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Abstract

The problem of an elastic lifting hydrofoil in a randomly perturbed flow is considered. It appears that in
these conditions the phenomenon of hydroelastic-induced vibrations is controlled by a stochastic
differential operator. By using the theory of stochastic perturbation, a technique of solution for this class of
problems is proposed, leading to an effective numerical solution. The fundamentals of the method are given
and it is applied to the general problem of hydroelastic vibrations. A numerical application to the case of an
elastic control surface for a prototype-high- speed marine vehicle is presented. Comparisons between the
results obtained by the Stochastic Perturbation Method (SPM) and those provided by standard Monte
Carlo simulations (MCS) show the accuracy of the proposed method and a useful saving in computational
time. A method is given for comparing the computational time required by the two methods, for a given
statistical accuracy.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is focused on flow-induced vibrations of an elastic hydrofoil in a randomly
perturbed flow: stochastic fluctuations of the inflow velocity are superimposed to an average
see front matter r 2004 Elsevier Ltd. All rights reserved.
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deterministic flow component. The problem, per se theoretically interesting, is not of small
practical importance. In fact, it arises at the design stage of marine or aerospace engineering. A
typical case is represented by the control surfaces of high-speed vessels, such as rudders and
stabilization fins, especially when a fatigue life estimate of the structural component is required.
Whatever the model used to represent the coupled fluid–structure response, a direct numerical

solution of the problem presents some troubles. In fact, a random perturbation of the inflow
velocity makes stochastic the differential operator governing the coupled fluid-structural motion.
This means that a single direct numerical integration of such a system provides just one sample of
a stochastic process, so that the single-case simulation has not any statistical meaning. Thus, a
significant solution of the problem can be achieved only in probabilistic terms. A way to handle
these problems is via the Monte Carlo simulation. However, it is known that this technique is very
time consuming [1–3]. Moreover, a post-processing of the results is needed to provide the relevant
statistical data, such as the mean and the standard deviation of the response.
Several other methods can be used to deal with stochastic response of a linear or nonlinear

systems [4–7]. A short review of some of them is given in the following section.
The basic idea developed in this paper is to approach the problem via a Stochastic Perturbation

Method (SPM) [2,4] together with the Rice decomposition [8] when solving the hydroelastic
equation of motion. The method is applied to a problem of hydroelasticity consisting of an elastic
surface undergoing a random flow. The formulation of this problem leads to a set of linear
differential equations with time-dependent stochastic coefficients. The solution, in terms of
Lagrangian variables associated with hydroelastic vibrations is provided directly in terms of the
sought after statistical moments up to the second order.
A systematical comparison with the numerical results obtained by a direct Monte Carlo

simulation, performed on a very large number of realizations, shows the reliability of the
proposed stochastic perturbation technique that keeps the relevant statistics of the phenomenon
at a low computational cost.
This method seems to be effective and innovative, considering that while SPM has its

established formulation in the theory of stochastic differential equations, it has not yet its firm
position as an engineering tool in the frame of fluid–structure interaction. The case here analyzed
of hydroelastic problem is particularly relevant, since, as it will be clear in Section 3, a randomly
perturbed flow about an elastic body leads to prototype stochastic equations of the form given in
Section 2, for which SPM has good chances. Moreover, as far the authors know, this method has
never been considered for the solution of fluid–structure interaction problems.
2. Stochastic differential operators and perturbation techniques

Consider a physical system controlled by the general differential equation:

Lðu;Du;PÞ ¼ f ðx; tÞ (1)

being a linear or a nonlinear form L of the arguments u, Du and P; u(x,t) is the field descriptor
depending, in general, on the space and time coordinates x and t, Du is a vector containing partial
derivatives of u(x,t), with respect to x and t up to an arbitrary order, and P is a vector of
coefficients accounting for some field properties. Finally, f(x,t) is the external input to the
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considered system. Eventually, boundary and initial conditions complete the problem posed by
Eq. (1).
In the frame of the analysis of physical systems involving a random process, different cases

should be distinguished [4,6], having the corresponding problems a deeply different nature. A
random process can actually affect f(x,t), P or even the boundary and initial conditions related to
Eq. (1) (however, this last case is not of interest for the subject of the present paper).
Consider the case in which f(x,t) is a random function, while P is a vector of deterministic

properties. Assume in addition that L is linear with respect to u.
This configuration belongs to the classical theory of linear systems with a random stationary

input: provided that the statistics of f(x,t) is known, generally by its auto-correlation function Rff

(or by its spectral density), let us determine the statistics of the output field descriptor u(x,t), e.g.
providing its auto-correlation function Ruu (or its spectral density). This is the more widespread
statement of random vibration problems in engineering, for which well-known formulations are
available in the frame of a general theory since a long time [3,4,9] and are well established also in
engineering analysis of practical systems. In aeroelasticity, the aircraft elastic response to a
stochastic gust profile [10–12] belongs to this class of problems and the solution, provided in terms
of power spectral density, is widely used both at design stage and to meet the requirements
imposed by aircraft authority.
In the previously mentioned problems, the random process only affects the external input force

f(x,t), while the system exhibits per se (i.e., the operator L) a deterministic behavior.
However, more general statements of the random vibration problem are met in the analysis of

engineering systems. Indeed, in some cases, the nature of the studied system presents a random
uncertainty, e.g., its geometric and mechanical characteristics or, as in the present paper, its
interaction with a surrounding fluid in random motion. In this case, besides f, P is also stochastic,
making the operator L itself stochastic. These problems led naturally to consider a stochastic
population of samples having stochastic properties. If the sample we are considering is a system
described via Eq. (1), then a random population of samples is obtained when randomly varying
the parameter P. In correspondence, a random population of solutions u(x,t) is also determined.
Thus, a second class of random problems is formulated as follows: assuming the probability of the
property vector P, provide the probability of the solution u(x,t).
A direct answer to the last problem is provided by the Monte Carlo method [2,3]. It consists of

solving a population of equations of form (1) by randomly varying P. Each of the considered
problem is completely deterministic and it is solved by using a standard algorithm (analytical or
numerical). As a result, a random population of solutions is obtained and a statistics is performed
on it. The advantage of such a technique relies on the theoretical simplicity and generality of the
method, since no special hypotheses neither about the linearity of L nor about the properties
of the random process are needed. On the other hand, this obviously implies a heavy
numerical burden. In fact, a significant statistics can be performed only when a large enough
number of solution samples are generated, i.e., only when Eq. (1) is solved many times with
different sample values of P. The theory of probability [3,13] provides directions concerning the
number of samples to employ in order to get a significant statistics but, in general, this number
is large.
The analysis of stochastic problems, whatever the nature of the operator L (linear or nonlinear)

and whatever the nature of the considered randomness, P and/or f, is dealt in a general way by the
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Fokker–Plank–Kolmogorov (FPK) equations [3,4,6], providing a functional equation relating the
probability density functions of the stochastic processes, i.e., of P and f, to that of the solution u.
Unfortunately, the formal complexity of this partial differential equations induces, in many cases,
to skip this approach.
The complexity of the FPK equations is highly reduced if the desired information is limited to

the statistical moments of the solution u. A suitable application of the expectation operator
(average operator) to both sides of the FPK equations leads to a set of first-order ordinary
differential equations in terms of statistical moments of the solution (moment equations). Early
introduction of this approach is that of Bogdanof and Kozin [14] and of Cumming [15]. This
averaging technique is a powerful tool in dealing with stochastic operators and inspires many
methods of solutions of stochastic differential equations [4,16,17]. In a sense, the method of
weighted residuals [2,6,18], that is also the basis of many general solution techniques, can be also
derived from the same idea. A well known and effective representative of the method of weighted
residual is statistical linearization [19], that applies to L nonlinear and a random input f: an
equivalent linear form Leðu;Du;PeÞ ¼ f ðx; tÞ replaces the original nonlinear equation, where Pe is
determined by satisfying the requirement of minimizing the standard deviation of the equation
error (i.e., of a weighted residual). In this way, the problem is turned again to the theory of linear
systems with random input.
The method of weighted residuals originates also the polynomial chaos technique that, since the

early work of Wiener [20], is today a well-established tool in the solution of stochastic differential
problems [2,18]. Recently, Ghanem and Spanos disclosed unambiguously the subject into the field
of engineering with the introduction of a spectral-based stochastic finite element technique [2].
Very recent and interesting application of this technique to fluid and fluid–structure interaction
problems are presented in Refs. [21,22].
Polynomial chaos is based on the expansion of the stochastic process (f and/or P) by using a

suitable orthogonal polynomial basis with respect to the weighting function W (Hermite,
Laguerre, Jacobi etc.) containing stochastic parameters (random events responsible for the system
uncertainty). The solution u is also projected on the polynomial basis and the generalized Fourier
coefficients are the deterministic unknowns of the problem. Direct application of the Galerkin
method provides the desired solution: u, f and/or P spanned on the polynomial basis are
substituted into Eq. (1) that is projected onto each polynomial of the chosen basis, imposing that
the equation error for each equals zero. Since the polynomials contain the randomness, the
weighting function W can be viewed as the probability density function (pdf) of the random
process, and the Galerkin procedure (weighted residuals) as a stochastic averaging of Eq. (1).
Further features of this approach are discussed later in this section when discussing the canonical
decomposition of a random process.
A different approach is provided indeed by the stochastic perturbation method (SPM). It was

born in the frame of the theory of stochastic differential equations [2,4,23,24] with random
coefficients as the natural generalization of the perturbation techniques used in deterministic
nonlinear problems (see e.g., Ref. [25]). Although this approach is promising in the field of
analysis considered in this paper, it has not yet received any particular attention to deal with
random fluid-structure interaction problems. SPM uses the same scheme of perturbation
techniques, although revisited in a stochastic light. The fundamentals of the theory and the
approach followed in this paper are summarized below.
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Analogously to other approaches to stochastic differential equations, the solution process here
presented needs two basic elements: a suitable representation of the random process and a
solution technique of the equations in which this random process is involved.
The analysis starts with the first step, expressing the properties vector P by the decomposition:

P ¼ P0ð1þ �Þ ¼ P0 þ ~P; (2)

where P0 is a deterministic vector and e is a small random perturbation whose expected value is
E �f g ¼ 0 and the standard deviation is E �2

� �
¼ s2� : In Eq. (2) and in the rest of the paper, the

terms with symbol tilde like ~P denote random variables. The posed problem consists of
determining the mean and the standard deviation of u(x,t) as a function of the input data
statistics, e.g., s2� : For the sake of simplicity, the notation W ¼ u;Duð Þ

T is introduced. The second
step assumes the solution by the following stochastic expansion:

W ¼ W0 þ �W1 þ �2W2 þ o �2
� �

¼ W0 þ ~W; (3)

where W0;W1;W2 are deterministic vectors, while W is the wished random solution. By performing
a Taylor series expansion (up to the second order) of L aroundW0; P0 and by substituting Eqs. (2)
and (3) into Eq. (1), it yields

L W;Pð Þ ¼ L W0;P0ð Þ þ LTC W0;P0ð Þ ~W þ LTP W0;P0ð Þ ~Pþ ~W
T
LCC W0;P0ð Þ ~W þ ~P

T
LPP W0;P0ð Þ ~P

þ ~W
T
LCP W0;P0ð Þ ~Pþ ~P

T
LPC W0;P0ð Þ ~W;

where LC; LP are vectors of first-order derivatives, while LCC; LPP; LPC; LCP are matrices of
second-order derivatives of L. By expressing the dependency on e and ordering with respect to its
increasing powers, Eq. (1) leads to the cascade system of equations:

L W0;P0ð Þ ¼ f x; tð Þ;

LTC W0;P0ð ÞW1 þ L
T
P W0;P0ð ÞP0 ¼ 0;

LTC W0;P0ð ÞW2 þ WT
1LCC W0;P0ð ÞW1 þ P

T
0LPP W0;P0ð ÞP0

þWT
1LCP W0;P0ð ÞP0 þ P

T
0LPC W0;P0ð ÞW1 ¼ 0:

This system is deterministic and provides the three unknowns W0;W1;W2: The statistics of W is
simply determined by applying the expected value operator E �f g to expression (3):

E Wf g ¼ W0 þ s2�W2: (4)

Moreover, the correlation matrix is

E WWT
� �

¼ W0W
T
0 þ s2� W0W

T
2 þ W1W

T
1 þ W2W

T
0

� �
: (5)

These equations provide the desired result: the statistics of the solution is given in terms of the
statistics of the data.
A more complex situation arises when the vector of the properties P is a stochastic function and

not a simple random variable. This implies that P(x,t) depends on the independent variables (x,t),
representing field properties randomly varying in space and time. This case can be substantially
reduced to the previous one when a canonical decomposition is used. This concept leads to a
reconsideration of classical projection methods (e.g. that of Galerkin) from a stochastic point of
view. By introducing a set of linearly independent functions Pðx; tÞ in R4, then P(x,t) can be
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expressed as

Pðx; tÞ ¼ P0ðx; tÞ þ CPðx; tÞ; (6)

where C is a matrix containing generalized Fourier coefficients. When P(x,t) represents a random
process, it can be thought that the decomposition (6) can be operated for each observed sample of
the population of functions P(x,t).
This approach was introduced since 1945 by Rice [8] in the analysis of random noise currents of

electric devices. In this case P x; tð Þ are harmonic functions and expansion (6) results in a Fourier
series.
Moreover, the randomness of P(x,t) implies that, for any observed sample, the associated

Fourier coefficients have different values. Thus, the Rice’s decomposition (6) is legitimate
provided that C is a matrix of random coefficients. In this way P(x,t) is collapsed into the set of
simple random variables Gij : Therefore it is apparent how expression (2) is just a special (and
simpler) case of expression (6) (obtained for C � �P0 and P � 1). Decomposition (4) is said
canonical if E Gij

� �
¼ 0 and E GijGrs

� �
¼ dirdjss2Gij

: Rice’s decomposition (6) can describe both
stationary and unsteady random processes and is used in this paper to describe the random inflow
as shown later.
It is worth to be noted that expansion (6) also presents a formal similarity to the polynomial

chaos expansion [2,18,20]. However, in the theory of polynomial chaos the roles of P x; tð Þ and C
are reversed with respect to the Rice’s decomposition: P x; tð Þ represents a set of orthogonal
polynomials containing the uncertainty in terms of a random event, while C are deterministic
coefficients.
Once the Rice’s decomposition of P(x,t) is performed, a generalized Taylor expansion of the

solution W in correspondence of the expected value E Gij

� �
in terms of C can be introduced:

Ci ¼ C0i þ
X

rs

qCi

qGrs

Grs þ
X

r s h k

q2Ci

qGrsqGhk

GrsGhk þ � � �

or

W ¼ W0 þ W1C þ CTW2C þ o CTC
� �

:

In these equations, the deterministic unknowns are W1 and W2; while the statistics of the
coefficients Gij is given. The procedure is analogous to that followed starting from Eq. (2) through
Eqs. (5) and (6).
The main features of the stochastic perturbation method here considered can be summarized as

follows: (i) the stochastic process P is expressed by a harmonic stochastic series (Rice), each term
being the product of a deterministic function P x; tð Þ (sine and cosine basis) times random Fourier
coefficients C; (ii) the solution u is expressed by a Taylor series of Fourier coefficients C of the
Rice’s decomposition, (iii) the unknowns are the Taylor’s series coefficients, (iv) any randomness
in the final equations (deterministic) is canceled out due to the power ordering.
Analogies and differences with respect to the polynomial chaos approach are apparent

considering the following characteristic of polynomial chaos: (i) the stochastic process is
expressed by the polynomial chaos, each term being the product of a deterministic function C
(generalized Fourier coefficients) times a stochastic polynomial basis P x; tð Þ (roles of P x; tð Þ

and C are reversed), (ii) both the solution u and the process P are spanned over the same
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orthogonal basis, (iii) the unknowns are the generalized Fourier coefficients C; and (iv) any
randomness in the final equations (deterministic) is canceled out due to the use of orthogonality
relationships.
Thus, both in the polynomial chaos technique and in the SPM method, based on the Rice’s

decomposition, the random process is expanded onto a rich basis containing, in general, many
terms. However, the main advantage offered by the SPM relies on a simpler expansion
of the solution that, as in the present paper, is considered only up to the second order,
while the polynomial chaos expansion uses again a larger number of terms (i.e. the same
basis used for the random process expansion). The counterpart of this advantage is that
polynomial chaos is in general more accurate and is more flexible since, by a suitable choice of the
polynomial basis [2,18], a large number of different probabilistic distributions of the random
process P can be considered, being the Rice’s decomposition suitable to describe Gaussian
processes only.
In the following sections an elastically suspended hydrofoil in a random flow is considered

leading to a state-space model (see Section 3.1 and Appendix A for details):

_y ¼ A Pð Þyþ b Pð Þ; (7)

that is a special case of Eq. (1), where y is the state vector, b is the load vector and A is the aero/
hydroelastic-system matrix. P depends on the inflow velocity parameters. Usually in
standard aeroelasticity the effects of a random inflow are included in b, e.g., this is the
case of a vertical/lateral gust experienced by an aircraft, while the matrix A is assumed to be
deterministic.
Indeed, in this case the perturbation velocity components are orthogonal to the undisturbed

flow and this kind of perturbation (typically denoted as ‘‘downwash’’, see, e.g., Ref. [10]) is
physically able to un-symmetrize the flow field physically modifying the shed vorticity at the
trailing-edge and thus generating the unsteady aerodynamic forces: the theory of linearized
potential flow gives a mathematical description of these phenomena—after a space discretization
via, e.g., a panel method and after a reduction to a space-state format [26,27]—by the linear
equation (7) with A independent by the perturbation P and b dependent as well.
However, in general, the matrix A exhibits a parametric dependency on the flow characteristics.

This is, for instance, the case of head-on gust impinging upon an aircraft [5]. Thus,
when a random inflow is considered, an additional randomness should be induced in the
aero/hydroelastic matrix so that it also depends on the stochastic process P. Indeed, in this
case the perturbation involves only the flow-wise component of the velocity. Thus, the
related aerodynamic forces are dependent on the state-space variables and the induced
aerodynamic forces cannot be considered as an external (stochastic) input but only as a
perturbation of the system parameters. On a physical point of view, this kind of perturbation
would be unable to unsymmetrize the flow field and, therefore, to generate aerodynamic external
loads. On the mathematical point of view, the system is modeled only by the portion _y ¼ AðPÞy of
Eq. (7).
In conclusion of this section, while the randomness of b is included in the classical theory of

random oscillations [3,9], the randomness of the operator A is not, and it can be dealt in the frame
of SPM. For this reason, the following analysis is focused on the second mentioned case of
randomness.
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3. Statement of the stochastic hydroelastic problem and its SPM solution

The SPM outlined in the previous section is here applied to a specific problem: the prediction of
the hydroelastic response of a submerged hydrofoil under a randomly fluctuating flow described
by Eq. (7). The problem is modeled considering an elastic hydrofoil undergoing a chord-wise flow
affected by a random velocity perturbation in the same direction of the main flow due to a surface
traveling wave (see Figs. 1 and 2).
It is worth underlining that the load exerted on the structure by the fluid is supposed to be

affected by the presence of the free-surface only through inflow velocity perturbations. On the
other hand, the presence of the free-surface does not imply finite-domain effects on the flow field
under suitable hypotheses that will be discussed in Section 3.1. This avoids the necessity to overly
complicate the discussion of the SPM solution for the physical problem.
In Section 3.2 the coupled fluid–structure equations for 2D and 3D cases are introduced

without no reference to the randomness of the velocity, which is related to the free-surface
perturbations (waves) in Section 3.3. Thus, the hydroelastic equations depending on the randomly
perturbed mean flow are suitable to be solved with the SPM as shown in Section 3.4. Finally, a
comparison between SPM and MCS solutions in terms of computational efficiency is presented in
Section 3.5 for the case of a prototype equation.

3.1. Remarks on free surface effects

In the present model, the origin of the inflow velocity perturbations is attributed to random
waves generated on the water surface due to the wind action. These waves are described by the
Airy theory [28], and the Pierson–Moskowitz [29] spectrum is assumed to statistically represent
the wave surface elevation.
The waves traveling on the surface induce random velocity perturbations in the water

depending on the depth. More precisely, the Airy waves theory [28] predicts an exponential decay
Fig. 1. Sketch of the typical-section model with stochastic inflow.
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eð2p=lÞz of the disturbance, where l is the wavelength on the water surface and z is the depth (z=0
at the near free surface, z positive downward). Thus, the disturbance is sensibly perceived if hol,
where h is the considered depth of the hydrofoil.
The hydrofoil model considered in this paper is based on the hypothesis of linear, potential,

attached, incompressible flow around a thin and planar lifting body in an infinite domain.
However, this last hypothesis does not hold strictly in the considered physical problem because
the free surface is present. Nevertheless, when the distance between the hydrofoil and the free
surface is greater than about a chord length 2b, lift perturbation effects, induced by the free
surface on the hydrofoil, are reasonably negligible. This requirement is met when h42 bk; where,
following different authors [30], k 	 1C2 is an acceptable value.
Therefore, it can be concluded that the model used here is physically consistent under the

condition l4h42 bk; implying that the hydrofoil depth is small enough to be affected by the
wave random perturbations, but large enough to avoid the modeling of the free surface effects on
the hydroelastic hydrofoil response.
With these assumptions we are in the position of developing a simple fluid–structure model

dealing with the considered problem. Theodorsen’s theory [31] for the 2D problem and lifting
surface approach for the 3D one, are employed to achieve analytical and numerical solutions of
the hydroelastic problem, respectively. These theories provide the generalized unsteady
aerodynamic forces due to an arbitrary motion described in terms of Lagrangean variables. It
is worthwhile to point out that the Theodorsen model, originally formulated in the frequency
domain, can be transposed in terms of integral-differential equations in the time domain.
Moreover these can be collapsed into a set of purely differential equations when using Finite-State
aerodynamics (see Refs. [32,33] for details) so that the model assumes the form given by Eq. (7). In
the same way, this approach has been considered in aeroelastic modeling for 3D hydroelastic
applications presented in this paper [26,27].
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3.2. The hydroelastic equations for a thin control-foil: 2D and 3D cases

The displacement field of a 3D elastic body can be generally expressed by the modal
decomposition

uðx; tÞ ¼
X1
i¼1

UiðxÞqiðtÞ; (8)

whereUiðxÞ’s are eigenfunctions satisfying the prescribed homogeneous boundary conditions, and
qiðtÞ’s are the Lagrangean coordinates. A similar expansion, containing only two terms, also
applies to a 2D elastically suspended rigid hydrofoil (typical section, [34]):

uðx; tÞ ffi U1q1ðtÞ þ U2q2ðtÞ ¼ k hpðtÞ þ kðx � xeÞaðtÞ;

where k is the unit vector parallel to z, whereas hp(t), a(t) are the plunge and pitch Lagrangean
variables, respectively. The x-axis is chord-wise axis (positive towards the trailing edge) and xe is
the co-ordinate of the center of rotation. The hydrofoil is studied in this way as a simple two-
degree-of-freedom system, elastically constrained by a pair of translational and torsional
equivalent linear springs, oscillating in plunge and pitch (Fig. 1).
By using standard notations (see Fig. 1), the non-dimensional plunge deflection at the elastic

center is denoted by x ¼ hp=b; where b is half the chord. The elastic axis is located at a distance
ah b from the mid-chord (ah is the dimensionless distance, considered with respect to the half-cord
length b, between the center of the hydrofoil and the elastic axis), while the mass center is located
at a distance xab from the elastic axis. With these assumptions, the hydroelastic equations of the
typical section are

€xþ xa €aþ O2x ¼ �pðx; aÞ; ðxa=r2aÞ
€xþ €aþ a ¼ rðx; aÞ; (9)

where ‘dot’ denotes the derivative with respect to t ¼ oat; O ¼ ox=oa; being ox and oa

the uncoupled natural frequencies of heave and pitch modes, respectively; ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=mb2

p
is the

dimensionless radius of gyration about the elastic axis where m and J are the mass and the
moment of inertia per unit length (with respect to the elastic center), respectively.
For an incompressible two-dimensional flow, the following hydrofoil expressions for the lift p

and the pitching moment r, respectively, are found [33]:

pðx; aÞ ¼ ð€x� ah €aþ U _aÞ=mþ
2

m
U

Z t

0

jðt� sÞ _w3=4ðsÞds;

rðx; aÞ ¼ ½ahð
€x� ah €aÞ � 1=2Uð1� ahÞ_a� 1=8€a�=mr2a

þ 1=mr2að1þ 2ahÞU

Z t

0

jðt� sÞ _w3=4ðsÞds;

where m ¼ prb2=m is the mass ratio, w3=4 ¼ _x� ð1=2� ahÞ_aþ Ua is the downwash, jðtÞ is the
Wagner function [32], U ¼ V=boa the dimensionless inflow velocity and V is the inflow velocity,
oriented along the x-axis. In order to eliminate the integral term, obtaining a pure differential
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problem, it is put

wðtÞ ¼
Z t

0

jðt� sÞ _w3=4ðsÞ ds;

where wðtÞ; the augmented state, represents the circulatory part of the lift, due to the wake. The
Laplace transform of the previous equation is wðsÞ ¼ jðsÞsw3=4ðsÞ; whereas the Jones’ rational
approximation in the Laplace domain is

jðsÞ ¼ 1=s � â=ðs þ b̂Þ � ĉ=ðs þ d̂Þ

with â ¼ 0:165; b̂ ¼ 0:0455; ĉ ¼ 0:335; d̂ ¼ 0:3: After some algebraic manipulation, Eq. (9) is
recast as a system of three polynomial equations in the Laplace domain (see Ref. [33, 35] for more
details). Transforming back to time domain, a first-order linear differential equation of type (7) is
determined:

_y ¼ AðUÞy; (10)

where y ¼ fx; a; w; _x; _a; _wgT is the state vector, and the coefficients of A(U) depend on the inflow
dimensionless velocity U [36,37].
Eq. (10) applies also to a three-dimensional flexible wing. By using Eq. (8), its response in this

case is described by its first M natural modes.
Considering an integral, linear, unsteady, aero/hydrodynamic formulation for potential flow

around a lifting thin body and replacing the three-dimensional body by a lifting mean surface
surrounded by an infinite fluid domain, a model similar to that introduced above can be
developed. This is performed, e.g., in MSC.NASTRAN code (the doublet-lattice method,
implemented in the sequence solution SOL 145, [12]). By coupling the hydrodynamic problem
with the elastic vibrations of the hydrofoil, it results in hydroelastic vibrations given in terms of M
modal variables, collected in the state-space vector q(t). It is governed, in the Laplace domain, by
the following equation:

Ms2 þ K
� �

q̂ ¼ qdQðs;VÞq̂; (11)

whereM and K are suitable diagonal mass and stiffness matrices, q̂ is the Laplace transform of q,
qd is the dynamic pressure, and Q is the generalized aerodynamic force matrix, depending on the
Laplace variable s and on the inflow velocity V. Following a procedure similar to that applied
above for the 2D hydrofoil, Q can be approximated with rational matrix polynomial with respect
to the dimensionless Laplace variable p ¼ sb=V [26,27,32,33] as

QðpÞ ¼ A0 þ pA1 þ p2A2 þ pI� Pð Þ
�1pR; (12)

where the matrices Ai, P and R are obtained by a best-fitting procedure. It is worth to point
out that the mathematical structure of this approximation is also related to a physical
meaning. Indeed, the polynomial contribution given by A0 þ pA1 þ p2A2 represents a
low-frequency stiffness, damping, and mass behavior associated to the aerodynamic force
whereas the term pI� Pð Þ

�1pR can be associated to a higher-frequency delay mechanism in the
aerodynamic-load generation due to the presence of the wake [27]. When introducing r̂ ¼
pI� Pð Þ�1PRq̂; combining Eqs. (11) and (12) and transforming back to time domain, one
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obtains Eq. (10), where now

y ¼

q

_q

r

0
BB@

1
CCA; AðV Þ ¼

0 I 0

�M�1
c Kc �M�1

c Dc qdM
�1
c

PR ðV=bÞ 0 ðV=bÞP

2
664

3
775:

Note that r, inverse Laplace transform of r̂; has a role similar to the function w for the 2D case.
Moreover

Mc ¼ M� qdA2 b2=V2
� �

; Dc ¼ �qdA1b=V
� �

; Kc ¼ K� qd A0 þ Rð Þ
� �

:

Therefore, under the specified physical assumptions, the hydroelastic vibration of the 3D
system is described again by the set of ordinary differential equations (10). The hydroelastic
operator A depends on V, that in the present analysis is a random function. This last can be
expressed by the sum of two contributions: the mean flow component V0; constant and
deterministic, and a random fluctuation ~V ; i.e. V ¼ V0 þ ~V : The stochastic nature of ~V and the
solution technique for Eq. (10) is illustrated in the next section.

3.3. Nature of the random perturbation

In the present section the stochastic component ~VðtÞ of the inflow velocity is provided as a
function of the surface wave perturbation. With reference to realistic seaways, the irregular
pattern observed at sea is described in terms of a stationary, zero-mean, Gaussian random
process. According to Pierson Moskowitz, the one-sided power-spectral density of the wave
elevation at a given location x0, is

SZðoÞ ¼
b1g

2

o5
e�b1ðb2Vw=wÞ4 ;

where x0 is the direction of the wave propagation lying on the sea surface, o is the frequency, Vw is
the wind speed over the sea, b1 and b2, are suitable constants and g is the gravity acceleration [38].
Following the Airy solution and assuming deep water conditions, the water particle trajectories
become very nearly circles with radii that decrease exponentially with depth; the displacement of
the water is a random process that can be described by a Rice decomposition (see Section 2)
through the superposition of a finite number n of harmonic waves with vertical amplitude Ai at the
surface and phase ji,

xðx0; z; tÞ ¼
Pn
i¼1

Ai sinðkx0 � oit þ jiÞe
�kiz;

Zðx0; z; tÞ ¼
Pn
i¼1

Ai cosðkix
0 � oit þ jiÞe

�kiz;

(13)

where x and Z are the displacement components along x and y axis, respectively (see Fig. 2), oi is
the frequency sampled in a significant bandwidth, ki ¼ 2p=li the wave number and li is the
wavelength; the wave amplitudes are given by Ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SZðoiÞDo

p
; where Do is the (constant)

frequency sampling interval chosen for the assumed spectral discretization. It is worth to point out
that, in order to satisfy the model hypothesis, the lowest wavelength lmin; corresponding to the
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maximum wavenumber kmax; must be greater than the depth h, i.e., lmin4h: This implies that the
maximum considered frequency on in Eq. (13) must be less than omax corresponding (through the
dispersion relationship) to kmax:
By substituting x0 ¼ �V0t (changing to the moving hydrofoil reference frame), the

dimensionless horizontal ~VðtÞ and vertical ~W ðtÞ velocity perturbations, at z=h, are

~VðtÞ ¼
Pn
i¼1

oiAi cos½ð�kiV0 � oiÞt þ ji�e
�kih;

~W ðtÞ ¼ �
Pn
i¼1

oiAi sin½ð�kiV0 � oiÞt þ ji�e
�kih:

In the following, only head-on perturbations along the x axis are considered, directly affecting
the matrix of coefficients A(U) in Eq. (10). The reader is referred to Ref. [38] for the case of
transverse velocity perturbation, where forcing in the presence of external loads dependent on the
motion does not change the system coefficients of Eq.(10).
The first Cartesian component of the perturbation velocity shown in the previous equation,

~V ðtÞ; represents an example of a random process when the phases ji are randomly
generated following a probability density function uniformly distributed in the range 0; 2p½ �:
Under this condition, Eq. (9) provides a canonical decomposition of the horizontal velocity (see
Section 2.1), i.e.,

~V ðtÞ ¼
Xn

i¼1

oiAi cosð�kiV0 þ jiÞ cosðoitÞ � oiAi sinð�kiV0 þ jiÞ sinðoitÞ

" #
ekih;

where the random coefficients, oiAi sinð�kiV0 þ jiÞ; oiAi cosð�kiV0 þ jiÞ; are statistically
independent with zero mean. Moreover it can be shown that the decomposition implies ~V ðtÞ is
stationary [13].

3.4. SPM solution for linear hydroelastic equations

The first Cartesian component of the perturbation velocity ~V ðtÞ takes also the complex form:

~V ðtÞ ¼ Re
Xn

i¼1

giPiðtÞ

( )
; (14)

where gi ¼ oiAie
�kihe�jji are random Fourier coefficients, while PiðtÞ ¼ ejðkiV0þoiÞt: Eq. (14)

represents a Rice canonical decomposition of the head-on inflow random perturbation, since
E gi

� �
¼ 0;Efgig

n
j g ¼ dijs2gi

(see Eq. (6)). Moreover, Eq. (14) provides ~V ðtÞ statistically stationary.
The presence of ~V ðtÞ; as an argument of A, makes the hydroelastic operator stochastic.
Let us introduce for the sake of simplicity the random coefficients Gi ¼ Re gi

� �
;Giþn ¼ Im gi

� �
;

having zero mean and correlation matrix E GiGj

� �
¼ dijs2Gi

: The SPM outlined in Section 2 applies
now to Eq. (10), yielding:

AðtÞ ¼ A0 þ
X2n

i¼1

GiA1;i þ
X2n

i;j¼1

GiGjA2;ij ; (15)
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yðtÞ ¼ y0 þ
X2n

i¼1

Giy1;i þ
X2n

i;j¼1

GiGjy2;ij; (16)

where a Taylor expansion up to the second order in terms of the Gi’s is used. Note that y1;i; y2;ij are
unknowns, while A1;i;A2;ij are known matrices of derivatives of A with respect to the Gi’s. By
substituting Eqs. (15) and (16) into Eq. (10), and equating those terms with the same power of Gi,
the following cascade of deterministic differential equations is obtained:

_y0 ¼ A0y0;

_y1;i ¼ A0y1;i þ A1;iy0;

_y2;ij ¼ A0y2;ij þ A1;iy1;j þ A2;ijy0;

::::

(17)

for i, j=1,y,2n. Once this set of equations is solved, the statistical moments of the solution y(t)
are obtained, as shown in Section 2, as

E y
� �

¼ y0 þ
P2n

i¼1

s2Gi
y2;ii; E yyT

� �
¼ y0y

T
0 þ

P2n

i¼1

s2Gi
ðy0y

T
2;ii þ y1;y

T
1;i þ y2;iiy

T
0 Þ: (18)

It is important to remark that the obtained results allow the prediction of the statistical
behavior of the hydroelastic response of the hydrofoil by solving the linear system of deterministic
differential equations (18). The obtained statistical quantities depend, in general, on time. This
means that, although the inflow velocity perturbation described by Eq. (14) is a stationary random
process, in general the hydroelastic response is not, as shown by Eqs. (18) where both the expected
value and the correlation matrix are time dependent.
3.5. A comparison between SPM and MCS solutions

The illustrated approach presents, at least in some cases discussed later in this section, a
relevant advantage with respect to a direct Monte Carlo simulation that may require a
considerable computational effort. In fact in this case, to obtain significant statistics, Eq. (10)
must be solved considering a very large set of different samples of the stochastic process given by
Eq. (14). Nevertheless, as shown later on, the results obtained by SPM are in satisfactory
agreement with those obtained by the Monte Carlo approach, at least in the limit of small
stochastic perturbations affecting the mean flow velocity, otherwise expansions (15) and (16)
become inaccurate.
Note that Eq. (17) exhibits, in general, a set of 2n2+3n+1 vector equations (considering the

symmetry of the third set of equations (17)), where n is the number of frequency samples used in
Eq. (13). However, Eq. (18) shows that, when the random perturbation affecting the hydroelastic
operator can be reduced to a canonical form, i.e., E GiGj

� �
¼ dijs2Gi

; as in the present case, the
estimate of both the mean and the correlation matrix of the solution y does not need the
contribution of y2;ijfor any pair of index i, j: it is sufficient to solve the third set of Eq. (17) only for
y2;ii: This represents a great simplification of the problem, since the statistics given by Eqs. (18),
can be obtained by solving 4n+1 vector differential equations only.
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On the other hand when using a MCS, the number N of simulations performed in Eq. (10)
depends on the accuracy required in the estimate (at each time) of the mean and the variance of
the studied process.
In the following a comparison between the exact solution and those obtained by MCS and SPM

will be performed on a special form of the prototype Eq. (7):

_yðtÞ þ ayðtÞ ¼ a; yð0Þ ¼ 0; (19)

where the parameter a is a random coefficient and p(a) is the associated pdf. The exact statistical
solution is determined to provide a benchmark for an effective comparison between SPM and
MCS. The solution of the considered equation is yðtÞ ¼ 1� e�at; therefore, the mth order
statistical moment of y is provided by

E ym
� �

¼

Z þ1

�1

ð1� e�atÞ
mpðaÞ da (20)

that, at least for some pdf, returns a closed-form expression of the moment. The pdf distribution
here considered is

pðaÞ ¼
g
2sa

1� cos
p a � a0 þ sa=g
� �

sa=g

� �

along the interval a � a0j jpsa=g; where a0 ¼ Efag; sa ¼ E ða � a0Þ
2

� �
and g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 � 6Þ=ð3p2Þ

p
:

In this case one obtains, by using Eq. (20),

E e�mat
� �

¼ p2e�mððsa=gÞþa0Þt e2mðsa=gÞt � 1
� �,

2m p2
sa

g
t þ m2 sa

g
t

! "3" #
:

With these expressions, the statistics of the exact solution up to the second order is provided in
the form:

E y
� �

¼ ȳ ¼ 1� E e�at
� �

; (21)

E y � ȳð Þ
2

� �
¼ s2y ¼ 2ȳ � ȳ2 � 1þ E e�2at

� �
: (22)

Next, the statistic solution by SPM of the same Eq. (19) will be obtained. Assume that the
random coefficient a has the form (see Eq. (2)):

a ¼ a0ð1þ �Þ; (23)

where a0 is deterministic (the mean value of a) and e is a small random parameter with zero
mean and s� ¼ sa=a0: The approximated solution—in perturbation sense—of Eq. (19) can be
expressed as

yðtÞ ¼
Xn

k¼0

�kykðtÞ: (24)
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By introducing Eqs. (23) and (24) into Eq. (19) and ordering with respect to the power of e,
one has

y0 þ a0y ¼ a0;

_y1 þ a0y1 ¼ a0ð1� y0Þ;

_yj þ a0yj ¼ �a0yj�1; j ¼ 2; n:

The solutions of the previous set of equations are given in closed form as

y0ðtÞ ¼ 1� e�a0t; yjðtÞ ¼ e�a0tð�1Þj�1ða0tÞ
j=j! j ¼ 1; 2; . . . ; n: (25)

By using Eqs. (24) and (25) one has

yðtÞ ¼ 1� e�a0t 1�
Xn

k¼1

ð�1Þk�1
ða0tÞ

k

k!
�k

" #
;

i.e.

E ym
� �

¼ E 1� e�a0t 1�
Xn

k¼1

ð�1Þk�1
ða0tÞ

k

k!
�k

 !" #m( )
:

For n=2 and neglecting terms of order higher than e2, one obtains

E ySPM
� �

¼ ȳSPM ¼ y0 þ s2�y2;

E ySPM � ȳSPM
� �2n o

¼ s2ySPM ¼ s2�y
2
1: ð26Þ

On the basis of Eqs. (21), (22), (25), and (26), Figs. 3 and 4 show the comparison between the
exact solution and the SPM solution in terms of mean value and standard deviation, respectively
for a0 ¼ 1; and s� ¼ 0:15: note that a good agreement is found. In Fig. 5 the error both for the
mean value and the standard deviation is shown.
These results are preliminary for the comparison between SPM and MCS. When performing a

MCS, at any time t the statistics of yðtÞ ¼ 1� e�at can be studied. Consider initially the mean
value of the solution. An estimate of the mean is given by the arithmetic average ~yðtÞ of the
samples of yðtÞ ¼ 1� e�at at each time t:

~yðtÞ ¼
XN

i¼1

1� e�ait

N
;

where the ai‘s are stochastic samples of a and ~yðtÞ is a random variable that provides an estimate
of Efyg: The analysis of the errors implied in this estimate is the key to compare the MCS results
with those given by SPM. Since ~yðtÞ is the sum of N terms having identical distribution, forN large
enough (20–30 samples) the central limit theorem can be applied and ~yðtÞ can be approximately
considered as a random variable having normal distribution [3,13]. Let b the probability
that ~y � E y

� �'' ''oI �; i.e., that the exact mean is included in the interval of centre ~yðtÞ and range Ie.
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Fig. 4. Comparison between the exact solution and the SPM solution in terms of standard deviation (a0 ¼ 1; and
s� ¼ 0:15).

Fig. 3. Comparison between the exact solution and the SPM solution in terms of mean value (a0 ¼ 1; and s� ¼ 0:15).
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Since ~yðtÞ has a normal distribution, one has

b ¼ 2

Z �

0

1ffiffiffiffiffiffiffiffiffiffi
2ps2~y

q e�
1
2ð ~y=s ~yÞ

2

d~y ¼ Erf
I �ffiffiffi
2

p
s ~y

 !
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Fig. 5. Comparison between the exact solution and the SPM solution in terms of the error both for the mean value and

the standard deviation.
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being s ~y the estimate of the variance of y:

s ~yðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1

ð1� e�ait � ~yÞ2

N � 1

vuuut
Thus, the bandwidth Ie of the interval is

I � ¼
ffiffiffi
2

p
Erf�1 bð Þ; s ~yðtÞ ¼ Abs ~yðtÞ:

Once a probability b is assumed, Ab is determined through the inverse of the Erf function: e.g.,
b=0.90, implies Abffi 1.5 (see [13]). Since s ~yðtÞ � syðtÞ=

ffiffiffiffiffi
N

p
the confidence interval amplitude

Ib ¼ 2I � is given by

Ib ffi
3syffiffiffiffiffi

N
p :

This expression provides the error range (with a probability b) associated to the estimate ~yðtÞ of
the mean value Efyg at a given time t.
The same line can be used to provide the confidence interval of the standard deviation s ~y: In

this case it can be shown that the confidence interval has amplitude, [13]:

Ib ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4ðtÞ

N
�

ðN � 3Þs2yðtÞ

NðN � 1Þ
;

s

where m4ðtÞ is the fourth-order moment of y.
On the basis of the previous results, a comparison between the statistical moments of the

solution provided by the SPM and the MCS will be performed. The error introduced in the
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estimate of the mean by the SPM approximation can be defined by

2
ð1Þ
SPMðtÞ ¼ ȳðtÞ � ȳSPMðtÞ

'' '';
whilst that introduced by the MCS yields

2
ð1Þ
MCSðtÞ ¼

3syðtÞffiffiffiffiffi
N

p :

Moreover, an analogous error associated with the standard deviation estimate can be
introduced as in the following:

2
ð2Þ
SPMðtÞ ¼ syðtÞ � sySPMðtÞ

'' '';
whereas for the MCS, one has

2
ð2Þ
MCSðtÞ ¼ 2Ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4ðtÞ

N
�

ðN � 3Þs2yðtÞ

NðN � 1Þ

s
	 2Ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4ðtÞ � s2yðtÞ

N

s
;

the last expression being valid if N is large enough. The previous estimates of the errors
allow a direct comparison between the SPM and MCS accuracy in terms of the number N
of runs to be employed by the MCS. One can provide the order of magnitude of the number
of runs needed by the MCS to obtain an accuracy of the statistical estimate comparable
with that provided by the SPM simulation by equating the expressions previously found for
the errors:

2
ð1Þ
SPMðtÞ ¼ 2

ð1Þ
MCSðtÞ ) N ¼

2AbsyðtÞ

jȳðtÞ � ȳSPMðtÞj

� �2
; (27)

2
ð2Þ
SPMðtÞ ¼ 2

ð2Þ
MCSðtÞ ) N ¼

2Ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4ðtÞ � s2yðtÞ

q
jsyðtÞ � sySPMðtÞj

2
4

3
5
2

:

Eq. (27) provides a simple way for a quantitative comparison between the computational
time required by the SPM and MCS in order to obtain the same statistical accuracy for the
respective solutions. If N provided by Eq. (27) is evaluated at a given time t0 and for a given a0, it
appears, considering Eqs. (21) and (22), that the required N is a function of s0 only. The SPM
solution needs a computational time TSPM proportional to n (number of harmonics in the Rice
expansion, for the canonical case), while MCS needs a computational time TMCS proportional to
N: thus, the ratio TMCS=TSPM is proportional to N/n. Fig. 6 shows the function NðsaÞ

for t0 ¼ 1; a0 ¼ 1; that given n, provides a quantity proportional to TMCS=TSPM as a function
of s0: This curve illustrates clearly the computational advantage presented by SPM with respect
to MCS.
Summarizing the previous results, it is concluded that conditions favoring use of the SPM in

preference to MCS, are:
�
 the random perturbation affecting the system’s response can be represented by a canonical
decomposition: if it is not, the computational cost scales as n2 instead of n; this implies that a
stationary stochastic inflow perturbation allows a great simplification;



ARTICLE IN PRESS

Fig. 6. Function NðsaÞ for t0 ¼ 1; a0 ¼ 1:

A. Carcaterra et al. / Journal of Sound and Vibration 283 (2005) 401–432420
�
 the random perturbation is small with respect to the deterministic part of the process: this
permits a great advantage of SPM with respect to MCS in terms of computational time as
shown by Fig. 6;
�
 the number of harmonics n of the discrete power spectrum of the random disturbance is not too
high; clearly spectra having energy concentrated in a dominant peak, as in the case of the
Pierson–Moskowitz spectrum, allows a reduction of n, with respect to the case of rather flat
spectra.

Under these conditions, the SPM solution permits in general a considerable saving of
computational time with respect to a direct MCS, having a comparable accuracy in the estimate of
the mean and the standard deviation.
4. Numerical results

In this section, some results related to the free response problem obtained by the stochastic
perturbation method are presented and compared with those determined via Monte Carlo
simulations.
The first application refers to a two degrees of freedom typical section in Section 3.1. Eqs. (9) of

the typical section are here characterized by the following dimensionless hydrofoil parameters:

xa ¼ 0:3; m ¼ 0:172; ra ¼ 0:651; ah ¼ �0:3; O ¼ 0:26:

It is worthwhile to note that the mass ratio coefficient m ¼ 0:172 has a very small value with
respect to those commonly found in aeroelasticity but is typical of cases of hydroelastic interest.
More precisely, the considered set of parameters represents a reasonable approximation of a
hydroelastic model for the submerged control surface of a high-speed marine vehicle. The other
parameters are rather close to the typical values usually met for wing structures.
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The transient system response to the initial condition yTð0Þ ¼ 0; 0; 0; 0; 0:01; 0ð Þ is investigated
corresponding to a given initial angular pulse.
The previous theoretical analysis shows how the statistics of the state space vector can be

determined. The heave and pitch motion statistics, in terms of mean value and standard deviation,
are predicted by SPM. Since the method implies a perturbation technique (see discussion in
Section 3.3), reliable results are expected only when reasonably small stochastic perturbations of
the flow speed are considered. The order of magnitude of the stochastic fluctuations with respect
to the mean flow velocity is kept by the dimensionless parameter s ~U=U0; where U0 ¼ 0:1 UD and
UD ¼ 0:426 is the limit, non-dimensional divergence speed. Thus, when increasing s ~U=U0; more
severe test conditions for SPM are approached so that the sensitivity of the method with respect to
s ~U=U0 is investigated.
The Pierson–Moskowitz spectrum is specified for a wind velocity of 15m/s, with a peak

frequency about 1 rad/s, and a corresponding dominant wavelength lE60m; the hydrofoil chord
is 0.43m, and the assumed depth of the wing h=2.24m. These choices respect the condition
l4h4k2b; discussed in Section 3, and utilize realistic values obtained by the finite-element model
shown later in this section. The number of frequency samples is n=100 lying in the frequency
range 0ooo7 rad=s:
Finally, note that the time-step to be used in the numerical integration of Eq. (17) by the fourth-

order Runge–Kutta method—or solving Eq. (10) by MCS with the same time-stepping
algorithm—is generally a fraction of the smallest period Tn ¼ 2p=nDo associated with the
highest considered frequency nDo in the Pierson–Moskowitz spectrum. Since the phenomenon
must be simulated during a time interval including the largest period in the spectrum T1 ¼ 2p=Do;
it follows that each simulation needs a number of integration time steps simply proportional to
T1=Tn ¼ n:
The first set of simulation is performed for s ~U=U0 ¼ 0:149: In Figs. 7 and 8, the time histories

of the mean values of the pitch and heave are given, respectively. In each plot two curves are
represented. The first is obtained by MCS whilst the second one is obtained by SPM. The SPM
curve completely merges that obtained by the MCS in all over the considered time window. The
MCS are performed on a set of samples large enough to obtain a statistic convergence of the
results.
In Figs. 9 and 10 corresponding results are referred to the standard deviation. Again a good

agreement between MCS and SPM results is observed, although a different level of accuracy with
respect to the mean value prediction is apparent.
A second set of simulations is performed for s ~U=U0 ¼ 0:265: In Figs. 11 and 12, again the time

histories of both the mean value of the pitch and plunge are given, respectively. The mean values
(Fig. 11) are in good agreement, although a more evident difference between MCS and SPM with
respect to the case shown in Fig. 3 appears, as expected. In Figs. 13 and 14, the standard
deviations of both plunge (Fig. 13) and pitch (Fig. 14) response are represented showing a larger
difference with respect to the case of Figs. 9 and 10.
In the following, the SPM procedure is applied to the actual modeling of a new concept vessel

SEABUS-HYDAER. This is a Surface-Piercing, Hydrofoil-Controlled, Wing-In-Ground Effect
(SP-HC-WIG) vehicle designed to transport payload at cruising speeds beyond the limit of
conventional high-speed ships. In order to keep the desired sea-wing clearance and improve the
craft stability, the SEABUS-HYDAER is equipped with three submerged control surfaces
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Fig. 8. Time-history of the mean value of pitch: comparison between SPM and MCS (s ~U=U0 ¼ 0:149).

Fig. 7. Time-history of the mean value of plunge: comparison between SPM and MCS (s ~U=U0 ¼ 0:149).
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(hydrofoils), connected to the wing-fuselage by vertical, water-piercing struts. Thus, a faster time
response to control inputs is obtained by the use of hydrofoils instead of airfoils due to the higher
density of water.
The three-dimensional wing of the SEABUS analyzed here has a geometry characterized by a

wing root equal to 0.60m, a chord tip equal to 0.26m, and an half-span length equal to 1.65m.
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Fig. 10. Time-history of standard deviation of pitch: comparison between SPM and MCS (s ~U=U0 ¼ 0:149).

Fig. 9. Time-history of standard deviation of plunge: comparison between SPM and MCS (s ~U=U0 ¼ 0:149).
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The wing operates at a depth 2.24m, a condition that respects the hypotheses l4h4k2b; when
the sea spectrum is the same considered in the previous results.
The structural analysis of the SEABUS wing has been performed by using the finite element

MSC NASTRAN commercial code: two spars located at 20% and 80% of the chord length,
respectively, have been considered; the structure is composed of isotropic material, an aluminum
alloy (7975 type) with Young’s modulus equal to 72GPa, a Poisson ratio of 0.3 and a material
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Fig. 11. Time-history of the mean value of plunge: comparison between SPM and MCS (s ~U=U0 ¼ 0:265).

Table 1

Control surface characteristic thickness

Front spar 10mm

Rear spar 8.0mm

Front skin 7.0mm

Middle skin 5.0mm

Rear skin 3.0mm

Table 2

Numerical natural frequency of the SEABUS control surface

Mode number Frequency (Hz)

1 26.47

2 109.17

3 168.27

4 190.94

5 217.67
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density of 2800 kg/m3. The thickness of several portions of the skin and the spars are presented in
Table 1.
The finite element analysis is performed by using 20 shell elements in the half-span direction, 25

shell elements in chord-wise direction, and 4 shell elements are used for the spares in the direction
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Fig. 13. Time-history of standard deviation of plunge: comparison between SPM and MCS (s ~U=U0 ¼ 0:265).

Fig. 12. Time-history of the mean value of pitch: comparison between SPM and MCS (s ~U=U0 ¼ 0:265).
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perpendicular to the wing plane (1160 elements and 1176 nodes). The wing has been cantilevered
and the first five natural frequencies are depicted in Table 2.
Figs. 14–19 show the corresponding dry mode shapes. They reveal a typical mixed bending-

torsion nature. The flutter instability, when a water density r ¼ 1000 kg=m3 is assumed, occurs
for UF ¼ 70:4 m=s with a critical flutter frequency f F ¼ 24:84 Hz (i.e., apparently the critical
flutter mode consists mainly of the first mode of free vibration).
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Fig. 15. First mode shape of the Seabus control surface.

Fig. 14. Time-history of standard deviation of pitch: comparison between SPM and MCS (s ~U=U0 ¼ 0:265).
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Next, SPM vs MCS simulations are provided for the five-mode hydroelastic model of the
SEABUS wing. For this case, a Runge–Kutta method was employed too to integrate the related
equations. On the basis of the approach given in Section 3, the vertical displacement at
the trailing edge tip of the wing is considered. Initial conditions are qð0Þ ¼ 0 and _qð0Þ ¼
15 2:510�1;�2:710�3; 2:310�3; 0:0; 1:310�3
� �T

and the Pierson-Moskowitz spectrum corresponds
to a wind velocity VW ¼ 10 m=s: Figs. 20 and 21 depict, respectively, the mean value and the
standard deviation of the vertical displacement of the trailing edge tip point obtained by the SPM
approach. The comparison with the results obtained with the MCS is presented in Fig. 22 which
shows a 3s analysis based on the prevision of the previous SPM analysis: indeed, the bounding
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Fig. 16. Second mode shape of the Seabus control surface.

Fig. 17. Third mode shape of the Seabus control surface.
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curves are obtained adding to the mean value curve (see Fig. 20) the �3sðtÞ curves (see Fig. 21).
Note that the curves obtained with the MCS all lie in this range, as theoretically expected.
5. Conclusions

This paper proposes the use of a stochastic perturbation approach, in conjunction with a Rice
expansion of the random inflow perturbation, to study fluid–structure interaction problems. Two
different models have been studied: the first refers to a typical hydrofoil section, the second to an
actual control surface modeled by using a FEM for the structure coupled with an unsteady lifting
surface panel method for the hydrodynamics. In the analysis of both models it has been shown
how the presence of random head-on inflow perturbations makes the hydroelastic operator
stochastic. The analysis cannot be achieved in the frame of the classical theory of random
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Fig. 18. Fourth mode shape of the Seabus control surface.

Fig. 19. Fifth mode shape of the Seabus control surface.
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vibrations because of the kind of randomness involved: it affects the coefficients of the
fluid–structure operator, leading the problem into the field of differential equations with
stochastic coefficients. Although a direct solution of the problem by a Monte Carlo approach is
always possible, it can lead to high computational costs in order to achieve statistically significant
results. An interesting alternative lies in the use of the SPM proposed here. At least under some
conditions, which seem to be met in a wide class of fluid-structural problems of practical interest,
the computational advantage of this method is apparent, and the results are directly obtained in
terms of the desired statistical quantities. Moreover, the SPM can be used without placing
particular restriction on the nature of the problem. In fact, as it has been shown, it applies for the
analysis of statistically nonstationary response. Moreover, although this is not the case considered
here, fluid–structure interaction problems characterized by a nonlinear formulation could be
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Fig. 20. Time-history of the mean value for the vertical displacement at the trailing edge tip point.

Fig. 21. Time-history of the standard deviation for the vertical displacement at the trailing edge tip point.
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analyzed as well. Nevertheless, one of the main requirements needed to a successful approach of
SPM is the possibility of a canonical decomposition of the input random process. However, in the
context of engineering problems, this requirement does not appear to place serious restrictions on
the use of the proposed technique.
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Fig. 22. 3s analysis of the vertical displacement at the trailing edge tip point and comparison with MCS.
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Therefore it seems that SPM deserves to be developed and applied to a wider class of
fluid–structure interaction problems. It offers a promising alternative when Monte Carlo methods
encounter computational difficulties.
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Appendix A

In this appendix it is shown how the stochastic response of a system can have a decaying
amplitude even in the presence of a steady-state wave forcing, appearing in the equation as a
random time-dependent stiffness coefficient. Consider the homogeneous equation J €yþ C _yþ
K 0y ¼ 0; where K 0ðtÞ ¼ K � qðU ; uxðtÞÞ is a random process, it belongs to the class of Ito’s
type equations. The properties of its solution can be determined by the equation of moments
[4 , pp. 228–231]. If K 0 ¼ K � qðU ; uxÞ; sum of the constant deterministic stiffness and a random
time-dependent Gaussian stiffness, then the statistical moments

mjkðtÞ ¼ E X
j
1ðtÞX

k
1ðtÞ

n o
; y ¼ X 1; _y ¼ X 2
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of the solution obey the equations

_m10

_m01

- .
¼

0 1

�K=J �C=J

� �
m10

m01

- .
for the first-order moments;

_m20

_m11

_m02

8><
>:

9>=
>; ¼

0 2 0

�K=J �C=J 1

2D11=J �2K=J �2C=J

2
64

3
75

m20

m11

m02

8><
>:

9>=
>; for the second-order moments;

where D11 is the standard deviation of q. The first-order moments are characterized by a decaying
time trend: they tend to zero when t tends to infinity. In fact, the eigenvalues of the first-order
moment matrix exhibit always negative real parts. The analysis of the second-order moments
shows the same property as it can be easily numerically verified. This implies that the equation of
motion of this simplified wing section with random Gaussian stiffness, has a long-term response
whose moments (up to the second order) go to zero as time increases, implying clearly that the
response of the wing section is damped even in presence of a steady-state wave forcing, appearing
in the equation as a random time-dependent stiffness coefficient.
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