.

The idea is that the designer chooses the bearing, then performs the design optimization and
afterwards makes a check as to whether the bearing is strong enough. If not, another bearing has
to be chosen, and a new design optimization has to be done.

Secondly, mc, Jc and Xc are replaced by one design parameter R*, by parameterizing the shape
of the coupler, as shown2 in Fig. 3. The coupler is made up of a kind of fork, which supports the
inner ring of the bearing and an additional mass. This additional mass is a cylinder with radius R*

(m) and length d* (m).
The coupler’s shape, and hence its mass parameters mc, Jc and Xc are completely determined by

the geometric parameters defined in Fig. 3: Rc1, Rc2, Rc3, R*, dc1, dc2, dc3, dc4, d* and Lc. The
parameter vector pc 2 R8 is defined as

pc ¼ ½Rc1 Rc2 Rc3 d	 dc1 dc2 dc3 dc4
.

Hence

mc ¼ mcðLc;R
	; pcÞ, (12)

Jc ¼ JcðLc;R
	; pcÞ, (13)

X c ¼ X cðLc;R
	; pcÞ. (14)
2Fig. 3 is not a technical drawing of the coupler, but only defines the parameters that affect the overall shape of it.
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Fig. 3. Front and top view of the coupler.
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Only Lc and R* are considered for optimization whereas pc is assigned a reasonable, fixed value
which has to be checked after the design optimization. If the resulting coupler does not have
sufficient structural strength, pc has to be modified and a new optimization has to be done.

2.2. Goal function

Several criteria can be chosen for the optimization: minimal size of the cams, maximal bearing
lifetime, etc. The goal function chosen here is minimal equivalent inertia Jeq (kgm2). The
numerical value of Jeq is determined based on Eq. (11). The rationale for choosing Jeq as the
optimization criterion is that inertia minimization was exactly the reason for using a torque
balancing mechanism instead of a large flywheel.
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Fig. 4. Front and top view of the rotor. Parameter dr1 is equal to parameter dc1 in Fig. 3.
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A practical consequence of this choice of goal function is that Jr also becomes a design
parameter. Jr is, however, not considered as an optimization parameter, as it is calculated based
on a parameterization of the rotor’s shape shown in Fig. 4. The rotor’s shape, and hence Jr are
completely determined by the geometric parameters Rr1, Rr2, dr1, dr2, Lr. The parameter vector
pr 2 R4 is defined as

pr ¼ ½Rr1 Rr2 dr1 dr2
.

Hence

Jr ¼ JrðLr; prÞ. (15)

Only Lr is considered for optimization whereas pr is assigned a reasonable, fixed value. Again, this
fixed value has to be checked after the design optimization. If the resulting rotor does not have
sufficient structural strength, pr has to be modified and a new optimization has to be done.
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From the above discussion Lr, Lc, R* and q0 emerge as the optimization parameters. The 15
secondary parameters to which fixed values are assigned and which have to be validated after the
design optimization are contained in the parameter vectors pb 2 R3; pc 2 R8 and pr 2 R4:

Note that firstly, J1
*, J2

* and q0 were identified to be the three fundamental parameters affecting
Eq. (1). Then, it was shown that these three fundamental parameters depend on nine design
parameters. Lastly, based on the rotor and coupler shape parameterization, these nine design
parameters were replaced by four optimization parameters and 15 secondary parameters. One may
wonder about the use of replacing the three fundamental parameters by four optimization
parameters and 15 secondary parameters. This has the following advantages: (i) the rotor and
coupler shape are automatically determined such that collision constraints are easily
implementable (as shown hereafter) and (ii) it reflects that the bearing parameters pb can only
assume a discrete set of values, chosen from a catalogue.

2.3. Constraints

There are three kinds of constraints: (i) bound constraints on the optimization parameters, (ii)
constraints in order to obtain a technologically feasible mechanism and (iii) constraints in order to
avoid collisions between mechanism parts.

2.3.1. Bound constraints

The bound constraints on the optimization parameters take the following form:

LrXLm
r , (16)

LcXLm
c , (17)

R	pR	;M , (18)

q0X0. (19)

The first two constraints express that Lr and Lc should both have a minimal length, in order to
avoid construction problems. The third constraint imposes an upper bound on R* in order to
avoid excessive additional masses. The fourth constraint makes sure that only positive values of q0

are considered since opposite values of q0 yield an identical dynamic behavior of the mechanism.
Therefore it makes sense to tighten the search space using this positivity3 constraint.

2.3.2. Technological constraints
The following technological constraints have been taken into account. Firstly, there must

always be contact between the rolling bodies and the cams. This can be mathematically expressed
by imposing that the contact force Nc(g) (N) between the cams and the rolling bodies should have
a minimum Nc,min over ½0; 2p
 which is greater than zero, or for robustness reasons, greater than
some positive lower bound Nc

m:

Nc;minXNm
c . (20)
3Imposing a negativity constraint yields identical optimization results, except for the sign of q0 of course.
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The relation between Nc,min and the optimization parameters is determined by establishing a
classical inverse dynamic analysis. For reasons of brevity, this analysis is not included here.

Secondly, the Hertzian pressure sHðgÞ (MPa) in the cam should have a maximum sH;max over
½0; 2p
 which is less than some upper bound sH

M:

sH;maxpsM
H . (21)

The relation between sH;max and the optimization parameters is based on classical formulae for
Hertzian pressure in point contacts.

Thirdly, the lifetime Lb (h) of the bearing that implements the revolute joint between the rolling
body and the coupler, and the lifetime Lc (h) of the bearing that implements the revolute joint
between the rotor and the coupler should be greater than some minimal lifetime:

LbXLm
b ,

LcXLm
c .

The relation between Lb and Lc and the optimization parameters is determined based on classical
bearing lifetime formulae for which the input is generated by the inverse dynamic analysis.

2.3.3. Collision constraints
Fig. 5 shows the assembly of the rotor r, coupler c and rolling body b. When the coupler moves

w.r.t. the rotor, two collisions may occur: (i) a collision between the outer bearing ring (that is, the
rolling body b) and the cylinder of radius Rr1 that belongs to the rotor and (ii) a collision between
the coupler and this same cylinder.

Avoiding the first possible collision can be mathematically expressed by imposing that the
distance d(o1,o3) between o1 and o3 be greater than Rr1 þ Dþ Rb:

ðo1x � o3xÞ
2
þ ðo1y � o3yÞ

2
XðRr1 þ Dþ RbÞ

2,

where D (m) represents a safety tolerance, o1x ¼ 0; o1y ¼ 0 and (see Fig. 1)

o3x ¼ Lr cosðgÞ þ Lc cosðqÞ,

o3y ¼ Lr sinðgÞ þ Lc sinðqÞ.

The circle with origin o1 and radius Rr1 þ D is shown as a dash–dotted line in Fig. 5.
Avoiding the second possible collision can be expressed by the following four conditions:
�
 must be no intersection between the line segment [o2b o3b] and the circle with origin o1 and
radius Rr1 þ D;
�
 there must be no intersection between the line segment [o2a o3a] and the circle with origin o1 and
radius Rr1 þ D;
�
 there must be no intersection between the circle with origin o2c and radius Rc1 and the circle
with origin o1 and radius Rr1 þ D : dðo1; o2cÞXRr1 þ Dþ Rc1;
�
 there must be no intersection between the circle with origin o3 and radius Rc2 and the circle with
origin o1 and radius Rr1 þ D : dðo1; o3ÞXRr1 þ Dþ Rc2: If RbXRc2; this is a redundant
constraint (see the first collision constraint).
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The translation of these four conditions into functions of the optimization parameters is based
on basic results from analytical geometry and is not included here for reasons of brevity.

In order to numerically quantify the two collision constraints, the collision flags i1 (m) and i2
(m) are introduced. If somewhere in the motion cycle a collision is detected, these flags are set to
one. If not, they are given a negative value equal to minus the minimal (over one period of
motion) distance between the respective possibly colliding bodies.

2.4. Optimization algorithm

The optimization problem with the optimization parameters, goal function and constraints
outlined above is solved using the fmincon algorithm of the MATLAB OPTIMIZATION
TOOLBOX. This algorithm implements a Sequential Quadratic Programming (SQP) technique.

As the optimization problem is highly nonconvex, the algorithm is likely to get stuck in local
optima. The authors have therefore chosen to start the optimization from several different
starting points. Afterwards, the most optimal local optimum has been chosen. Due to the
optimization problem’s nonconvex nature, there is no guarantee that this optimum is the global
minimum. However, for this particular optimization problem, using the SQP technique with
multiple starting points yielded local optima resulting in very reasonable CBCP designs. Hence,
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the authors felt no need to apply more advanced global optimization techniques (such as genetic
algorithms) to find a better (or the global) optimum.
3. Design optimization: results

In this section, the optimization outlined in the previous section is applied to the high-speed
cam-follower system introduced in Section 1. Firstly, the optimal values of the design parameters
are determined, using the multi-start SQP approach. Secondly, the optimization results are
thoroughly analyzed in order to gain a better understanding of the optimization process. Finally,
the possibilities for multi-criterion optimization are revealed.
3.1. SQP results

In order to optimize the design parameters Lr, Lc, R* and q0, knowledge is required of (i) Mo(t),
(ii) the secondary parameters pb, pc and pr and (iii) the parameters that define the bound,
technological and collision constraints. Mo(t) is calculated based on f(t) and its derivatives, using
Eq. (10). For the bearing that implements the revolute joint between the rolling body and the
coupler, a roller bearing was chosen, whose outer ring has mass mb ¼ 1:33 kg; centroidal moment
of inertia Jb ¼ 0:002568 kg m2 and radius Rb ¼ 0:05m:4 The numerical values of pc and pr have
been omitted for reasons of brevity. Furthermore, the following numerical values for the bound
and technological constraints were used: Lm

r ¼ 0:072 m; Lm
c ¼ 0:0792 m; R	;M ¼ 0:035m; Nm

c ¼

100 N; sM
H ¼ 900 MPa; Lm

b ¼ Lm
c ¼ 50; 000 h and D ¼ 0:002m:

The starting points for the optimization were generated as all possible combinations of the
following values:

Lr : f0:08; 0:11; 0:14g m;

Lc : f0:08; 0:11; 0:14g m;

q0 : f5:7
�; 27:5�; 49:3�; 71:0�; 92:8�; 114:6�g;

R	 : f0; 0:012; 0:023; 0:035g m;

resulting in 3� 3� 6� 4=216 different starting points for the optimization. Fifty-seven of the 216
optimizations converged to a local optimum. For the best local optimum, labelled p1, the first row
of Table 1 summarizes the values of the optimization parameters, the goal function and the
constraints. The lower bound constraint on Lr is active, together with constraints (20–21) on
Nc,min and sH;max: Combining p1 with the fixed secondary parameter values gives rise to the design
parameter values of Table 1 in the companion paper [1]. Section 4.3 of Ref. [1] furthermore gives a
detailed analysis of the properties of the corresponding CBCP.
4This bearing has a dynamic load capacity of Cb ¼ 137 kN; whereas the bearing that implements the revolute joint

between the rotor and the coupler has a dynamic load capacity Cc of 28 kN.
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Table 1

Properties of the local minima p1, p2 and p3. p1 and p2 are both obtained using the multiple-start SQP-approach

Goal Optimization parameters Constraints Secondary goals

Jeq

(kgm2)

Lr

(mm)

Lc

(mm)

q0

(deg)

R*

(mm)

Nc,min

(N)

sH;max

(Mpa)

Lb

(1000 h)

Lc

(1000 h)

i1
(mm)

i2
(mm)

rmax

(mm)

Ms,max

(Nm)

p1 0.4060 72.0 83.1 100.16 24.1 100 900 742 614 �9.1 �3.7 154.8 211

p2 0.4074 72.0 79.0 94.23 21.5 100 890 854 619 �12.1 �5.1 157.7 199

p3 0.4066 72.0 79.0 97.02 24.2 100 900 740 615 �9.4 �4.5 155.0 212

p1 is the overall best local optimum, whereas p2 is the best local optimum for which Lr ¼ 0:072 and Lc ¼ 0:079: p3 is the

best point obtained using the exhaustive search. Boldface values indicate active constraints.
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3.2. Analysis of optimization results

In order to interpret the optimization process, firstly the active constraints for the 25 best of the
total of 57 local optima were analyzed: the lower bounds (16) and (17) on Lr and Lc were,
respectively, 22 and 8 times active; the lower bound (20) on Nc,min was 17 times active, whereas the
upper bound (21) on sH;max was 5 times active. None of the other constraints were ever active.

Since the bound constraints (16–17) on Lr and Lc were, respectively, mostly or sometimes
active, it was decided to do an exhaustive search in the search space obtained by setting Lr ¼

72mm and Lc ¼ 79mm; and choosing 30 equally spaced values for q0 between 571 and 991, and 40
equally spaced values for R* between 0 and 35mm. For these 1200 combinations of (q0, R*), the
value of Jeq can be determined from Fig. 6 based on the colors defined in the colored bar next to
the figure: the lowest values of Jeq are found in the upper left corner of the figure, while the highest
values are found in the lower right corner. The various symbols (crosses, circles, etc.) mark (q0,
R*) combinations at which constraints are active, and which are hence infeasible. As the
constraints on Nc,min and sH;max delimit the feasible area, contour lines giving the (q0, R*)
combinations for which Nc;min ¼ 100N and sH;max ¼ 900MPa have been added.

From Fig. 6 it is clear that p3, situated at the crossing of the Nc;min ¼ 100N and sH;max ¼

900MPa contour lines, minimizes the goal function for Lr ¼ 72mm and Lc ¼ 79mm: Table 1
shows that p3 is only slightly less optimal than p1, the best overall local minimum (which has
Lc ¼ 83:1X79mm). The exhaustive analysis thus generates a very good approximation of p1.
When calculation time is limited, the exhaustive analysis can hence be used to generate a good
CBCP design.

Besides providing a good approximate of the optimal design, Fig. 6 also explains why the multi-
start SQP-approach generates many5 local optima having comparable values of the goal function
and with the constraint on Nc,min being active: the contour line Nc;min ¼ 100N is quite parallel to
the contour lines of Jeq, implying that when moving along the former contour line, the value of Jeq

will merely change. Hence, if the SQP-algorithm generates an iterate at which the constraint on
Nc,min is active, it is likely to conclude that this iterate is a local optimum, for it observes a feasible
point in which the goal function merely changes.
5This is the case for 17 of the 25 best local optima.
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Thirdly, Fig. 6 allows to assess whether p1 is the global optimum. In this figure, p2 is indicated,
which is defined as the best point in the group of local optima (generated by the SQP-approach)
that have Lr ¼ 72mm and Lc ¼ 79mm: The fact that p2 does not coincide with p3, earlier
identified as the best point with Lr ¼ 72mm and Lc ¼ 79mm; suggests that the multi-start SQP-
approach is not very reliable. However, the SQP-approach did find a point p1 that (i) is more
optimal than p3, and (ii) like p3, has Eqs. (20–21) as active constraints. This indicates that there is
a fair chance that p1 is indeed the global optimum.

Fourthly, Fig. 6 shows the sensitivity of the optimum w.r.t. the constraints. When the
constraints on Nc,min or sH;max are changed, the new optimum is again to be found at the crossing
of the corresponding contour lines. Therefore, contour lines Nc;min ¼ f100; 500; 1000g N and
sH;max ¼ f860; 880; 900g MPa have been drawn in Fig. 6. From these lines, it can e.g. be learnt that
keeping Nc

m equal to 100 N, while restricting sH
M to 880 or 860MPa will only slightly increase the

value of the goal function (p4 and p5). When on the other hand, sH
M is kept equal to 900MPa,

while tightening Nc
m to 500 or 1000 N, the increase of the goal function value will be somewhat
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higher than in the previous case (p6 and p7). Lastly, if both constraints are tightened at the same
time, the increase of the goal function will be substantial (p8 and p9).
3.3. Multi-criterion optimization

The primary goal function used so far is the value of Jeq. This section investigates whether it is
possible to obtain a slightly worse but still reasonable value for the primary goal function, in order
to obtain better values for secondary goal functions, such as rmax (m), the maximal radius of the
cam profile or Ms;max; the maximal shaking moment. Again, some useful results are delivered by
the exhaustive analysis.

Figs. 7 and 8 are built up in a similar way as Fig. 6, but now the colors indicate the value of the
secondary goal functions rmax and Ms,max, respectively. Furthermore, the contour lines having the
values 0.4280 and 0.4688 kgm2 indicate values of the primary goal function Jeq that are,
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respectively, 5% and 15% higher than the value at p1. Fig. 7 shows that in this case, Jeq and rmax

are not competing goals, as their minimal values roughly occur in the same region. On the other
hand, Fig. 8 shows that augmenting Jeq with 5% has the benefit of yielding a design for which
Ms,max is somewhat lower. This optimum is situated in the neighborhood of the crossing of the
Jeq ¼ 0:4280 kg m2 and the sH;max ¼ 900MPa contour lines. On the contrary, augmenting Jeq

with 15% does not allow a further decrease of Ms,max.
4. Industrial case study: torque balancing a weaving loom

Airjet weaving looms are characterized by two main motions: the back-and-forth motion of the
sley and the up-and-down motion of the sheds. In general, both motions are realized through cam
mechanisms which convert the rotary motion of the driving motor into the desired oscillating
movement. Cam mechanisms are a natural choice in this setting as they provide sufficient stiffness
and robustness for these high-speed machines (drive speeds up to 1200 rev/min).
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As both cam-follower mechanisms are coupled to the same main shaft, they interact
dynamically. It has been observed experimentally that these interactions result in premature
failure of the sheds. This can be explained by the drive speed fluctuations caused by the sley
motion. As the shed cams are designed with a constant drive speed in mind, the drive speed
fluctuation causes the shed motion to be distorted. This distortion results in undesired higher
harmonics in the shed acceleration. The forces proportional to these undesired harmonics have
been observed experimentally to excite structural shed resonances, causing excessive vibration,
wear and premature failure.

Undesired harmonics are also present in the sley motion (due to the drive speed fluctuation
caused by the shed motion), but these do not result in sley failure. The main designer’s task for
this particular case is hence to remove the undesired harmonics from the shed motion. Possible
approaches include reducing the drive speed fluctuation through a large flywheel, or by using an
advanced control system imposing a nearly constant drive speed. The former solution, however,
compromises the start/stop behavior of the weaving loom, while the latter is too energy
consuming. An intermediate solution, yielding a much more constant drive speed while keeping
inertia addition within acceptable limits, is input torque balancing.

Only the sley movement was chosen to be input torque balanced. There is a double motivation
for this. Firstly, both the synchronization between the sley and the shed motion and the shed
inertia may vary, depending on the tissue to be fabricated. Hence, the joint input torque to be
balanced is also variable, necessitating the use of separate CBCP cams for every possible
synchronization and shed inertia. Secondly, the more severe problem is the effect of the sley on the
shed motion. Therefore, it makes sense to concentrate on input torque balancing the sley. It will
be shown in Section 4.2 that this indeed is a valid approach.

Assessment of the result of the torque balancing requires determining the regime behavior of
the weaving loom. The classical way for doing so is time integrating the dynamic equations. Here,
a novel approach is introduced, that is, determining the system regime behavior directly in the
frequency domain. This approach is believed to be novel in mechanism literature, and is the
subject of Section 4.1.

4.1. Frequency domain determination of weaving loom regime behavior

Fig. 9 shows a simplified weaving loom model, consisting of the sley and shed conjugate cam-
follower systems, a flywheel Jfly of 0.7385 kgm2, and a CBCP. The CBCP’s rotor is mounted on
the sley axis, while the internal cams are fixed to the machine frame. gsley and gshed denote the
rotation angle of the sley and shed axis, respectively. The gear pair imposes a 1:2 reduction:
_gshed ¼ _gsley=2:

The sley conjugate cam-follower system was introduced in Section 1. The ensemble of the
sheds is considered here as the (single) translating cam-follower of a conjugate cam-follower
pair. Its mass Jshed equals 52 kg, while its desired motion fshed (m) is given in Fig. 10. Note
that the overall machine period T is determined by the slowest turning axis, that is, the shed
axis. Hence, T ¼ 2p=mean ð _gshedÞ: As the mean sley axis speed equals 900 rev/min, T equals
0.1333 s.

As in the companion paper [1], the simplified model is assumed to be purely inertial and hence
conservative. Therefore, its resulting motion (that is, gsley, gshed, fsley, fshed and their derivatives)
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can be determined by applying the principle of conservation of kinetic energy:

TcðtÞ þ T flyðtÞ þ T sleyðtÞ þ T shedðtÞ ¼ Tc;0 þ T fly;0 þ T sley;0 þ T shed;0, (22)

where Tc(t), Tfly(t), Tsley(t) and Tshed(t) denote the kinetic energy (J) of the CBCP, flywheel, sley
and sheds, respectively, and equal:

TcðtÞ ¼
J	

1 _g
2
sley

2
þ

J	
2 _q

2

2
þ J	

3 _gsley _q cosðgsley � qÞ, (23)
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T flyðtÞ ¼
Jfly _g

2
sley

2
, (24)

T sleyðtÞ ¼
Jsley

_f
2

sley

2
, (25)

T shedðtÞ ¼
Jshed

_f
2

shed

2
. (26)

Using a concept well known in mechanism literature, that is, the concept of a motion law, it is
straightforward to show that q, _q; _f sley and _f shed depend on gsley and _gsley: As a consequence, Eq.
(22) constitutes a first-order, nonlinear, ordinary differential equation in gsley. Without loss of
generality, it may be assumed that the sole initial condition for this first-order ODE is gsleyð0Þ ¼ 0:

In order to solve Eq. (22), an approach similar to the nonlinear least-squares approach outlined
in the companion paper [1] is adopted. That is, _gsley is parameterized as a finite Fourier series of
periodicity T, with K ¼ 20 harmonics and average value 2 � 2p=T : The unknown Fourier
coefficients are determined by minimizing in the least-squares sense a residual function based on
Eq. (22). This nonlinear least-squares approach boils down to determining _gsley in the frequency
domain, as the Fourier coefficients are determined directly without explicit time integration. It has
the advantage of (i) direct calculation of the regime behavior and (ii) guaranteeing a solution _gsley

with the correct periodicity (or equivalently, the right average speed).
This frequency domain approach is believed to be novel in mechanism literature. Most often, it

is assumed that a mechanism is driven with constant drive speed, and hence abstraction is made of
the dynamics of the drive system. The few researchers who do take the drive system dynamics into
account all use a time domain approach, that is, they directly integrate the governing nonlinear
differential equations to determine the steady-state mechanism behavior. The assumption of a
conservative system is frequently used in German literature, see e.g. Ref. [2]. In that case, the
resulting motion of the mechanism is called an Eigenbewegung (eigenmotion). Other authors
assume that some actuator drives the system. Either a full model of the driving actuator is
considered [3–6], or the actuator is modelled by an assumed torque–speed relationship, such as a
motor torque which varies linearly with speed [7] or a quadratic relationship [8,9].

4.2. The effect of torque balancing

In order to assess the torque balancing effect, three different situations are compared:
(S1) original weaving loom,
(S2) original weaving loom with enlarged flywheel, and
(S3) original weaving loom with CBCP.
The CBCP added in situation (S3) is the double CBCP designed based on the optimum p1

determined in Section 3.1. Its rotor is mounted on the sley axis, as shown in Fig. 9. The amount of
additional flywheel inertia in situation (S2) equals

Jeq � min
t2½0;T sley


Jeq;o ¼ 0:4060� 0:0919 ¼ 0:3141 kg m2.
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This additional inertia physically implements the excess6 part of the equivalent flywheel. In this
manner, one can distinguish between the flywheel effect of the CBCP (the added excess, dumb
inertia of 0.3141 kgm2) and the torque balancing effect of the CBCP (due to its moving masses), by
comparing situations (S2) and (S3).

In order to assess the difference between a machine with and without CBCP, Figs. 11 and 12
show one shed period of the kinetic energy components for (S1) and (S3). In the original machine,
the sum of the sley and shed kinetic energy attains its minimum, zero, when both the sley and the
sheds stand still. As a consequence, Tfly(t), shown in Fig. 11(b) (and hence _gsleyðtÞ) attains its
maximum of 3464 J (96.9 rad/s) in these portions of the motion cycle. When the sley and the sheds
move, they withdraw kinetic energy from the flywheel, resulting in a slowdown of the latter,
popping up as Tfly(t) dips in Fig. 11(b). One clearly recognizes the four7 sharp dips, due to the sley
movement, superposed on two broader dips due to the shed movement. As a check of the
solution, Fig. 11(c) shows the sum of the flywheel, sley and shed kinetic energy, which is constant,
apart from some remaining jitter due to the fact that the _gsleyðtÞ parameterization is truncated after
20 harmonics.

The purpose of the CBCP is to cancel out the effect of the sley motion. It is designed in such a
way that the sum of Tsley(t) and Tc(t) is constant, under the assumption of _gsleyðtÞ being perfectly
6that is, the excess part w.r.t. the physical lower limit mint2½0;T sley
Jeq;oðtÞ ¼ 0:0919 kg m2 derived in the companion

paper.
7During one shed period, the sley moves back and forth two times as its drive shaft has twice the speed of the shed

drive shaft.
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constant. As the shed motion is not taken into account during the CBCP design, the weaving loom
with CBCP will not have constant _gsleyðtÞ: Consequently, the sum of Tsley(t) and Tc(t) is not
perfectly constant, as shown in Fig. 12(a). Still, the effect of the CBCP is clearly visible, as the sum
of Tsley(t), Tshed(t) and Tc(t) no longer exhibits four but two peaks: the effect of the sley is
compensated for by the CBCP. As a result, Tfly(t) still has two broad dips due to the
(noncompensated) shed motion, whereas the sharp sley-dips have disappeared.

Based on the above discussion, an intuitive interpretation of Fig. 13, showing _gsley and €gsley for
(S1)–(S3) is straightforward. Because of Eq. (24), in Fig. 13(a), the same qualitative behavior is to
be expected as in Figs. 11(b) and 12(b): in the noncompensated situations (S1) and (S2), _g exhibits
four sharp sley and two broad shed dips (which are of course less deep in (S2) due to the larger
flywheel), while it exhibits only two broad shed dips if the CBCP is present. As a consequence, the
combined system has a much smoother €gsley time trajectory.

A smoother drive shaft speed fluctuation results in much smoother sley and shed acceleration
trajectories as shown in Fig. 14. For (S1)–(S3), Figs. 14(a) and (c), respectively, show the actually
realized sley and shed acceleration €f sley;act and €f shed;act; whereas Figs. 14(b) and (d) show the
difference D €f sley and D €f shed between the actually realized accelerations and the desired8

acceleration. For the sley motion, the CBCP roughly seems to have a similar effect as flywheel
addition: D €f sley exhibits the same qualitative behavior for (S1)–(S3), that is, the same peaks, but
8The desired acceleration trajectories are shown in Fig. 2(c) (sley motion) and Fig. 10(c) (shed motion).
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with smaller amplitudes. The shed acceleration on the other hand is much more affected by
the CBCP addition (which is logical: the CBCP is designed to cancel out the effect of the sley
on the shed motion): also the qualitative behavior changes, since the double peaks labelled
pi, i ¼ f1; 2; 3; 4g in Fig. 14(d) completely disappear if the CBCP is present. An intuitive
explanation for this is that the CBCP removes the four sharp double peaks labelled pi, i ¼
f1; 2; 3; 4g from €gsley (see Fig. 13(b)). These double peaks correspond to the four dips in _gsley shown
in Fig. 13(a).

The sley and shed acceleration distortion has an important effect on the harmonic content
of these motions. This is shown in the bar plots of Figs. 15 and 16. The shed motion law is
designed to have a first, third and fifth harmonic. However, in situation (S1) and (S2), the
harmonics 7, 9, 13 and 15 are clearly present. These harmonics (that is, the corresponding
proportional forces and torques) are detrimental as they excite shed resonances which result in
premature shed failure. In this respect, the beneficial effect of the CBCP becomes apparent: all
undesired harmonics are at least 30 dB (that is, a factor 32) smaller than in the situation with
enlarged flywheel (S2).

The beneficial CBCP effect is, however, not confined to the shed motion alone. The sley motion
is designed to have six harmonics. Fig. 15, however, clearly indicates the presence of a seventh,
eight, and ninth harmonic in situations (S1) and (S2). On the other hand, when the CBCP is
present, the undesired seventh harmonic is still present (and even somewhat higher), but the eight
and ninth harmonic are 30 dB (that is, a factor 32) lower. Hence, although the time domain
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acceleration results suggest that the CBCP roughly has the effect of a flywheel for the sley motion,
the frequency domain results prove that this is not quite true.

From this section, some important conclusions can be drawn. Firstly, it has clearly been
demonstrated that mere flywheel addition cannot change the qualitative behavior of the drive
speed fluctuation, as can torque balancing. Secondly, it has been shown (S1,S2) that drive speed
fluctuations can have a dramatic effect on the follower acceleration. In this respect, attention must
be drawn to the fact that the shape rather than the amount of drive speed fluctuation is important:
in (S1), the coefficient of drive speed fluctuation k; defined as

k ¼
_gsley;max � _gsley;min

_gsley;ave

,

equals 8.1%, whereas it, respectively, equals 5.8% and 2.6% for (S2) and (S3). Despite the fact
that the difference between k(S2) and k(S3) is not much larger than the difference between k(S1)
and k(S2), the difference in acceleration distortion is much more significant, clearly illustrating the
importance of the shape of the drive speed fluctuation. Thirdly, it has been shown that torque
balancing is capable of yielding a dramatic decrease of the undesired acceleration harmonics.
Fourthly, it is able to do so quite robustly as the decrease of the undesired acceleration harmonics
is realized despite the presence of the shed mechanism, which is not taken into consideration
during the CBCP design.
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5. Conclusion

Nine design parameters determine the design of a CBCP. However, parameterizing the shape of
the coupler and the rotor and choosing some bearing for the revolute joint between the coupler
and the rolling body results in replacement of these nine parameters by (i) four optimization
parameters Lr, Lc, R* and q0 and (ii) 15 secondary parameters, grouped into the parameter vectors
pb, pr and pc, and to which fixed, reasonable values are assigned. The purpose of the optimization
problem is to minimize the combined system’s equivalent inertia, taking into account bound,
collision and technological constraints.

Application of the CBCP to torque balance a high-speed, purely inertial cam-follower
mechanism illustrates that the multi-start SQP-approach results in a compact and technologically
feasible mechanism. A thorough analysis of the optimization process, based on an exhaustive
analysis (i) shows that the exhaustive analysis gives a good approximation of the best optimum,
(ii) explains why many optima having comparable values of the goal function and an active
Nc;minX100N constraint, (iii) suggests that the best optimum might be the global optimum, (iv)
illustrates the sensitivity of the optimum w.r.t. the values defining the constraints and (v) reveals
the possibilities for multi-criterion optimization.

Much of this research was motivated by the industrial example of the sley and shed motion in a
weaving loom, which are dramatically affected by drive speed fluctuations. Determination of the
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Fig. 16. Shed acceleration harmonics for situations (S1)–(S3). k denotes the harmonic order.
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weaving loom regime behavior is done in the frequency domain, an approach which is believed to
be novel in mechanism literature.

The CBCP has been shown (i) to have a much more significant effect on the drive speed
fluctuation than mere flywheel addition, and (ii) to result in a dramatic reduction of the undesired
acceleration harmonics, which are believed to be a major cause of dynamic problems of weaving
looms. This example furthermore illustrates that the shape, rather than the amount of drive speed
fluctuation is of concern for avoiding dynamic problems. Lastly, and most importantly, this
example has shown that adding a CBCP is a robust solution, as the decrease of the undesired
acceleration harmonics is realized despite the presence of the shed mechanism, not taken into
consideration during the CBCP design.

Future work will mainly focus on building a CBCP prototype in order to experimentally
validate its promising features.
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