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Abstract

In this note, mistuned periodic structures are considered. Due to mistunings, some components of such
structures may vibrate with small amplitudes, while some other components may vibrate with significantly
large amplitudes. Such a behavior is known as vibration localization and is undesirable. In an earlier note,
it was shown by the author that an effective passive technique to eliminate vibration localization in
mistuned periodic structures is to add small components between the structure components. In this note, it
is rigorously proved that the added components indeed eliminate vibration localization. The proof is
established by using a dichotomy in the dynamics of the structure to which small components are added,
and by applying the singular perturbation method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Consider a periodic structure with n-coupled components, as that in Fig. 1. Let the normalized
lengths of the structure components be the positive real numbers a1; a2; . . . ; an; let the
normalized damping coefficient in the components be the positive real number g; and let the
normalized coupling parameter of the components be the positive real number b: The dynamics of
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Fig. 1. A typical periodic structure having n components. Displacement of a component for an i ¼ 1; 2; . . . ; n is denoted

by xi:
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this structure can be represented by (see, e.g., Refs. [1,2])

M €yðtÞ þ gM _yðtÞ þ KyðtÞ ¼ bf f ðtÞ (1)

for all tX0: In Eq. (1), the vector of angular displacements

yðtÞ ¼ ½y1ðtÞ y2ðtÞ � � � ynðtÞ�
T 2 Rn (2)

for all tX0; the vectors of initial displacements and initial velocities are, respectively, yð0Þ ¼ 0n

and _yð0Þ ¼ 0n; where 0n denotes the zero vector in Rn; the input (influence) vector

bf ¼ ½a1 a2 � � � an�
T 2 Rn, (3)

through which the scalar-valued input t 7!f ðtÞ is applied to the structure; and the coefficient
matrices are

M ¼ diag ½a3
1; a

3
2; . . . ; a

3
n� 2 Rn�n, (4)
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K ¼

1 þ 2b �b 0 0 � � � 0 0 �b

�b 1 þ 2b �b 0 � � � 0 0 0

0 �b 1 þ 2b �b � � � 0 0 0

..

. ..
. ..

. ..
.

� � � ..
. ..

. ..
.

0 0 0 0 ..
.

�b 1 þ 2b �b

�b 0 0 0 � � � 0 �b 1 þ 2b

2
66666666664

3
77777777775
2 Rn�n. (5)

In a periodic structure, the lengths a1; a2; . . . ; an should be equal to a desired value ad :
In reality, however, these lengths are different from each other and ad ; even only slightly.
In this case, the structure is said to be mistuned and the differences between a1; a2; . . . ; an and ad

are called mistunings. Mistunings are typically due to slight differences in the geometry
and material properties of the structure components which are mainly introduced during
manufacturing.

It is well known that small mistunings can cause significant differences in the dynamics of
structure components, as reported in Refs. [1–6] and references therein. For instance, consider a
mistuned structure under a harmonic input. In such a structure, at resonance frequencies, some
components may vibrate with small amplitudes, while some other components may vibrate with
significantly large amplitudes. This behavior is known as vibration localization.

It is desirable to eliminate vibration localization in mistuned periodic structures. In Ref. [2], an
effective passive technique to eliminate vibration localization is presented. The elimination is
achieved by adding small components between the structure components. Using a sensitivity
matrix, it is shown in Ref. [2] that the added components successfully eliminate vibration
localization.

In this note, without using the sensitivity matrix, it is rigorously proved that the added
components to a mistuned periodic structure indeed eliminate vibration localization.
2. Elimination of vibration localization

In Ref. [2], a technique to eliminate vibration localization in mistuned periodic structures is
presented. This technique is as follows. In a periodic structure, let there be n components
numbered by 1; 2; . . . ; n; see Fig. 2. (Note that the numbering of components in the following is
different from that in Ref. [2].) These components are called principal components. The normalized
lengths of principal components are a1; a2; . . . ; an; and are desired to be equal to ad :

Let the structure be augmented by adding n small components between principal components as
shown in Fig. 2. The added components are numbered by n þ 1; n þ 2; . . . ; 2n and are called
auxiliary components. The normalized lengths of auxiliary components are anþ1; anþ2; . . . ; a2n; and
are desired to be equal to as5ad : This condition turns out to be crucially important in eliminating
vibration localization in the structure.

A mathematical model representing the dynamics of the augmented structure is

~M
€~yðtÞ þ g ~M

_~yðtÞ þ ~K ~yðtÞ ¼ ~bf f ðtÞ (6)
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Fig. 2. A periodic structure is augmented by adding n small components between the structure components. The added

components eliminate vibration localization.
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for all tX0: In Eq. (6), the vector of angular displacements

~yðtÞ ¼
yðtÞ

yaðtÞ

" #
2 R2n (7)

for all tX0; where yðtÞ is that in Eq. (2) and

yaðtÞ ¼ ½ynþ1ðtÞ ynþ2ðtÞ � � � y2nðtÞ�
T 2 Rn (8)

is the vector of angular displacements of auxiliary components; the vectors of initial displacements
and initial velocities are, respectively, ~yð0Þ ¼ 02n and

_~yð0Þ ¼ 02n; the input (influence) vector

~bf ¼
bf

bf a

" #
2 R2n, (9)

where bf is that in Eq. (3) and

bf a
¼ ½anþ1 anþ2 � � � a2n�

T 2 Rn (10)
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is the input vector through which the input is applied to auxiliary components; the coefficient
matrices are

~M ¼
M 0

0 Ma

" #
2 R2n�2n, (11)

where M is that in Eq. (4) and

Ma ¼ diag ½a3
nþ1; a

3
nþ2; . . . ; a

3
2n� 2 Rn�n, (12)

and

~K ¼
K11 K12

KT
12 K11

" #
2 R2n�2n, (13)

where

K11 ¼ ð1 þ 2bÞIn 2 Rn�n, (14a)

K12 ¼

�b 0 0 0 � � � 0 0 0 �b

�b �b 0 0 � � � 0 0 0 0

0 �b �b 0 � � � 0 0 0 0

..

. ..
. ..

. ..
.

� � � ..
. ..

. ..
. ..

.

0 0 0 0 ..
.

0 �b �b 0

0 0 0 0 � � � 0 0 �b �b

2
66666666664

3
77777777775
2 Rn�n, (14b)

and In denotes the n � n identity matrix.
In studying vibration localization in mistuned periodic structures, in general, transfer functions

from the applied input to structure displacements play an important role. For system (6), let hiðsÞ
denote the transfer function from the input f ð�Þ to the normalized displacement xið�Þ ¼ aiyið�Þ for
an i ¼ 1; 2; . . . ; 2n: From Eq. (6), it follows that

h1ðsÞ

h2ðsÞ

..

.

h2nðsÞ

2
666664

3
777775 ¼ diag ½a1; a2; . . . ; a2n�ð ~Ms2 þ g ~Ms þ ~KÞ

�1 ~bf . (15)

To each transfer function hiðsÞ in Eq. (15), there corresponds an H1-norm defined by

khik1 :¼ max
o2R

jhiðjoÞj, (16)

where j ¼
ffiffiffiffiffiffiffi
�1

p
: The norm khik1 corresponds to the global maximum of the Bode magnitude plot

of the transfer function hiðsÞ:
The occurrence of vibration localization in principal components due to mistunings in both

principal and auxiliary components is easily determined when kh1k1; kh2k1; . . . ; khnk1 are
known. If these norms do not differ much from each other, then vibration localization does not
occur. Note that vibration localization in principal components is of primary interest. If vibration
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localization in auxiliary components is to be studied, then H1-norms of transfer functions
corresponding to those components should be computed. As it will be shown in the next section,
auxiliary components eliminate vibration localization in both principal and auxiliary components.
3. Mathematical justification

In this section, it is rigorously proved that auxiliary components indeed eliminate vibration
localization in mistuned periodic structures. In other words, it will be shown that adding (small)
auxiliary components to a mistuned structure results in an augmented structure in which H1-
norms of transfer functions corresponding to principle components are almost equal, so are those
corresponding to auxiliary components.

System (6) can be written as

M 0

0 Ma

" #
€yðtÞ
€yaðtÞ

" #
þ g

M 0

0 Ma

" #
_yðtÞ
_yaðtÞ

" #
þ

K11 K12

KT
12 K11

" #
yðtÞ

yaðtÞ

" #
¼

M1=31n

M1=3
a 1n

" #
f ðtÞ (17)

for all tX0; where yð0Þ ¼ yað0Þ ¼ 0n and _yð0Þ ¼ _yað0Þ ¼ 0n; and

1n :¼ ½1 1 � � � 1�T 2 Rn. (18)

Vibration localization in system (17) is studied in the following. The conclusion to be reached is
that if 0oas5ad ; then vibration localization in system (17) does not occur.

It is clear that the lengths of auxiliary components satisfy the following relation:

anþi ¼ �ānþi (19)

for all i ¼ 1; 2; . . . ; n; where

� :¼
as

ad

, (20a)

ānþi ¼
adanþi

as

. (20b)

From Eq. (19), it follows that the matrix Ma in Eq. (12) satisfies

Ma ¼ �3M̄a, (21)

where

M̄a ¼ diag ½ā3
nþ1; ā

3
nþ2; . . . ; ā

3
2n�. (22)

Using Eq. (22), system (17) can be written as

M €yðtÞ þ gM _yðtÞ þ K11yðtÞ þ K12yaðtÞ ¼ M1=31nf ðtÞ, (23a)

�3M̄a
€yaðtÞ þ �3gM̄a

_yaðtÞ þ KT
12yðtÞ þ K11yaðtÞ ¼ �M̄

1=3
a 1nf ðtÞ (23b)

for all tX0; where yð0Þ ¼ yað0Þ ¼ 0n and _yð0Þ ¼ _yað0Þ ¼ 0n:
It is noted that 0o�51 since as5ad : Small � implies that there is a dichotomy in the dynamics

of system (23): the vector yð�Þ evolves slowly in time, whereas the vector yað�Þ evolves fast. Due to
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this dichotomy, system (23) can be studied by the singular perturbation method; see, e.g., Refs.
[7–10] and references therein. According to this method, for sufficiently small �; the dynamics of
system (23) can be approximated by those of two subsystems. These subsystems are the slow and
fast subsystems and are presented in the following.
3.1. Slow subsystem

The slow subsystem is an n-dimensional system obtained as follows. In Eq. (23b), first set � ¼ 0;
and then solve for yað�Þ in terms of yð�Þ: The result is

yaðtÞ ¼ �K�1
11 KT

12yðtÞ (24)

for all tX0: Substituting yað�Þ into Eq. (23a), the representation of the slow subsystem is obtained
as

M €yðtÞ þ gM _yðtÞ þ ðK11 � K12K�1
11 KT

12ÞyðtÞ ¼ M1=31nf ðtÞ (25)

for all tX0; where yð0Þ ¼ 0n and _yð0Þ ¼ 0n: Using matrices K11 and K12 given by Eq. (14), it
follows that

K12K�1
11 KT

12 ¼
b2

1 þ 2b

2 1 0 0 � � � 0 0 0 1

1 2 1 0 � � � 0 0 0 0

0 1 2 1 � � � 0 0 0 0

..

. ..
. ..

. ..
.

� � � ..
. ..

. ..
. ..

.

0 0 0 0 ..
.

0 1 2 1

1 0 0 0 � � � 0 0 1 2

2
66666666664

3
77777777775
2 Rn�n. (26)

Since the normalized coupling parameter of components 0ob51; the matrix K12K�1
11 KT

12 is
approximately equal to the null matrix, and hence it is neglected in Eq. (25). Thus, the
representation of the slow subsystem can be written as

M €yðtÞ þ gM _yðtÞ þ K11yðtÞ ¼ M1=31nf ðtÞ (27)

for all tX0; where yð0Þ ¼ 0n and _yð0Þ ¼ 0n: Since M and K11 are diagonal matrices, system (27) is a
set of n decoupled second order systems, one of which for an i ¼ 1; 2; . . . ; n is

a3
i
€yiðtÞ þ ga3

i
_yiðtÞ þ ð1 þ 2bÞyiðtÞ ¼ aif ðtÞ (28)

for all tX0; where yiðtÞ 2 R and yið0Þ ¼ 0 and _yið0Þ ¼ 0:
Having the simple representation in Eq. (28), the transfer function from f ð�Þ to xið�Þ ¼ aiyið�Þ is

readily obtained as

hiðsÞ ¼
a2

i

a3
i s2 þ ga3

i s þ 1 þ 2b
(29)
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for all i ¼ 1; 2; . . . ; n: From Eq. (29), it follows that

jhiðjoÞj ¼
a2

i

½ð1 þ 2b� a3
i o2Þ

2
þ g2a6

i o2�1=2
. (30)

It can be easily verified that at the resonance frequency

o�
i ¼

1 þ 2b
a3

i

�
g2

2


 �1=2

, (31)

the magnitude jhiðjoÞj attains its maximum value given by

khik1 ¼
a1=2

i

gð1 þ 2b� g2a3
i =4Þ1=2

(32)

for all i ¼ 1; 2; . . . ; n: Since ai is close to ad for all i ¼ 1; 2; . . . ; n; it follows that o�
1;o

�
2; . . . ;o

�
n in

Eq. (31) are almost equal, so are kh1k1; kh2k1; . . . ; khnk1 in Eq. (32).
3.2. Fast subsystem

The fast subsystem is an n-dimensional system obtained as follows. In system (23), set t ¼ �3=2t:
The result is

M
d2yðtÞ

dt2
þ �3=2gM

dyðtÞ
dt

þ �3½K11yðtÞ þ K12yaðtÞ� ¼ �3M1=31n f ðtÞ, (33a)

M̄a
d2yaðtÞ

dt2
þ �3=2gM̄a

dyaðtÞ
dt

þ KT
12yðtÞ þ K11yaðtÞ ¼ �M̄

1=3
a 1n f ðtÞ, (33b)

for all tX0; where yð0Þ ¼ yað0Þ ¼ 0n and dyðtÞ=dt ¼ dyaðtÞ=dt ¼ 0n at t ¼ 0: Setting � ¼ 0 in Eq.
(33a), it follows that yðtÞ ¼ 0n for all tX0; and hence Eq. (33b) can be written as

M̄a
d2yaðtÞ

dt2
þ �3=2gM̄a

dyaðtÞ
dt

þ K11yaðtÞ ¼ �M̄
1=3
a 1n f ðtÞ (34)

for all tX0; where yað0Þ ¼ 0n and dyaðtÞ=dt ¼ 0n at t ¼ 0: System (34) is the representation of the
fast subsystem. Since M̄a and K11 are diagonal matrices, system (34) is a set of n decoupled
second-order systems, one of which for an i ¼ 1; 2; . . . ; n is

ā3
nþi

d2ynþiðtÞ
dt2

þ �3=2gā3
nþi

dynþiðtÞ
dt

þ ð1 þ 2bÞynþiðtÞ ¼ �ānþi f ðtÞ (35)

for all tX0; where ynþiðtÞ 2 R and ynþið0Þ ¼ 0 and dynþiðtÞ=dt ¼ 0 at t ¼ 0: Setting t ¼ t=�3=2 and
using Eq. (19), it follows that Eq. (35) can be written as

a3
nþi

€ynþiðtÞ þ ga3
nþi

_ynþiðtÞ þ ð1 þ 2bÞynþiðtÞ ¼ anþif ðtÞ (36)

for all tX0; where ynþið0Þ ¼ 0 and _ynþið0Þ ¼ 0:
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Having the simple representation in Eq. (36), the transfer function from f ð�Þ to xnþið�Þ ¼

anþiynþið�Þ is readily obtained as

hnþiðsÞ ¼
a2

nþi

a3
nþis

2 þ ga3
nþis þ 1 þ 2b

(37)

for all i ¼ 1; 2; . . . ; n: From Eq. (37), the magnitude jhnþiðjoÞj can be obtained. This magnitude at
the resonance frequency

o�
nþi ¼

1 þ 2b
a3

nþi

�
g2

2

 !1=2

, (38)

attains its maximum value given by

khnþik1 ¼
a1=2

nþi

gð1 þ 2b� g2a3
nþi=4Þ1=2

(39)

for all i ¼ 1; 2; . . . ; n: Since anþi is close to as for all i ¼ 1; 2; . . . ; n; it follows that
o�

nþ1;o
�
nþ2; . . . ;o

�
2n in Eq. (38) are almost equal, so are khnþ1k1; khnþ2k1; . . . ; kh2nk1 in Eq. (39).

Remarks. Having the slow and fast subsystems, several conclusions can be drawn:

(1) Since as5ad ; the H1-norms in Eqs. (32) and (39) satisfy the following inequality:

khnþkk15khik1 (40)

for any i; k ¼ 1; 2; . . . ; n:
(2) For lightly damped structures, i.e., when g51; it follows that

khik1 ¼
a1=2

i

gð1 þ 2bÞ1=2
; khnþkk1 ¼

a1=2
nþk

gð1 þ 2bÞ1=2
, (41a)

khnþkk1

khik1
� �1=2, (41b)

for any i; k ¼ 1; 2; . . . ; n:
(3) For lightly damped structures, the resonance frequencies of the slow and fast subsystems

satisfy the following relation:

o�
nþk

o�
i

�
ai

anþk


 �3=2

�
1

�3=2
b1 (42)

for any i; k ¼ 1; 2; . . . ; n:

Having the slow and fast subsystems given by Eqs. (28) and (36), respectively, conclusions are
drawn regarding the augmented structure, using the singular perturbed method. According to
this method, for sufficiently small �; the dynamics of the 2n-dimensional augmented structure in
Eq. (23) can be approximated by those of the n-dimensional slow and fast subsystems over large
and small time scales, respectively. Therefore, the transfer functions of principal (respectively,
auxiliary) components can be approximated at low (high) frequencies by those of the slow (fast)
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subsystem given by Eq. (29) (Eq. (37)). From Eq. (32) or Eq. (41a) for lightly damped structures,
it is evident that H1-norms of transfer functions of the slow subsystem are almost equal; hence,
so are those of the transfer functions of principal components. That is, H1-norms of transfer
functions of principal components are insensitive to mistunings. In other words, vibration
localization does not occur in principal components. It is also concluded that: (i) H1-norms of the
transfer functions of auxiliary components are almost equal to those in Eq. (39) or Eq. (41a) for
lightly damped structures; (ii) by inequality (40) or Eq. (41b) for lightly damped structures, these
norms are smaller than those of the transfer functions of principal components. Furthermore, by
inequality (42), the resonance frequencies of the transfer functions of auxiliary components are
much higher than those of principal components. Thus, (i) vibration localization does not occur in
auxiliary components; (ii) amplitudes of vibration of such components are small, in particular, at
low frequencies.
4. Conclusions

An effective passive technique to eliminate vibration localization in mistuned periodic
structures is presented in Ref. [2]. In this reference, by computing a sensitivity matrix, it is shown
that if small components are added between structure components, then vibration localization is
eliminated in the structure. In this note, without using the sensitivity matrix, it is rigorously
proved that the added components indeed eliminate vibration localization. The proof is
established by using a dichotomy in the dynamics of the mistuned structure to which the small
components are added, and by applying the singular perturbation method.
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