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Abstract

A multidisciplinary optimization method is applied to the design of mechatronic vehicles with active
suspensions. The method is implemented in a GA-A’GEM-MATLAB simulation environment in such a
way that the linear mechanical vehicle model is designed in a multibody dynamics software package, i.e.
A’GEM, the controllers and estimators are constructed using linear quadratic Gaussian (LQG) method,
and Kalman filter algorithm in Matlab, then the combined mechanical and control model is optimized
simultaneously using a genetic algorithm (GA). The design variables include passive parameters and
control parameters. In the numerical optimizations, both random and deterministic road inputs and both
perfect measurement of full state variables and estimated limited state variables are considered.
Optimization results show that the active suspension systems based on the multidisciplinary optimization
method have better overall performance than those derived using conventional design methods with the
LQG algorithm.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Conventionally, active elements of vehicle suspensions are designed independently of the
passive components [1]. Applied to a vehicle model, such controllers may behave less optimally
overall due to not considering the mechanical parameters, e.g. inertial and geometric parameters,
see front matter r 2004 Elsevier Ltd. All rights reserved.
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as variables in the design process. An integrated mechanical and control design process may help
to achieve an optimal behavior of the overall vehicle. In recent years, several researchers have
tackled the task by taking passive parameters and active parameters as design variables
simultaneously when designing ground vehicles with active suspensions [1–4].
However, all these researchers have limited their control strategies to the use of ‘‘skyhook’’

dampers [5] in their design optimizations. Since the 1970s, the linear quadratic Gaussian (LQG)
optimal control method [6] has been widely used in designing controllers for active suspensions. It
was shown that the LQG provides a compact analytical solution with relatively low design and
computational time, and the stability of the system designed is guaranteed. Moreover, the result of
an optimization process is a controller that considers and feeds back all system states with
constant gains, while any classical controller structure may not be ensured to be optimal.
Although the passive spring stiffness and damping coefficients have been optimized with the
control parameters using the LQG algorithm [6], it seems that the vehicle inertial and geometric
parameters and control parameters have not been considered as design variables simultaneously
in the optimization process using the LQG.
Furthermore, one difficulty in using the LQG is how to determine the weighting factors of the

performance index. Traditionally, a ‘trial and error’ method is used for choosing the weighting
factors or the combinations of the factors [6]. To some extent, the optimal design of controllers
depends on the experience of designers. For complex design systems and for multicriteria
optimization problems in particular, the choice of the weighting factors is a nontrivial problem [7].
Results have shown that combined with multibody dynamics softwares, e.g. A’GEM [8], a

genetic algorithm (GA) is an effective approach to the design of rail vehicles with passive and
active suspensions [4]. The GA is well-suited to the optimization of complex ground vehicle
models now available from multibody simulation programs such as A’GEM, especially when
more than a few design variables are being considered.
In general, the design optimization of aircrafts and road vehicles is multidisciplinary [9] and the

task is to find effective trade-off solutions for complicated and conflicting design criteria [10]. For
example, the simultaneous design of a structure and a control system for the purpose of active
flutter suppression for an aircraft is a typical application of multidisciplinary optimization (MDO)
[11]. In the case concerned, there are interactions among the wing structure, the control system,
and aerodynamics. These interactions make the structure, the control system, and aerodynamics a
synergistic whole. Taking advantage of that synergy is the mark of a good design [9]. In fact,
multidisciplinary optimization is presently of increasing interest in engineering. MDO received
recognition in the aeronautical sciences, first for the structural optimization and later for the
aerodynamic design [11]. Currently, we can find the application of MDO to automotive vehicle
design for safety and NVH (noise, vibration and harshness) reduction [9,12,13].
The purpose of this study is to extend the work reported in Ref. [4] by using a MDO method,

the All-in-One (A-i-O) method [9], for the design of mechatronic vehicles with active suspensions.
To demonstrate the efficacy of the MDO method using the GA, A’GEM, LQG, and Kalman
filters, the method is used to resolve the conflicting requirements for ride comfort, suspension
working spaces, and dynamic wheel loads in the optimization of quarter-vehicle models with
active suspensions. Both deterministic and random road excitations, and both perfect
measurement of full state variables and estimated limited state variables are considered. The
A-i-O method is implemented in a GA-A’GEM-MATLAB simulation environment in such a way
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that the linear mechanical vehicle model is generated in A’GEM, the controllers and Kalman
filters are modelled in MATLAB, then the combined mechanical and control model is optimized
simultaneously using the GA.
In the following sections, first, the LQG and Kalman filter algorithms are recalled briefly;

second, the vehicle models are introduced; third, the A-i-O method and its implementation are
described; finally, the numerical simulation results for linear quarter-vehicle models are presented.
2. LQG and Kalman filer algorithms

In this section, the LQG control algorithm [6,7,15–17] is outlined, then the Kalman filter
algorithm [7,16,17] is recalled. The ‘‘separation principle’’ [7] was adopted in the development of
the LQG controller and Kalman estimator. First, the optimal controller is designed as if full state
feedback is available. Second, the optimal estimator is designed to provide the full state
estimation.
2.1. LQG control strategy

The LQG control strategy can be described as an optimization problem: minimize the objective
function or performance index

J ¼ lim
T!1

1

T
E

Z T

0

xa

u
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G N
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xa

u
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dt

( )
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subject to

_xa ¼ Aaxa þ BauþDan; (2)

where xa is the state variable vector including system states and input states, u is the actuator force
vector, and n is the disturbance vector assumed to be white-noise processes with zero mean and
covariance matrix Q: G; N; and H are weighting matrices. Aa; Ba; and Da are the system, control,
and disturbance matrices, respectively. For the linear time-invariant system, Aa; Ba; Da; G; N; and
H are all constant matrices with proper dimensions.
It is assumed that all uncontrollable modes are stable. Thus, the solution of the optimization

problem is the control force vector of the form

u ¼ �Kxa; (3)

where K is the control gain matrix with the dimension of m � n: An arbitrary entry, Kij; is
determined by the solution of

qJ

qKij

¼ 0; (4)

From Eq. (4), the gain matrix K can be obtained as

K ¼ H�1ðNT þ BT
aSÞ; (5)
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where the symmetric and positive-definite matrix S is a solution of the Riccati equation

SAa þ AT
aSþG� ðSBa þNÞH�1ðSBa þNÞT ¼ 0: (6)

The covariance matrix Xa of the state variable vector xa is defined as

Xa ¼ E½xax
T
a 
; ð7Þ

where E denotes the expected value. The matrix Xa is determined by the Lyapunov equation

ðAa � BaKÞXa þ XaðAa � BaKÞ
T
þDaQD

T
a ¼ 0: (8)

The resulting performance index is

Jopt ¼ traceðSDaQD
T
a Þ: (9)

It should be noted that if the state vector xa includes input states, the system considered
is not completely controllable. This is because the road input can not be changed by
applying a control force. In this case, the Riccati equation (6) and the Lyapunov equation (8)
can still be solved numerically after partitioning the corresponding unknown matrix S

and state covariance matrix Xa into four submatrices. This method has been offered in detail
by Hac [15].
It is worth mentioning that for the LQG control strategy, the disturbance vector n should be a

pure white-noise process. However, in ride quality analysis for vehicles, the road profiles are often
modelled as displacement spectral density functions with the characteristics of filtered white noise
or integrated white noise [17]. In the first case, the filtered white noise (road input) can be
generated from the pure white-noise process n using a shaping filter with the form of a first-order
differential equation. Thus, if the road input is treated as an additional state variable, the LQG is
applicable to the ride quality analysis. This is the random road input case that will be discussed in
Sections 3.2 and 6.2. In the integrated white-noise road input case, for a linear vehicle system, the
mean-squared value of any output signal of interest is simply related to the integral-squared value
of the corresponding output signal due to a unit step input. For a given velocity, if the system is
optimal for a unit step input, it will also be optimal for the corresponding integrated white-noise
road input [6]. With this equivalence and the appropriate selection of state variables, the LQG
problem is reduced to an equivalent linear quadratic regulator (LQR) problem. This is the
deterministic road input case that will be discussed in Sections 3.1 and 6.1. For other kinds of road
inputs, such as a pothole, provided that the integral of the squared value of an output signal of
interest due to the input converges, as in the case of a unit step road input, the corresponding
LQR problem may be solved. However, the controller designed is not guaranteed to be optimal
for regular random road conditions.
2.2. Kalman filter algorithm

The LQG outlined in the previous subsection assumes perfect measurement of all the state
variables. In practice, not all the state variables are available but only a limited number of the
states. In addition, the corresponding measurements are noisy, which further degrades the
performance of the control systems.
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It is assumed that the measurements are corrupted by noise and the measurement equation can
be formulated as

ya ¼ Caxa þ t; (10)

where ya is the output vector, Ca is the output matrix or the state-to-measurement trans-
formation matrix, and xa is the state variable vector including system states and input states. t is
assumed to be Gaussian white-noise process vector with zero mean and covariance matrix R

described by

E½tðtÞ
 ¼ 0; E½tðtÞtTðtÞ
 ¼ Rdðt � tÞ; (11)

where R is a positive-definite matrix with proper dimension.
Thus, the optimal estimator can be formulated as

_̂xa ¼ Aax̂a þ Bauþ Lðya � Cax̂aÞ; (12)

where x̂a is the optimal estimate vector of the state variable vector xa; u is the actuator force
vector, Aa and Ba are augmented system and control matrices defined previously, and L is the
Kalman filter gain matrix that is determined by

L ¼ PCT
aR

�1; (13)

where P is the filter error ðe ¼ x̂a � xaÞ covariance matrix which can be found from the following
steady-state matrix Riccati equation:

AaPþ PAT
a þQ1 � PCT

aR
�1CaP ¼ 0: (14)

Notice that for the quarter-vehicle models used in the research, the systems ðAa;CaÞ are
observable. Thus, unlike the cases for solving Eqs. (6) and (8), the Riccati equation denoted by
Eq. (14) can be solved directly without partitioning the unknown matrix P and relevant matrices
into four submatrices and then solving the corresponding equations.
3. Vehicle system models

Fig. 1 shows the quarter-vehicle model to be optimized. Two different cases, i.e. deterministic
and stochastic road inputs, are considered.

3.1. Deterministic road input case

To compare the simulation results from the A-i-O method with published results, the vehicle
model is based on that used by Thompson [6]. As shown in Table 1, the nominal vehicle
parameters are listed as Set 1. It should be noted that to determine the control force u using the
LQG, in Thompson’s vehicle model, k2 ¼ 0; c2 ¼ 0; and other passive vehicle system parameters
take their nominal values. Moreover, in a ‘‘physical realization’’ of the control force u; Thompson
divided the force determined by the LQG into two sections, i.e. passive spring and damper force
and actuator force. However, in our study, for simplicity, the control force u; determined by the
LQG, is defined as actuator force.
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Fig. 1. 2 DOF quarter-vehicle models.

Table 1

Nominal vehicle parameters and road characteristic parameters

m1 ðkgÞ m2 ðkgÞ k1 ðN=mÞ c1 ðN=m=sÞ k2 ðN=mÞ c2 ðN=m=sÞ at ð1=mÞ st ð1=m2Þ

Set 1 28.58 288:9 1:559� 105 0:0 1:996� 104 1:861� 103

Set 2 100.0 500:0 2:0� 105 0:0 5:0� 103 1:0� 103 0:45 9:0� 10�6
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The road input vector is represented by w with dimension of 1� 1: The actuator force vector u;
with dimension of 1� 1; is applied equally to the sprung mass (m2) and the unsprung mass (m1).
The state variable vector x is assumed to take the form

x ¼ x1 � w x2 � w _x1 _x2

� �T
; (15)

where w is the scalar expression of the vector w: Thus, the governing equations of motion of the 2
DOF model can be written in state space form as

_x ¼ Axþ BuþD _w; y ¼ Cx; (16)
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where u is the actuator force vector of dimension 1� 1; _w is the road velocity excitation vector of
dimension 1� 1; y is the output vector of dimension 2� 1; A; B; C; and D are the system matrix,
control matrix, output matrix, and disturbance matrix, respectively, which are

A ¼

0 0 1 0

0 0 0 1

�
k1 þ k2

m1

k2

m1
�

c1 þ c2

m1

c2

m1

k2

m2
�

k2

m2

c2

m2
�

c2

m2

2
666666664

3
777777775
; B ¼ 0 0 �

1

m1

1

m2

� �T
;

C ¼
1 0 0 0

0 1 0 0

" #
; D ¼ �1 �1

c1

m1
0

� �T
: ð17Þ

Note that the relative distance, e.g. x2 � w or x1 � w; may be measured by the acoustic
(or radar) transmitter and receiver system proposed by Thompson [6,22]. The absolute
sprung mass and unsprung mass vertical velocities, i.e. _x2 and _x1; may be obtained from the
integrated output of accelerometers mounted on the sprung mass and unsprung mass,
respectively.
3.2. Random road input case

In the random road input case, the vehicle model used, as shown in Fig. 1, is based on that used
by Hac [15]. Notice that to determine the actuator force u; in Hac’s vehicle model, the parameters
including k2 and c2 take their nominal values listed in Table 1 as Set 2.
The road input w is a filtered white-noise process. The power spectral density (PSD) of the

filtered white-noise road displacement excitation can be formulated as [15,20,21]

SwðoÞ ¼ ðst=pÞatV=ðo2 þ a2t V2Þ; ð18Þ

where st is the variance of road irregularities and at is the road roughness constant. The process w
(with dimension of 1� 1) with the PSD (expressed in (18)) can be generated from the pure white-
noise process n (with dimension of 1� 1) using a shaping filter of the form

_w ¼ �atVwþ n: ð19Þ

In this case, the state variable vector x is expressed as

x ¼ x1 x2 _x1 _x2

� �T
: (20)

Then the governing equations of the 2 DOF vehicle model can be written as

_x ¼ Axþ BuþD1wþD2 _w; (21)
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where u is the actuator force vector with dimension of 1� 1: The matrices A and B are the same as
those offered in equation set (17). The matrices D1 and D2 take the forms

D1 ¼ 0 0
k1

m1
0

� �T
; D2 ¼ 0 0

c1

m1
0

� �T
: (22)

If the augmented state vector xa takes the form

xa ¼ xT wT
� �T

(23)

then based on Eqs. (19), (20), (23), and (21), we have the augmented state space equations

_xa ¼ Aaxa þ BauþDan; ya ¼ Caxa; (24)

where the matrices Aa; Ba; and Da are given as

Aa ¼
A D1 þD2

01�4 I1�1

" #
; Ba ¼ BT 01�1

� �T
; Da ¼ DT

2 I1�1

� �T
; ð25Þ

where I denotes identity matrix. Note that if the measurements are corrupted by noise, the second
equation of (24) should take the form of Eq. (10) and t is assumed to be a Gaussian white-noise
process with zero mean and covariance matrix R described by Eq. (11).
It is assumed that either all the state variables are available or just the sprung mass and

unsprung mass velocities are available. As in the case of deterministic road input, the absolute
sprung mass and unsprung mass vertical velocities may be obtained from the integrated output of
accelerometers mounted on the sprung mass and unsprung mass, respectively. Therefore, the
output matrix Ca takes the form of I5�5 or

Ca ¼
0 0 1 0 0

0 0 0 1 0

" #
ð26Þ

correspondingly.
4. Combination of vehicle dynamic system, LQG controller, and Kalman estimator

With the vehicle dynamic system described in Eqs. (18) and (24), and the LQG controller and
Kalman estimator designed previously based on the separation principle, we can obtain the
strongly coupled vehicle dynamic system, controller, and estimator as shown in Fig. 2 using a
cascade arrangement.
With the assembled system, the performance index of the optimally controlled system is given

by
Jopt ¼ traceðSDaQD

T
a Þ þ traceðKTHKPÞ: (27)

The performance index, given by Eq. (27), consists of two parts. The first part results from the
random road excitation while the second part is due to the measurement errors. The presence of
measurement error increases the performance index since traceðKTHKPÞ is, in general, positive.



ARTICLE IN PRESS

+

−

^

Controller
+

u

Ba

Kalman Estimator

+LQG

Vehicle Dynamic System

υ

ξ

+

+

+
++

+

Da

Ca

xa

Ba

I/s

Aa

L

xa

Aa

ya

 CI/s

Fig. 2. Cascade arrangement of vehicle dynamic system, Kalman estimator, and LQG controller.
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5. Multidisciplinary optimization and implementation

5.1. Design optimization approach

A successful vehicle system design requires harmonization of a number of criteria and
constraints [9]. Such a design problem can be modelled as a constrained optimization in the design
variable space. However, for such optimization, due to its dimensionality, complexity, and
expense for analysis, a decomposition approach is recommended so as to enable concurrent
execution of smaller and more manageable tasks [9]. To preserve the couplings that naturally
occur among the subsystems of the whole problem, such optimization by various types of
decomposition must include a degree of coordination at the system and subsystem levels. MDO
offers effective methods for performing the above optimization so as to resolve the trade-off
relations among the various design criteria at the system and subsystem levels.
Several MDO methods exist, including the All-in-One (A-i-O) method. The A-i-O method is

commonly used for the solution of MDO problems. This method has been offered in detail by
Kodiyalam and Sobieski [9]. In our study, the A-i-O method is applied to the vehicle system
design for optimizing the mechanical system, controller, and estimator simultaneously. Fig. 3
shows the schematic representation of the design optimization approach.
The system shown in Fig. 3 is composed of an optimizer, i.e. a genetic algorithm, which

manipulates the relevant objective function and constraints, and three disciplines, i.e. the vehicle
dynamic system with A’GEM software, the optimal estimator with Kalman filter algorithm, and
the optimal controller with LQG control algorithm. The A-i-O approach to this optimization
problem is a two-level optimization method. The optimization problem is solved for each
discipline as well as for the system as a whole. The system is nonhierarchical because each
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discipline is coupled to every other discipline, and no discipline is viewed as being ‘‘above’’ the
others.
After a generation of evolution, a potential individual design variable set XD is provided by the

GA to the coupled analysis disciplines. The design variable set XD may include the passive design
variables for the vehicle system, e.g. inertial property parameters and passive suspension
parameters, and control parameters such as the weighting factors required in Eq. (1). With this set
of design variables, a complete system multidisciplinary analysis is performed to obtain vehicle
dynamic system output variable vector ya; optimal estimate vector x̂a; and actuator force vector u;
which are used for evaluating the corresponding subsystem objective functions and constraints. In
addition to these coupled variables among the three disciplines, the resulting vehicle system
parameters Sp; e.g., the system matrix Aa generated by A’GEM software, are offered to the
Kalman filter algorithm and the LQG control algorithm from the vehicle dynamic system for
evaluating the above coupled variables. The vehicle system parameters Sp together with the
resulting Kalman estimator parameters Kp and the resulting LQG controller parameters Lp are
returned to the optimizer for the evaluation of the system objective function and constraints.

5.2. Implementation of the optimization problem

As shown in Fig. 4, the A-i-O method is implemented using a two-loop optimization approach.
In the interior loop, the LQG and Kalman filter algorithms are utilized to optimize the controller
and estimator, respectively. In the outer loop, a GA is used to optimize the combined mechanical
and control systems.
GAs offer the following advantages over traditional optimization algorithms [14]: (1) higher

reliability to find the global optima; (2) finding good designs by manipulating the material of
binary strings (corresponding to design variables) without any knowledge of the problem the GA
is solving; (3) simple yet powerful in its search for improvement and not limited to the search
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space, such as continuity or existence of derivatives; (4) guiding its searches using probability
rules. A population of designs evolves from generation to generation through the application of
genetic operators, such as selection, crossover, and mutation. Selection is a process in which
individual strings (designs) are copied based on their fitness values. Highly fit strings have a higher
number of offspring in the succeeding generation. Crossover is a method of combining successful
designs by exchanging design characteristics among randomly selected pairs from the selected
population. A crossover site is selected at random. Mutation is a technique that introduces new
information into the new population at the bit level. A set of bits are selected randomly within the
entire population.
The GA, called MechaGen program [3] and based on Goldberg’s GA [14], was written in C

using pseudo-random number generators linked from the NAG (Numerical Algorithm Group)
Fortran library. Two techniques were introduced in the program: (1) using a linear search look-up
table for the purpose of improving the efficiency of the GA; (2) ranking the population according
to fitness values to avoid premature termination of the algorithm.
The LQG and Kalman filter algorithms are used for optimizing the controller and estimator,

respectively, provided the mechanical system is given. For a vehicle system with a given set of
design parameters XDi; including inertial parameter vector Ini; geometric parameter vector Gi; and
passive suspension parameter vector Si; A’GEM can be used to automatically generate the vehicle
system matrix Aai (see Aa in Eq. (2)) in a state space form. Here, the index i represents the ith
individual design variable set of a population of n in a certain generation.
As illustrated in Fig. 4, first, a population of n sets of design variables, XDi; i ¼ 1; 2; . . . ; n; are

randomly selected in the search space by the GA; the corresponding sets of design variables are
sent in parallel to the A’GEM routines which automatically generate the governing equations of
motion of the vehicle system in a state space form. With the required system matrix Aai and
weighting factors ri; the LQG and Kalman filter algorithms in MATLAB construct and optimize
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the corresponding controller and estimators resulting in control gain matrix Ki; covariance matrix
Xai of the state variables, filter error covariance matrix Pi; and performance index Ji: Then these
performance indices, i.e. fJ1; J2; . . . ; Jng

T; are used as the fitness values. At this point, if the
convergence criteria are satisfied, the calculation terminates; otherwise, these fitness values are
returned to the GA. Based on the returned fitness values corresponding to the given sets of design
variables, the GA produces the next generation of design variables sets using genetic operators,
e.g. selection, crossover, and mutation. This procedure repeats until the optimized variable set is
found.
In the study, all simulations were carried out on a Silicon Graphics Indigo 2 XZ workstation

(circa 1995). The GA (MechaGen program written in C), A’GEM package (written in Fortran),
and Matlab (version 5.2) were linked by a main Fortran program and automatically implemented
on the workstation. In the numerical experiments of the A-i-O method shown in Fig. 4, it was
found by trial and error that the selected GA parameters, a crossover probability of 100%; a
mutation probability of 1:0%; and a population size (the number of design variable sets) of 100,
give fairly consistent results.
In the deterministic road input case, to optimize the passive vehicle variables (m1; m2; k1; k2;

and c2) and control gain matrix K; the elapsed time of operating the A-i-O method took 7.78 h for
6603 fitness evaluations. In the random road input case, the operation of the A-i-O method
required 3.89 h for 4290 fitness evaluations. It was observed that opening the Matlab engine (once
per fitness evaluation) from the main Fortran program occupied a large portion of the elapsed
time. Therefore, if the routines for LQG and Kalman filter algorithms are coded in Fortran or C
and combined with the main Fortran program (instead of running these routines in Matlab), the
A-i-O method will be much more efficient. With the parallelism property of the GA, the A-i-O
method is suitable for applications using massively parallel computers. If the current applications
are implemented in a massively parallel computer system, the computation time could be reduced
approximately by a factor of the population size of the GA.
6. Numerical simulations

In this section, the numerical simulation results are presented and discussed. The simulations
are carried out in two different cases, i.e. the road inputs are deterministic and stochastic
disturbances. The A-i-O method is used to resolve the conflicting requirements for ride comfort,
suspension work spaces, and dynamic wheel loads for road vehicles based on the quarter-vehicle
models.

6.1. Deterministic road input case

6.1.1. Vehicle system optimization

The optimization problem can be stated as: minimize the objective function

J ¼

Z1
0

½r1ðu þ nf passÞ
2
þ r2 €x

2
2 þ r3ðx1 � wÞ2 þ r4ðx2 � x1Þ

2

dt (28)
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Table 2

Expressions represented by symbols J1; J2; J3 and J4

J1 J2 J3 J4R1

0 ðu þ nf passÞ
2 dt

R1

0
€x2
2 dt

R1

0 ðx1 � wÞ2 dt
R1

0 ðx2 � x1Þ
2 dt
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subject to

_x ¼ Axþ BuþD _w; ð29Þ

where n is a constant, r1; r2; r3; and r4 are weighting factors that impose penalties upon the
magnitude and durations of the secondary suspension force including actuator force u and passive
suspension force f pass , the ride comfort €x2; the tire deflection x1 � w; and the suspension working
space x2 � x1; respectively. The initial state variables x1ð0Þ; x2ð0Þ; _x1ð0Þ; and _x2ð0Þ take the values
of zero. The road displacement disturbance w is a unit step input at time t ¼ 0: Note that u and w
are scalar expressions of 1� 1 vectors u and w; respectively.
For simplicity, Eq. (28) is rewritten as

J ¼
X4
i¼1

riJi; (30)

where definitions of the symbols J1; J2; J3 and J4 are offered in Table 2.
As will be discussed later, to facilitate the optimization and the control law synthesis [16,18,19],

each term of the right-hand side of Eq. (28) is normalized with the corresponding norm. In the
case concerned, the norm of each term is the inverse of the corresponding weighting factor. The
weighting factors are assumed to be

ri ¼ 1=Jref
i ; (31)

where i ¼ 1; 2; 3; 4; and Jref
i is the ith term of the objective function (in the form of Eq. (28)) of a

reference quarter-vehicle model with passive or active suspensions. Note that the definition of Jref
i

(i ¼ 1; 2; 3; 4) is the same as its counterpart (Ji) shown in Table 2.
To find the solution to the optimization problem, Eq. (28) should be rewritten in the standard

form as shown in Eq. (1). Note that in the deterministic road input case, the input is not treated as
an independent state variable as in the case of random road input.
The problem is actually an optimal tracking problem with the addition of a road disturbance _w:

Then the tracking problem is reduced to an equivalent regulator problem. Moreover, for the
deterministic road input case, the Kalman estimator is not introduced.
6.1.2. Results and discussion
In this subsection, the simulation results from the A-i-O method are discussed and compared

with those provided by Thompson [6]. As will be seen, the optimized vehicle model based on the
A-i-O has better performance than the corresponding model with passive suspension and that
based on the LQG algorithm (used by Thompson) in all four aspects: ride comfort, suspension
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working space, dynamic wheel load, and actuator force. Note that the simulation results reported
by Thompson [6] have been accurately repeated in this research.
It should be mentioned that in Thompson’s numerical simulation [6], the step input of

ground position was set as 1 ½m
; which is too large, yielding a peak acceleration of the
sprung mass of about 25 g, excessive tire and suspension deflections, and excessive tire and
suspension forces. Under these conditions, the linear vehicle model is not valid. With this
consideration, in the current study, the step input of ground position is set as 0:01 ½m
;
the resulting responses for the linear model scale down accordingly, giving moderate deflections
and forces.
When the quarter-vehicle model with active suspension offered by Thompson [6] is selected as a

reference vehicle model, the weighting factors r1; r2; r3; and r4 are calculated to take the values of
0, 6:493� 10�4; 74:709; and 13:206; respectively. By including m1; m2; k1; k2; and c2 as additional
design variables, the control gain matrix K obtained using the A-i-O and that offered by
Thompson using the LQG are listed in Table 3. These additional passive design variables
are permitted to vary by 20% from the nominal values. The optimized passive design variables
based on the A-i-O, together with their nominal values (listed in Table 1 as Set 1), are provided in
Table 4.
The resulting unit step responses based on the A-i-O, the LQG (used by Thompson), and the

corresponding passive suspension system are shown in Figs. 5–8. Note that in the case of passive
suspension system shown in Figs. 5–8, the vehicle system parameters (m1; m2; k1; c1; k2; and c2)
Table 3

Feedback control gain matrix for optimal suspensions

K1;1 K1;2 K1;3 K1;4

LQGa
�57240:0 35355:0 �1385:7 4827:0

A-i-Ob
�48683:0 26607:0 240:0 4682:0

A-i-O1c �15045:0 11265:0 886:0 2873:0

aThompson’s results with passive design variables taking nominal values.
bObtained using the A-i-O with r1 ¼ 0:
cObtained using the A-i-O with r1 ¼ 7:7793� 10�9:

Table 4

Optimal values for m1; m2; k1; k2; and c2

m1 ðkgÞ m2 ðkgÞ k1 ðN=mÞ k2 ðN=mÞ c2 ðN=m=sÞ

NVa 28.58 288.9 1:5590� 105 1:9960� 104 1:8610� 103

A-i-Ob
ð
20%Þ 22.864 346.68 1:2472� 105 2:2836� 104 1:6698� 103

A-i-O1c ð
20%Þ 22.864 346.68 1:2472� 105 2:0388� 104 1:8821� 103

aNominal values.
bOptimized values based on the A-i-O with r1 ¼ 0:
cOptimized values based on the A-i-O with r1 ¼ 7:7793� 10�9:
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Fig. 5. Sprung mass acceleration versus time: � � ��; passive; � �; LQG; ��; A-i-O.
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Fig. 6. Secondary suspension forces versus time: � � ��; passive; � �; LQG; ��; A-i-O.
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take their nominal values listed in Table 1 as Set 1. Fig. 5 illustrates the relationship between the
sprung mass acceleration and time, Fig. 6 the secondary suspension forces and time, Fig. 7 the
sprung mass displacement and time, and Fig. 8 the unsprung mass displacement and time.
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Investigation of Figs. 5–8 shows that, compared with the active suspension based on the LQG,
the one based on the A-i-O method is better controlled both in sprung mass acceleration and in
unsprung mass displacement with less overshoot, the peak total secondary suspension force or
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Table 5

Comparison of the response characteristics for passive and active suspensions

LQG Passive A-i-O A-i-O1

m2 displacement overshoot % 8:5 45:3 10:4 8:5
m1 displacement overshoot % 28:0 18:0 11:9 25:9
Peak total m2 force (N) 7:3� 102 8:2� 102 7:12� 102 5:75� 102

Peak actuator force (N) 7:3� 102 0:0 �2:50� 102 �4:35� 102

Peak m2 acceleration ðm=s2Þ 2:53 2:83 2:05 1:66R1

0 104ðx2 � x1Þ
2 dt 0:076 0:085 0:073 0:089R1

0
105ðx1 � wÞ2 dt 0:134 0:144 0:129 0:141R1

0 104 €x2
2 dt 1540:1 2145:2 1016:9 721:8R1

0 104ru2 dta 0:103 0:0 0:021 0:041R1

0 104 rðu þ f passÞ
2 dt 0:103 0:143 0:098 0:069

ar ¼ 8:0� 10�10 [6].
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total sprung mass force is less, and the sprung mass displacement is almost the same. Compared
with the passive suspension, the performance improvement based on the A-i-O method is greater
than that based on the LQG. Both active suspensions are much better controlled than the passive
suspension in sprung mass displacement with lower peak sprung mass forces.
The numerical results are listed in Table 5. Results demonstrate that the optimized system based

on the A-i-O outruns its counterpart based on LQG in the mean-square values of all aspects, i.e.
suspension working space x2 � x1; dynamic wheel load or x1 � w; sprung mass acceleration €x2;
actuator force u, and total sprung mass force u þ f pass: Based on the quadratic performance
indices shown in Table 5, the active suspensions based on both the LQG and A-i-O are superior to
the passive suspension.
To further investigate the actuator forces based on the A-i-O and LQG, part of Fig. 6 is

repeated in Fig. 9. Note that in Fig. 6, the total secondary suspension force based on the A-i-O
consists of two sections, the active force (actuator force, denoted as A-i-O (active)) and the passive
force (summation of passive spring (k2) and damper (c2) forces, denoted as A-i-O (passive)). A
close observation of Fig. 9 reveals that, at a point when the road unit input acts on the unsprung
mass, the corresponding active suspension force actively resists the disturbance immediately, but
the corresponding passive suspension force just follows the disturbance. The resistance to the road
disturbance contributes to the performance improvement of the corresponding suspension.
Compared with the case of LQG, in the case of A-i-O, the active force resistance to the road
disturbance lasts longer and the active force and the corresponding passive force are almost out of
phase. This outphase between the active and passive forces in the case of A-i-O makes the
corresponding total force smaller than the active force based on the LQG and leads to the
performance improvement over the active suspension based on the LQG algorithm. In the case of
LQG, although the active force resists the road disturbance, this resistance lasts a very short
period of time. Then the active force follows the trends of the passive suspension force based on
the A-i-O. Thus, the actuator force based on the A-i-O and that based on the LQG are also almost
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out of phase. This outphase of the actuator force between the two cases can be explained by the
opposite sign of K1;3 in the control gain matrices for the two cases, as shown in Table 3.
Moreover, compared with the case of LQG, in the case of A-i-O, the peak actuator force is much
less because of the co-existence of the passive spring and damper.
Notice that the optimized vehicle system based on the A-i-O achieves the above superior

performance even though the sprung mass is 20% larger than the mass used in the corresponding
vehicle model with the active suspension based on the LQG and the passive suspension.
To examine the effect of the weighting factors or components of objective function shown in Eq.

(28) on the performance of the vehicle system, weighting factor r1 takes the value of 7:779� 10�9

instead of 0:0; the constant n is set to the value of 1:0; and the other weighting factors take the
values as those in the case of A-i-O. Note that the weighting factor r1 is determined based on
Thompson’s [6] quarter-vehicle model with active suspension using the method expressed in Eq.
(31) and Thompson did not include the acceleration term in his objective function. To distinguish
this case from the previous cases, this case is denoted as A-i-O1. In the case of A-i-O1, the passive
vehicle system design variables m1; m2; k1; k2; and c2 are also permitted to vary by 20% from the
nominal values. We can obtain the optimized passive design variables for this case as listed in
Table 4 using the A-i-O method. It can be found that the obtained passive system design variables
are the same as those obtained in the A-i-O case except for the minor difference of the variables k2

and c2: As a matter of fact, during the numerical experiments using the A-i-O method, the GA
does not converge at certain values for the design variables k2 and c2 over a narrow value range for
both k2 and c2 where the performance index J reaches its minimum value. This can be interpreted
that within certain value ranges of k2 and c2; and with the introduction of the actuator, the vehicle
system performance is not sensitive to the passive suspension design variables k2 and c2:
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In the case of A-i-O1, the obtained control gain matrix K and the numerical simulation results
are also offered in Tables 3 and 5, respectively. By including the total secondary suspension force
as an additional performance index term, from the optimization point of view, we lay more
emphasis on reducing the total sprung mass force and sprung mass acceleration. Simulation
results match this expectation. As shown in Table 5, compared with the case of A-i-O, the active
suspension denoted as A-i-O1 is much better controlled in total sprung mass force, sprung mass
acceleration, and sprung mass displacement overshoot. However, the vehicle performance in
suspension working space, dynamic wheel load, and actuator force suffers.
The objective function, as provided by Eq. (28), quadratically penalizes large deviations of the

state and control vectors from their desired set point values. Numerical experiments show that the
selection of the weighting factors for the objective function is important and greatly affects the
implementation of the A-i-O method. With each penalized variable normalized by the mean-
square value of the corresponding variable of a reference vehicle model (see Eq. (31)), each term of
the objective function can be guaranteed to be at the same order of digital value during the
optimization and the GA can effectively coordinate the design criteria of ride comfort, suspension
working space, dynamic wheel load, and actuator force. From the designer’s point of view, this is
a meaningful form of objective function because it requires that only an appropriate reference
vehicle model be selected.
6.2. Random road input case

6.2.1. Vehicle system optimization
The vehicle model was optimized with respect to ride comfort, suspension working space, and

dynamic wheel load. Hence, the performance index J also takes the form of Eq. (30), where J1; J2;
J3 and J4 are defined in Table 6. The products r1J1; r2J2; r3J3; and r4J4 are the measures of
actuator force, ride comfort, dynamic wheel load, and suspension working space, respectively.
The performance index formulation (30) should be expressed in the standard format as shown

in Eq. (1) for the purpose of finding the solution to the optimization problem. With the
performance index (30) and governing equation set (24), based on the A-i-O method, the solution
to the optimization problem can be obtained.
6.2.2. Results and discussion
In this subsection, the simulation results from the A-i-O method are discussed and compared

with those reported by Hac [15]. As will be seen, the optimal vehicle model derived from the A-i-O
method has better performance than the corresponding model based on the LQG algorithm (used
by Hac) in the mean-square values of actuator force, vertical sprung mass acceleration, suspension
Table 6

The definition of the symbols J1; J2; J3 and J4

J1 J2 J3 J4

E½u2
 E½ €x2
2
 E½ðx1 � wÞ2
 E½ðx2 � x1Þ

2
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working space, and dynamics wheel load. Note that the simulation results reported by Hac [15]
have been accurately repeated in this research.
The vehicle system parameters are listed in Table 1 as Set 2 including the random road

characteristic parameters, i.e. at and st: When the vehicle is moving at the speed V ¼ 30m=s and
the weighting factors r2 ¼ 1:0; r3 ¼ 105 and r4 ¼ 104; Hac [15] offered the simulation results as
shown in Fig. 10. Fig. 10 illustrates the dependence of the performance index (J) and its parts
ðJ1; J2; J3; J4Þ upon the weighting factor r1:
The A-i-O method is also used to optimize the vehicle model with passive and active suspension

components. The same values used by Hac [15] are assigned to the weighting factors r2; r3; and
r4; respectively. However, the vehicle system parameters, i.e. m1; m2; k1; k2 and c2 are introduced
as additional design variables and these variables are permitted to vary by 10% from the nominal
values. Numerical experiments show that the optimized values (denoted as A-i-O) for these design
variables are independent of weighting factor r1: The optimal values for these variables are listed
in Table 7.
In Fig. 10, the corresponding curves indicate the relationships J, J1; J2; J3; J4 versus r1

obtained using the A-i-O method. Compared with the optimal suspension based on the LQG, the
counterpart based on the A-i-O improves the performance index J and its parts J1; J2; J3; and J4

over a wide range of weighting factor r1: A close observation shows that, when r1o1; the latter
can achieve much better ride comfort, better road holding capability, and almost the same
suspension work space with less actuator force. When r14103; both suspensions behave like
passive suspensions because the actuator force is very small and the latter is superior to the former
in ride comfort, suspension work space, and road holding capability.
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Fig. 11. RMS trade-off solutions of vertical sprung mass acceleration versus suspension working space: � �; LQG;

��; A-i-O; � � � � �; SOP.

Table 7

Optimized values for m1; m2; k1; k2; and c2

m1 ðkgÞ m2 ðkgÞ k1 ðN=mÞ k2 ðN=mÞ c2 ðN=m=sÞ

NVa 100.0 500.0 2:0� 105 5:0� 103 1:0� 103

A-i-Ob
ð
10%Þ 90.0 550.0 1:8� 105 5:5� 103 1:1� 103

Passc ð
10%Þ 90.0 450.0 1:8� 105 4:5� 103 1:1� 103

aNominal values.
bOptimized values based on A-i-O method.
cOptimized values for the passive vehicle suspension system using the GA.
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To investigate whether a sequential optimization process (SOP), i.e. optimizing the passive
vehicle suspension system first, then designing a controller for the system based on the optimized
passive vehicle system parameters using the LQG algorithm, can achieve the same results as the A-
i-O method does, the GA is used to optimize the passive vehicle suspension system first, then the
LQG is applied to the design of the optimal controller for the optimized vehicle system. In these
simulations, the weighting factors r2; r3; and r4 are the same as those used with the A-i-O
method. The optimized passive vehicle parameters (denoted as Pass) are also listed in Table 7.
Figs. 11 and 12 show the corresponding RMS (root mean square) trade-off solutions of vertical

sprung mass acceleration versus suspension working space and RMS trade-off solutions of
vertical sprung mass acceleration versus dynamic wheel load for the optimal suspension systems
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based on the A-i-O, the LQG (based on nominal passive vehicle parameter), and the SOP. It is
clear that the suspension based on the A-i-O method has the best overall performance among the
three optimal suspensions. From Fig. 11, we can see that, within a certain acceleration range, the
suspension based on the SOP method requires the largest suspension working space among the
three suspensions.
In the simulations, the availability of a limited number of the state variables is considered. As

mentioned previously, it is assumed that the absolute vertical velocities of both the sprung mass
and unsprung mass (wheel) are available. The simulation results are offered here. In the
simulations, the measurement noises are set to 5% of the RMS value of vertical wheel velocity.
The simulation results are shown in Fig. 13, which illustrates the dependence of performance
indices and measurement errors upon the weighting factor r1: For these simulations, r2; r3; r4;
and V still take the values offered previously. In the LQG case (denoted as JLQG), the vehicle
system parameters take their nominal values, while in cases of the A-i-O without the Kalman filter
(denoted as JA1) and the A-i-O with the Kalman filter (denoted as JA2), the vehicle system
parameters are treated as design variables and are permitted to vary by 10% from their nominal
values.
As expected, by comparing the results from JA1 and JA2; we can see that the performance of the

active suspension based on JA2 suffers from the measurement corruption. As mentioned
previously, when r14103; the active suspensions behave like passive suspensions. This point can
be further demonstrated by the fact that the measurement error Jr becomes very small and the
performance indices from JA1 and JA2 are very close when r14103: By comparing the results
based on JLQG and JA2; we can observe that even though the suspension system based on JA2
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suffers from the measurement errors, its performance is still better than that of the suspension
system based on JLQG:
7. Conclusions

This paper demonstrates the feasibility and efficacy of applying a multidisciplinary
optimization method, i.e. All-in-One (A-i-O) method, using genetic algorithms, multibody
dynamics, the linear quadratic Gaussian method, and the Kalman filter algorithm to the design
optimization of mechatronic vehicles with active suspensions. The A-i-O method is implemented
in a sophisticated simulation environment in such a way that the linear mechanical vehicle model
is designed in the A’GEM program, the optimal controller and Kalman estimator are designed in
the MATLAB, then the combined system including mechanical vehicle model, optimal controller,
and Kalman estimator is optimized simultaneously by using genetic algorithms.
The A-i-O method is used to resolve the conflicting requirements for ride comfort, suspension

work spaces, and dynamic wheel loads in the optimization of quarter-vehicle models with active
suspensions. In the simulations, both random and deterministic road inputs and both perfect
measurement of full state variables and estimated limited state variable cases are considered. The
time domain analysis and covariance analysis are carried out.
Numerical results show that the active suspension systems based on the A-i-O have better

overall performance than those derived using the LQG method. The sequential optimization
process can not achieve the results obtained by the A-i-O. Based on an appropriately selected
reference vehicle dynamic model, by means of normalizing each term of the required objective
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function, the design optimization using the A-i-O method is greatly facilitated. With the co-
existence of passive and active components in vehicle suspensions and the design variables
determined by using the A-i-O method, the corresponding actuator forces can actively resist road
disturbances much longer than the actuator forces based on the case where the corresponding
suspensions have no passive elements and the design variables are determined by using the LQG
algorithm.
The above A-i-O method can be applied to the design optimization of complex vehicle models

with active suspensions. As a continuation of this research, the application of the A-i-O method to
the design optimization of a half vehicle model with flexible vehicle body and active suspensions is
under way.
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