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Abstract

An approximate solution for the super-harmonic resonance response of a periodically excited nonlinear
oscillator with a piecewise nonlinear–linear characteristic is constructed using both a matching method and
a modified averaging method. The validity of the developed analysis is confirmed by comparing the
approximate solutions with the results of direct numerical integration of the original equation.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Piecewise linear systems are mathematically characterized by a set of piecewise linear
ordinary differential equations, together with the switching conditions of changes in displace-
ment and/or velocity. The dynamics of piecewise linear systems has been the subject of many
studies [1–15]. However, piecewise linear models may not always be well representative of
some physical systems. This shortcoming can be avoided by the introduction of additional
nonlinearities, thereby resulting in piecewise nonlinear systems with a piecewise nonlinear–linear
characteristic [16,17].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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The piecewise nonlinear oscillator with a piecewise nonlinear–linear characteristic considered
here is modelled by the following set of nonlinear and linear differential equations:

€y þ ðc þ dÞ _y þ o2y þ ay3 ¼ k cos Ot for jyjpys, (1a)

€y þ c _y þ o2y þ k0 sgnðyÞ ¼ k cos Ot for jyjXys, (1b)

where y is the displacement, c and d are the damping coefficients, o is the natural frequency, a is
the coefficient of nonlinear terms, k and O are the amplitude and frequency of the excitation,
respectively, k0 ¼ ay3s ; �ys are the switching boundaries between linear and nonlinear regions,
and an overdot denotes differentiation with respect to the time t.
The nonlinear oscillator given by Eq. (1) may exhibit a symmetric periodic response with the

maximum amplitude less than ys (i.e. small amplitude motion) or larger than ys (i.e. large
amplitude motion). The small amplitude motion is not considered here, as it is determined only by
Eq. (1a) and can be approximately located using a regular perturbation method. Unlike a
piecewise linear oscillator, for the nonlinear oscillator with a piecewise nonlinear–linear
characteristic considered here, an exact analytical solution for the large amplitude response
cannot be obtained as no exact analytical solution exists to the nonlinear differential equation. A
simple but powerful procedure, which has been developed to construct analytical approximations
to the primary resonance response of a piecewise nonlinear oscillator [17], is to seek the individual
general solutions to Eq. (1a) and (1b) corresponding to different regions jyðtÞjpys; and jyðtÞjXys;
and then to combine these solutions at the transition points of non-smooth nonlinearity by
implementing an appropriate set of matching conditions. This procedure of constructing the
approximate solution, which is different from the method of harmonic balance and the averaging
procedure, will be referred to here as the matching method for brevity.
The main goal of the work outlined here is to construct an approximate analytical solution for

the super-harmonic resonance response of a piecewise nonlinear oscillator using the matching
method and a modified averaging method, respectively. The super-harmonic resonance response is
interesting because it appears across the working frequency domain. In addition, the procedure of
locating an approximate solution for the super-harmonic resonance response can be easily
extended to construct an approximate solution for the sub-harmonic resonance response.
To proceed, Eq. (1) is rewritten in a suitable form for applying the method of averaging, by

introducing the dummy perturbation parameter �

€y þ 9O2y ¼ k cos Ot � �ðc þ dÞ _y � �sy � �ay3 for jyjpys, (2a)

€y þ 9O2y ¼ k cosOt � �c _y � �sy � �k0sgnðyÞ for jyjXys, (2b)

where � ¼ 1; and the external detuning s in terms of o2 ¼ 9O2 þ �s has been introduced to study
the super-harmonic resonance response [18,19].
2. Approximate solutions obtained using the matching method

For a symmetric periodic response of large amplitude motion, as shown in Fig. 1, the periodic
solution is made up of four distinct segments according to the following four time intervals; ½t0; t1	;
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Fig. 1. Symmetric periodic motion of large amplitude response of the overall system, where xðtÞ denotes the first

segment of the motion in the region jxðtÞjdxpys; y ðtÞ represents the second segment of the motion in the region

y ðtÞXys; t0 denotes the starting time, and ti ði ¼ 1; 2; 3; 4Þ represent the time instants that the non-smooth nonlinearities
take place at �ys:
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½t1; t2	; ½t2; t3	; ½t3; t4	; where ti denote the time instants at which the non-smooth nonlinearities take
place. The motion in each time interval is locally governed by the corresponding Eqs. (2a) or (2b).
The overall motion is determined by joining the solutions of Eqs. (2a) and (2b) together. Due to
the symmetry of the motion, only two parts of the response need to be considered.
For the first segment of the motion, the first-order approximate solution to represent the exact

solution of Eq. (2a) is assumed to have the form

xðtÞ ¼ x0ðtÞ þ �x1ðtÞ forjxðtÞjpys, (3)

with

x0ðtÞ ¼ A1 sin 3Otþ B1 cos 3Otþ H cos Ot, (4)

x1ðtÞ ¼ g1 sin 3Otþ g2 cos 3Otþ h1t sin 3Otþ h2t cos 3Ot

þ h3 sin 9Otþ h4 cos 9Otþ h5 sin Ot þ h6 cos Ot þ h7t sin 3Ot

þ l1 sin ðOt � 3Ot0Þ þ l2 cosðOt � 3Ot0Þ þ l3 sinð5Ot � 3Ot0Þ

þ l4 cosð5Ot � 3Ot0Þ þ l5 sinð5Ot � 6Ot0Þ þ l6 cosð5Ot � 6Ot0Þ

þ l7 sinð7Ot � 6Ot0Þ þ l8 cosð7Ot � 6Ot0Þ, ð5Þ

where t ¼ t � t0; A1; B1 and t0 are constants to be determined, H ¼ k=8O2; and the 17 coefficients
in Eq. (5), which can be expressed as functions of A1; B1; t0; and system parameters, are not given
here for brevity.
For the second segment of the motion, an exact solution to Eq. (2b) can be expressed in the

form:

yðtÞ ¼ e��mðt�t1Þ½A2 cos bðt � t1Þ þ B2 sin bðt � t1Þ	 þ F1 cos Ot

þ F2 sin Ot þ Y 0 for yXys, ð6Þ
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where A2; B2 and t1 are constants to be determined, m ¼ c=2; ; b ¼ ðo2 � m2Þ1=2; F1 ¼ ðo2 �

O2Þk=½ðo2 � O2Þ
2
þ 4m2O2	; F2 ¼ 2mOk=½ðo2 � O2Þ

2
þ 4m2O2	;Y 0 ¼ �k0 sgnðyÞ=o2:

The four constants A1; B1; A2; B2; and two crossing times t0 and t1 in Eqs. (4) and (6) can be
numerically determined by implementing the following set of matching conditions:

xðt0Þ ¼ �ys; xðt1Þ ¼ ys; yðt1Þ ¼ ys,

_yðt1Þ ¼ _xðt1Þ; yðt2Þ ¼ ys; _yðt2Þ ¼ � _xðt0Þ, ð7Þ

where t2 ¼ t0 þ p=O:
The corresponding trajectories xðtÞ and yðtÞ can be calculated from Eqs. (3) and (6) after

obtaining an appropriate value for the four constants A1; B1; A2; B2; and two crossing times t0 and
t1:
The stability of the periodic solution can be examined by investigating the asymptotic

behaviour of the small perturbations to the steady-state periodic solution over one half of the
symmetric response. The dynamic mapping of small perturbations of the symmetric solution over
a half period of motion can be written as

Dt2

Dv2

" #
¼ J

Dt0

Dv0

" #
. (8)

where J is a 2
 2 matrix. The symmetric periodic motion is asymptotically stable if both
eigenvalues l1 and l2 of matrix J have a modulus less than unity. When either of the two
eigenvalues has a modulus greater than one, the solution is unstable.
3. Approximate solutions obtained using a modified averaging method

The approximate solution for the steady-state super-harmonic resonance response of Eq. (2) is
assumed to take the form:

y ¼ aðtÞ cosð3Ot þ yðtÞÞ þ H cos Ot,

_y ¼ � 3OaðtÞ sinð3Ot þ yðtÞÞ � OH sin Ot, ð9Þ

where aðtÞ and yðtÞ are assumed to be slowly varying functions of time.
Inserting Eq. (9) into Eq. (2) and then solving the resultant equations leads to the following

standard form of the equations governing aðtÞ and yðtÞ:

_a ¼ �
�

3O
f ða; yÞ sin j,

_y ¼ �
�

3Oa
f ða; yÞ cos j, ð10Þ

where j ¼ 3Ot þ y: f ða; yÞ is a nonlinear function of aðtÞ and yðtÞ; which is obtained from the
terms containing � on the right hand side of Eq. (2) by inserting solution (9).
According to the method of averaging [20,21], the amplitude aðtÞ and the phase yðtÞ of the first-

order approximate solution change very little during one period of motion T ¼ 2p=ð3OÞ:
Averaging Eq. (10) over the interval ½t0; t0 þ T 	; during which aðtÞ and yðtÞ can be taken to be
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constants on the right-hand side of the equation yields

da

dt
¼ �

�

3O
f 1ða; yÞ,

dy
dt

¼ �
�

3Oa
f 2ða; yÞ ð11Þ

with

f 1ða; yÞ ¼
2

T

Zt1

t0

½ðc þ dÞð�3Oa sin j� OH sin OtÞ

8<
:

� sða cos jþ H cos OtÞ � aða cos jþ H cos OtÞ3	 sin jdt

þ

Zt0þT=2

t1

½cð�3Oa sin j� OH sin OtÞ

�sða cos jþ H cos OtÞ � k0	 sin jdt

9=
;

f 2ða; yÞ ¼
2

T

Zt1

t0

½ðc þ dÞð�3Oa sin j� OH sin OtÞ

8<
:

� sða cos jþ H cos OtÞ � aða cos jþ H cos OtÞ3	 cos jdt

þ

Zt0þT=2

t1

½cð�3Oa sin j� OH sin OtÞ

�sða cos jþ H cos OtÞ � k0	 cos jdt

9=
;

where t0 and t1 are the roots of the following two equations, respectively,

a cosð3Ot0 þ yÞ þ H cos Ot0 þ ys ¼ 0,

a cosð3Ot1 þ yÞ þ H cos Ot1 � ys ¼ 0.

The steady-state solutions aðtÞ and yðtÞ for the super-harmonic resonance response can be
obtained from Eq. (11) by letting da=dt ¼ dy=dt ¼ 0; which are solved by a numerical method
based on a root finding algorithm.
The stability of the steady-state response can be ascertained by evaluating the eigenvalues of the

Jacobian matrix of the linearized component of the equation, which is obtained by adding
small perturbations to the steady-state solutions and then substituting the perturbed solutions
into Eq. (11).



ARTICLE IN PRESS

J.C. Ji, C.H. Hansen / Journal of Sound and Vibration 283 (2005) 467–474472
4. Comparison of the approximate and numerical integration solutions

Based on the analytical procedure given in Sections 2 and 3, the first-order approximate
solutions for the super-harmonic resonance response can be easily obtained for a given set of
system parameters using the matching method and the method of averaging. It was found that the
approximate analytical solutions and the results of numerical integration of Eq. (1) are in good
agreement for the super-harmonic resonance response.
An illustrative example system is studied herein as defined by the system parameters c ¼ 0:1;

d ¼ 0:1; a ¼ 2:0; k ¼ 5:0; O ¼ 1:0; ys ¼ 0:5: Fig. 2 illustrates a comparison of the maximum
amplitudes of the super-harmonic resonance response between the approximate solutions and the
results of numerical integration in the region o 2 ½8:8; 9:2	; which corresponds to the external
detuning in the region s 2 ½�0:2; 0:2	: The values of the amplitudes obtained by the matching
method and the method of averaging are indicated by circles and triangles, respectively, while the
values of numerical simulations are given by the solid curve. Only small differences between the
approximate and numerical integration solutions are found. Both of the first-order approximate
solutions match well with the numerical integration solutions. The relative errors of the maximum
amplitudes of the response between the approximate solutions and numerical solutions, as defined
by ðynum: � yapp:Þ=ynum:; are between 0:319% and 1:943% for the approximate solutions obtained
using the matching method, and between �2:778% and �8:468% for those obtained using
the averaging method. The first-order approximate solutions obtained using the matching
method give slightly smaller values of the maximum amplitudes than those obtained from the
numerical integrations of Eq. (1), while the approximate solutions obtained using the method
of averaging give slightly larger values than the numerical integration solutions. The appro-
ximate solutions obtained using the matching method give more accurate results than those
obtained using the method of averaging. The discrepancies are caused by the first-order
truncation of the expansion solution. A more accurate approximation could be obtained if an
8.8 9.2
ω

0.54

0.6

0.66

y m
ax

9

Fig. 2. Variation of the maximum amplitudes of large amplitude response with the frequency o; where circles denote
the approximate solutions obtained using the matching method, triangles represent the approximate solutions obtained

using the method of averaging, and the solid curve indicates the results of numerical integration.
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Fig. 3. Comparison of the phase portrait of the super-harmonic resonance response between the approximate and

numerical integration solutions at o ¼ 8:9; where circles and triangles denote the approximate solutions obtained using
the matching method and the averaging method, respectively, and the solid curve represents the results of numerical

simulations.
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additional term of the second order is included in the approximate solution, but it seems
unnecessary as the first-order approximations have given good representations of the super-
harmonic resonance response.
Fig. 3 compares the phase portrait of the approximate solutions obtained using the matching

method (indicated by circles) and using the method of averaging (indicated by triangles) with the
numerical integration solution (solid curve) at o ¼ 8:9: Small discrepancies between the first-order
approximate and numerical integration solutions are found. Both of the first-order analytical
solutions match well with the numerical integration solutions. The first-order approximate
solutions can also give excellent representations of the super-harmonic resonance response for
larger values of excitation amplitude.
5. Conclusion

An approximate periodic solution for the super-harmonic resonance response of a piecewise
nonlinear oscillator has been analytically constructed using both the matching method and the
averaging method, as no exact solution exists in closed-form. It was found that both of the first-
order approximate solutions were an excellent representation of the exact solutions. The
approximate solutions obtained using the matching method give more accurate results than those
obtained using the averaging procedure, but involve more terms in the expressions of the first-
order approximate solutions. Both the matching method and the averaging procedure can also be
used to seek approximate solutions for the sub-harmonic resonance response, and could even be
used to find approximate analytical solutions for the secondary resonance response of a piecewise
nonlinear oscillator that is governed by a set of two nonlinear differential equations.
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