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Abstract

Strategies for the suppression of plate vibration are investigated by considering the equivalent impedance
of power-minimising vibration controllers. The total power transmitted to a plate by both a primary and
secondary point forces is used as a function to be minimised. If the system is linear, then the total power has
a known minimum value that is associated with an optimal solution for the secondary force. This minimum
power, applied to infinite and finite plates, has been compared to the power reduction that can be achieved
with passive vibration treatments. The ratio of the optimal secondary force and the resultant velocity at the
secondary force location is termed the equivalent impedance of the active control system, and if only a
single primary source is present, this equivalent impedance is entirely reactive but generally unrealisable.

The approximation of the equivalent impedance by lumped parameter systems is considered. In
particular, passive controllers, based on springs and dampers, have been analysed, although, in many
practical applications, a rigid ground is not available to react these components off. The importance of this
work lies in the practical approximation of these equivalent impedances with realisable passive systems.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration control of flexible structures is an important issue in many engineering applications,
especially for the precise operation performances in aerospace systems, satellites, flexible
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manipulators, etc. Balancing the stringent performance objectives of modern structures such as
superior strength and minimal weight introduces a dynamic component that needs to be
considered. Depending on the application, low structural damping can lead to problems such as
measurement inaccuracy of attached equipment, transmission of acoustic noise or structural
failure. Two types of control methods are generally used to solve this problem: passive control
and active control. Passive vibration control and the use of tuned systems can be effective on
single frequency vibrations [1]. This work considers the possibility of broadband control of a
distributed system such as a panel using local vibration controllers.

A description has been given in Bardou et al. [2] and Brennan et al. [3,4] of the performance of
two possible strategies that can be used to design an active vibration controller: total power
minimisation and maximisation of the power absorption of the secondary source.

In this paper, the total power generated by all the forces acting on the structure is used as a
function to be minimised [5]. This approach has also been used as a noise control technique [6,7].
If we assume the system to be linear such that the velocity fields produced by the forces can be
superimposed, then the total power has a known minimum value that is associated with an
optimal solution [6-9]. This solution can be compared to what the passive treatments manage to
accomplish. Since this solution is optimal, no other strategy can perform better. The question is
then how well a certain passive control scheme performs with respect to the optimal solution when
the optimal impedance is replaced with its equivalent passive approximation, as shown in Fig. 1.
This is one of the main issues discussed here. The passive impedance, Z, in Fig. 1(b) is assumed to
reach off an inertial ground, in order to be consistent with the single secondary force in Fig. 1(a).
In practice it may be possible for this force to be reached off a proof-mass, in an inertial actuator
arrangement. The additional complexities that this generates for the control system and its
performance are addressed in a companion paper [10].

A lot of work has been carried out in order to synthesise load impedances which achieve desired
performances (using semi-definite programming, for example, by Titterton [11]), and in this study
optimal impedances and impedances generated by passive devices (also studied by Guicking et al.
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Fig. 1. (a) A point primary force and a point secondary force applied to an infinite thin plate. (b) A point primary force
and an equivalent impedance applied to an infinite thin plate.
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[12]) will be compared. The goal is to use these devices in order to reduce the total power, acting
on a local basis [13]. Also, unlike most of the literature on this subject, the primary disturbance
will be considered to be broadband rather than single frequency [11,14], and so the realisability of
the equivalent impedance must be addressed.

One of the limitations of some of the models presented in the literature is that the primary force
and the secondary control force are acting along the same axis. In real systems, there will
inevitably by some mismatch between the point of application of the primary force and the point
of application of the secondary force. This issue has been addressed by Jenkins et al. [15], and
their results for an infinite plate show that appreciable reductions in total power can only be
achieved if the secondary force is applied at a distance within 34,/8 from the primary force, where
Ar1s the flexural wavelength in the receiving structure at the frequency of interest.

Infinite plates will be considered first in Section 2 and finite plates will then be analysed in
Section 3. In particular a flexible plate, clamped on two edges and free on the other two, will be
considered. In Section 4, the optimisation of the spring/damper approximation to the equivalent
impedance is discussed, followed by the conclusions in Section 5.

2. Equivalent impedance for global control of vibrating infinite plates

In order to analyse the problems described in the introduction, we now examine a single point
secondary force f; separated by a distance r from a point primary force, f,, both forces being
applied along the z-axis on an infinite plate. This configuration is depicted in Fig. 1(a). The
expression for the driving point mobility Yoo = Zo(®)/f (w) for an infinite plate, where Zy(w) is the
velocity in the z direction, evaluated at a point Py = (xo, y,), and f(w) is the excitation force at
Py, is given by

w 1
Y = 5
“ 78Dk 8¢/ Dm

where D = EI/(1 — v?) is the plate’s bending stiffness, E is its Young’s modulus, I = #*/12, where
h is the plate thickness, v is Poisson’s ratio, m = ph is the mass per unit area, and p is the density of
the plate material. It is important to note that Y is independent of frequency and it is real. The
transfer mobility, between two points P; = (x1,y;) and Py = (x0,y), Y10 = Z1(®)/fo(w) is given
by [16]

(1)

) :
Yio = o [HE (kr) — H (k)] )
where r = \/(x1 — x0)* + O, — yo)2 is the distance between the points, k= w/cp, ¢p =

(D/m)1 *Jo is the phase velocity, and HBZ)(-) is the second kind of Hankel function of Oth
order. This function can be written as
Hy (kr) = Jo(kr) = Yo(kr), 3)

where Jo(kr) is the Oth order Bessel function of the first kind and Y(-) is the Oth order Bessel
function of the second kind. While H, 82)(kr) has got real and imaginary parts, H, 82)(—jkr) is entirely
imaginary.
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It is now possible to define a cost function that will be used as the reference for all the remaining
computations. The chosen cost function is the total power supplied to the plate, which is given by
the sum of the power II, due to the primary force acting in Py and the power II; due to the
secondary force acting in P;. It can be expressed as

=11, +1; 4)
and rewritten considering that the total power is also one-half of the real part of the forces times

the complex transverse velocity of the plate at the position of the application of the forces. This
total power can also be written as [15]

H:%Re{f;vp +fjfvs} —Alf [+ b+ b+, (5)
which is a quadratic form where the parameters of the last term of Eq. (5) are
A=1Re(Yn), b=1iRe(Y1)f,,  c=1lf,I’Re(Yn) (6-8)

where Y is the driving point mobility at location P = (xl, yl). In particular, the power of the
primary force only, which provides the power of the system without any sort of treatment, is given
by setting the secondary force in Eq. (5) to zero. This leads to

II, = c. 9)
Eq. (5) has a well-defined minimum value
Hopt:c—g, (10)
which is associated with an optimal secondary force f, given by [9]
et
In the particular case of an infinite plate, from Eq. (1) follows that
Re(Y00) = Yoo, (12)
and from Egs. (2) and (3) the real part of the transfer mobility for an infinite plate is given by
Re(Y10) = YooJo(kr). (13)
Thus the optimal solution in Eq. (11) can be rewritten as [14]
fso =—Jolkr)f, (14)
and its corresponding power is given by
Mo = [1 = J5(kn)]I,. (15)

The effectiveness of the optimal solution can be established by comparing Eq. (15) with the power
input due to the primary disturbance f,, given by Eq. (9). Eq. (15) is plotted in Fig. 2 as a function
of kr. The optimal secondary force significantly reduces the total power supplied to the plate for
values of kr below about 1. However, this attenuation tends to zero for larger values of kr. Thus
placing the secondary force close to the primary force allows the system to perform well over a
broad range of frequencies.
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Fig. 2. Total power transmitted to an infinite plate, normalized to that due to the primary force only (solid black), when
the primary and optimal secondary forces are applied (faint blue), and when the secondary force is replaced by a spring,
whose stiffness is given by Eq. (23) (dashed).

The optimal “‘equivalent” impedance that is presented to the system in order to obtain such
attenuation in the total power is now computed. The velocity v, of the base at Py, where the
secondary force is acting, is given by a combination of the effects of the primary force, f,, and the
secondary force, f, at P,

vs=Yif, + Y/ (16)

where Yoo = Y in this case. If the secondary force f; is chosen to be the optimal solution f',
described in Eq. (14) and substituting Eq. (14) into Eq. (16), the velocity of the base at P, as a
function of the primary force, when the optimal solution is implemented, is found to be

vso = [Y10 — Y11 Jo(kn)]f . 17
From Eq. (14) it follows that
1
= - 1
P T Toty (18)

which substituted into Eq. (17) provides the equation for the equivalent impedance. This is
given by

L fa___ Jok)
P e Yo — Yido(kr)
Jo(k}”)

= — , 19
YulHS (kr) — HY (—jkr) — Jo(kr)] (1
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and it expresses the impedance that the secondary optimal force is presenting to the system in
order to minimise the cost function given by the total power. The numerator of Eq. (19) is real,
and its denominator is purely imaginary, thus Z, is entirely reactive [6]. Considering only the
first terms of the series expansion [17] of Eq. (19) in terms of kr, an approximated expression can
be obtained

fso (kr)* /4 — 1
UVso lel((kr)z/n) (y —14+1In kr/2) ’

where y = 0.577 is the Euler’s constant. The primary drawback of this result is that the
compensator is non-causal [18]. Eq. (20) can be further expanded into

& N ian(wrz —4\/D/m) _ka

= % — T 21
Uso  jo r2(y—1+1Inkr/2) jo 21

(20)

where the dependence on 1/jw has been made explicit in order to be able to express the remaining
term as a stiffness coefficient k,. The low-frequency approximation of the stiffness coefficient k, in
Eq. (21) is given by

8nD

ke (1 —Inkr/2 —y)

12

(22)

For very low frequencies and separation distances kr =~ 0.01 in which case Inkr/2 =~ —5, and
therefore Eq. (22) can be rewritten as
8nD

k”=r2(6—y)' (23)
The full expression for the equivalent impedance, Eq. (19), is plotted in Fig. 3, along with its
passive approximation, given by a stiffness term k,/jo, where k, = 1.2 x 10° N/m, as computed
from Eq. (23) for the 1.85 mm plate when the distance r between primary and secondary forces is
2cm. At low frequency, the equivalent impedance is very similar to the impedance given by a
spring, whose stiffness is very large. When the above passive approximation is used instead of the
optimal solution, the total power as a function of kr is shown as the dashed line in Fig. 2. As
expected, at low values of kr the performance of the passive solution is close to optimum. For
values of kr between about 1 and 2, however, the performance of the passive solution is worse
than applying no control at all. Appreciable reductions in total power can only be achieved if the
secondary force is applied at a distance within 34,/8 from the primary force [14], where A, is the
frequency-dependent flexural wavelength in the receiving structure. When this distance is 2cm on
a 1.85mm steel plate, reductions can be achieved up to 550 Hz, while when this distance is 20 cm,
the optimal solution is effective only up to 60 Hz.When the value of the stiffness tends to infinity,
the system behaves as an infinite plate pinned at the secondary location. In this case, attenuation
in the total power for low values of kr is not as great as in the case when k,=1.2 x 10° N/m. On
the other hand, when kr assumes values between 0.5 and 1.5, the pinned case shows better results
in terms of total power than the low kr approximation. One way to evaluate the performance of a
passive control solution is the ratio of the frequency-averaged power values. This ratio is defined
as P = 10log;o(P.)/(Py), where (P.) and (P,) represent, respectively, the power of the controlled
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Fig. 3. Equivalent impedance due to the optimal solution (solid black) and comparison with an impedance due to a
spring whose stiffness is 1.2 x 10°N/m (faint blue).

and uncontrolled system, averaged over the frequency range 0 Hz—200 Hz. As a function of the
passive stiffness constant k,, the frequency-averaged power ratio reaches a minimum value when
k,=2 x 108 N/m, before it increases slightly and then it settles at the constant value of the
averaged power ratio of —0.28 dB, which indicates that the plate is pinned and the system does not
benefit from higher values of the stiffness. The choice of k,= 1.2 x 10°N/m is thus appropriate in
order to achieve the best possible reduction at low kr, using only a stiffness term, but in order to
minimise the averaged power ratio as defined above, it is better to ideally pin the secondary
location.

For kr>1, the following Bessel’s functions may be replaced with sufficient accuracy by their
asymptotic representations [19], and in particular

/2
Jolkr) = %cos (kr — %) , (24)
21 . T
Yo(kr) = \/; sin (kr — Z)’ (25)
HY(kr) = /%eﬂ'(k’*“/“), (26)

Eqgs. (1)—(3) describe the terms to be used in Eq. (19) to compute the high-kr approximation of the
optimal impedance, which is found to oscillate about

Zopt = 8/Dim, 27)
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which is equal to the infinite plate driving impedance obtained by the reciprocal of equation (1).
Fig. 3 shows that, after the stiffness-like behaviour for low values of kr, the optimal solution
oscillates about an averaged value given by the driving point impedance of the infinite plate
Zy = 1/Y00, which is equal to 323N/m/s for the plate considered above. The equivalent
impedance, Eq. (19), is entirely reactive and the mechanism of control, for low kr, is one of the
loading primary force, since no power can be absorbed by a reactive impedance. For larger values
of kr, the reductions in total power output are far less and the main problem in generating a
realisable approximation to the equivalent impedance is the increase in the total power output
that occurs at about kr = 1 with the equivalent spring, as seen in Fig. 2. It has been found that
larger attenuations can be obtained for kr =~ 1 if a damper, of value Z, is connected in parallel
with the spring. Fig. 4 shows the total power transmitted to the infinite plate when the secondary
force is given by such passive ideal impedance, shown in Fig. 5, and its performance is compared
to the optimal case. For values of kr between 3 and 5, the equivalent impedance is either mass or
stiffness dominated, whereas this passive approximation to the equivalent impedance is damping
dominated, but nevertheless the total power with the equivalent impedance is not very different
from the optimal case. Comparing Fig. 2 with Fig. 4, the improved performance due to the new
approximation to the equivalent impedance can be noticed. The frequency-averaged power ratio
between the controlled system, which uses the spring-damper impedance and the uncontrolled
system, as a function of the passive stiffness constant k, when the damper value is kept constant at
323N/m/s, shows that the minimum of the curve occurs when k,=1.2x 10°N/m. For this
configuration of the approximation to the equivalent impedance, the averaged power ratio is
about —0.444 dB, and this value is less than the —0.3 dB, which was obtained when implementing a
stiffness as an approximation to the equivalent impedance. For large values of the stiffness k, , the

Total power (dB)

Fig. 4. Total power transmitted to an infinite plate, normalized to that due to the primary force only (solid black), when
the primary and optimal secondary forces are applied (faint blue), and when the secondary force is replaced by a spring
and a damper, whose stiffness and damping values are k,=1.2 x 10°N/m and ¢,=1/Y,0=2323 N/m/s (dashed).
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Fig. 5. Equivalent impedance due to the optimal solution (solid black) and comparison with an impedance due to a
spring and a damper whose stiffness and damping values are k,=1.2 x 10°N/m and ¢, =1/ Yoo =323 N/m/s (faint blue).

ratio tends to —0.28 dB only, showing that for this value, the infinite plate is pinned at the
secondary location.

In conclusion, when a secondary force is applied to an infinite plate to counteract the vibrations
due to a primary force, the equivalent impedance of the optimal solution to the secondary force
can be used to motivate a realisable approximation of the said equivalent impedance, and this is
given by the parallel combination of a spring and a damper. The stiffness approximates the
behaviour of the optimal solution for small values of kr, while the damping approximates the
frequency-averaged behaviour for greater values of kr, as shown in Fig. 5. When the distance
between primary and secondary forces is small compared with the flexural wavelength, the
important part of the effective passive approximation to the optimal solution is thus the stiffness,
while at greater distances, dissipating energy through a damper is the most effective way of
controlling the power output. If calculations are performed with a number of primary forces
having randomised phases, for which kr> 1 in each case, the optimal equivalent impedance to the
secondary force, for minimum total power output, also tends to the driving point impedance of an
infinite plate, Zyo. Since the equivalent impedance can no longer directly load the primary sources,
its best strategy is to absorb power, and the impedance which absorbs the maximum power from a
network is the conjugate of the network’s driving point impedance [6]. This is known as the
matched load, and since Z is real in this case, the matched load is also equal to Zg.

3. Equivalent impedance for global control of vibrating finite plates

In order to apply the optimal solution to a finite plate, we now examine a single-point
secondary force f; acting in P; separated by a distance r from a point primary force acting in P,
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both forces being applied along the z-axis on a finite plate. This configuration is depicted in Fig. 6.
In the simulations it is assumed that the 700 x 500 x 1.85mm? (=1, x [, x h) plate is clamped on
two opposite ends and free to move on the other two. These particular dimensions and boundary
conditions were chosen to correspond to those of an experimental plate used in previous
investigations [20]. Yy is again the driving point mobility at Py = (x9,),), Y10 is the transfer
mobility when the point of excitation is Py and the measurement occurs at P, = (x;,);), and Y,
is the driving point mobility at P;. The driving point and transfer mobilities, relating the vertical
velocity and the force excitation at the locations Py and P, can now be derived using a modal
superposition approach [21]. The general expression for the mobility Y; when the force is applied
in P; and the velocity is measured in P; is given by

jw SRS (pmn(Pi)@mn(Pj)
Y, =— - , 28
’ MZ 2 emn[ @y, (1 + jn) — @] 9

m=1 n=1

where the indices m and n represent the number of half-standing waves in the x and y directions
for the natural mode ®,,,. The term g,,, is a normalising factor [16], M is the total mass of the
plate, w,,, is the m,nth natural frequency of the flexural vibration and # is the hysteretic loss factor
[16]. The plate under study has two clamped edges and two free edges, therefore an exact solution
of the wave equation and the boundary condition equations cannot be found. Thus an
approximate solution must be used [22]. The expressions for the terms in Eq. (28) can be found in
Refs. [22,23].

The cost function given by the sum of the power input due to the primary and secondary force,
II = II, + I, can still be expressed in the quadratic form of Eq. (5)—~(8) and thus be minimised
with an optimum secondary force. The total power due to the primary force only, Eq. (9), is
compared in Fig. 7 with the total power described in Eq. (10) when the secondary force is given by
the optimal solution described by Eq. (11). Fig. 7 shows the power supplied to the finite plate due
to the primary force only (solid line), applied at an arbitrary location Py=(0.32m, 0.27m), and
due to the combination of the primary and optimal secondary force (faint line), applied at a
distance »=2cm, at the location P;=(0.3059m, 0.2841 m) from the primary. The reduction is
substantial, with some of the modes being almost cancelled, while others are greatly reduced. This
is due to the particular location that was chosen for the secondary force. At that location, the
secondary force can couple into most modes, but this location is either on or close to the nodal

X
Ly Flexible Base

\/

z

Fig. 6. A point primary force and a point secondary force applied to a finite 700 x 500 x 1.85mm? plate clamped on
two opposite edges and free on the other two edges.
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Fig. 7. Total power transmitted to the finite plate due to the primary force only (solid black) and due to the primary
and secondary forces when the optimal feedforward solution is applied and the distance between primary and
secondary force is 2 cm (faint blue).

lines of those modes that are not completely flattened out. The impedance that the secondary
force has to present to the system in order to minimise the total power is obtained by computing
the optimal secondary force per unit velocity at the secondary location, f, /vso. The velocity of the
base vy, at P; when the optimal solution is implemented is given by

Vso = mep + Yllfso‘ (29)
Substituting Eq. (11) into Eq. (29), the equation becomes
- Re(Y o)
w=7Y —Yul=—=If, 30
U;O l(lfp 11 (RC(Y”) fp ( )

which represents the velocity as a function of the primary force. Combining equations (11) and
(30), the equivalent impedance when the optimal secondary force is implemented can be obtained.
It is given by

fso Re(YIO)

Lot =2 = .
P b Re(Y10) Y11 — Re(Y ) Yo

(31

This equivalent impedance, which is again entirely reactive, is shown in Fig. 8, where it can be seen
that sharp transactions occur between the stiffness and the mass-dominated regions. Between 0
and about 45 Hz, the impedance is stiffness dominated, as it is between about 60 and 120 Hz, and
between 155 and 175 Hz. In the remaining intervals within the 0~200 Hz window, the impedance
is mass dominated. As for the infinite plate case, this impedance is non-causal [18] as it can be
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Fig. 8. Equivalent impedance due to the optimal secondary force (solid black) and the impedance of an ideal stiffness
whose value is k,=9 x 10® N/m (faint blue). The distance between primary and secondary force is 2 cm and the plate is
finite. It can be noted that the real part of the impedance is zero.

verified by computing the FFT of the result shown in Fig 8. Eq. (31) can be rewritten as

1
Zopt = Re(Y, s (32)
Yi— REEYIO; Yio
where, from Eq. (28),
RG(YH):ZZ 5 5 B 4 (33)
m=1 n=1 Amn[(wmn —w ) + men]
and
NN Dy(P) P (P,
Re(Yl()) _ ZZ ( 1) ( 0) n ) (34)

2
m=1 n=1 Amn[(w%m - a)z) + nwﬁm]

At very low frequency the ratio between the real parts in Eq. (32) can be approximated by taking
only the first modal term, in which case
Re(Y11) _ Pu(P)
Re(Y19) ~ P1i(Po)

(35)

The mode shape of the first mode can be found in Ref. [23], and at low frequency, for the chosen
locations, from Eq. (35), then Re(Y;)/Re(Y o) = 0.84. At very low frequencies the driving point
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mobility Y; can also be approximated by

_@,.(P)
Y = jo--2—~ 36
1 Jstmnw,znn’ (36)
where
ENW \°
w1 = m(z) 422- (37)

The expression for the coefficient g,, is provided in Ref. [23] and the normalising factor ¢;; can be
approximated using the factor for the free-free boundary condition, which is given by & =~ }T.
Substituting the appropriate values in the above equations, a low-frequency approximation to the
equivalent impedance Z, in equation (32) is given by

s ER L3,
T j0d8(1 — V)L dy (P[P (P1) — 0.840,(Py)]
9 x 10°
o 22107 (38)
]CL)

As well as the equivalent impedance in the optimal case, Fig. 8 also shows the low-frequency
approximation to the impedance given by a spring, whose stiffness is k,=9 x 10° N/m.

When the distance r is equal to 20 cm, not as much attenuation in the total power is obtained, as
shown in Fig. 9. The optimal impedance also has lower average values, compared to the case when
r=2, as shown in Fig. 10, which also shows the impedance of a spring, whose stiffness is
k,=2.5x 10°N/m, that has been computed in an analogous way to that above.

When the relative distance between primary and secondary forces is large and at low frequency,
the driving point mobility dominates the transfer mobility in Eq. (32). Hence, when | Y ;| > | Y ¢]
then Z,p = Zy1 = 1/Y ;. Eq. (36) provides the approximation of the expression for the driving
point mobility at low frequency and it is equivalent to a stiffness of about 7 x 10*N/m. In the
simulations, this is the value of the stiffness that approximates the low-frequency behaviour when
the relative distance »=80cm.

At high frequency or large relative distances r, the characteristic driving point or transfer
mobility are equal to the driving point or transfer mobility of an infinite plate [19]. Consequently,
Egs. (12) and (13) describe the real part of the driving point and transfer mobility for an infinite
plate, while Egs. (1)—(3) describe the remaining terms to be used in Eq. (32) to compute the high-
kr approximation to the equivalent impedance, which is found to oscillate about a value which is
equal to the infinite plate driving impedance. Assuming a constant location of the secondary force,
and varying the location of the primary force on the plate, it is found that for small relative
distances between the primary and secondary forces, the average of the optimal equivalent
impedance above 40 Hz can be approximated using a larger damper, whose maximum damping
value was found to be about ¢,=4000N/m/s when the distance »r=2cm. For large distances
between primary and secondary forces, the averaged equivalent impedance can be approximated
using lower values of the damping. The minimum value that was found is about ¢, =323 N/m/s
when the distance =280 cm, as expected from the above discussion. This indicates that even for
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Fig. 9. Total power transmitted to the finite plate due to the primary force only (solid black) and due to the primary
and secondary forces when the optimal feedforward solution is applied and the distance between primary and
secondary force is 20 cm (faint blue).
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Fig. 10. Equivalent impedance due to the optimal secondary force (solid black) and the ideal stiffness whose value is
k,=2.5x 10° N/m. The distance between primary and secondary force is 20 cm and the plate is finite. It can be noted
that the real part of the impedance is zero.
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finite plates, a simplified approximation to the equivalent impedance is given by the parallel of a
spring and a damper.

4. Optimising the spring/damper approximation to the equivalent impedance

The primary drawback of the optimal equivalent impedance shown in Figs. 8 and 10 is that it is
non-causal and so cannot be implemented with broadband random excitations. Therefore, other
solutions have been investigated even though their performance will be worse than that one
provided by the optimal solution. In this section, the combination of an optimum stiffness and a
damper will be analysed. Firstly, the two solutions are investigated independently, then they will
be considered together, acting in parallel on the finite plate. The relative distance, r, between
primary and secondary forces is assumed to be 2cm for these simulations.

4.1. Control with a spring

Fig. 11 shows the ratio of the frequency-averaged power, P , as defined above, as a function of
stiffness. The function descends monotonically until it flattens off at about k,=9 x 10°N/m,
which indicates the minimum value of stiffness that provides the greatest attenuation in power
(about 14dB). At low values of the stiffness, the ratio of the frequency averaged power is very
steep. Fig. 12 shows the total power when the stiffness is chosen to be k,=9 x 10° N/m (dashed
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Fig. 11. Ratio of the uncontrolled to controlled frequency-averaged power, as a function of the stiffness value k,. After

about k,=9 x 10°N/m, the average power ratio does not improve much. The distance between primary and secondary
forces is 2cm.
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Fig. 12. Total power transmitted to the finite plate due to the primary force only (solid black), the primary and
secondary forces when the optimal feedforward solution (faint blue), and the primary and secondary forces when the
ideal displacement feedback is implemented and the stiffness is k,=9 x 10°N/m (dashed). The distance between
primary and secondary force is 2 cm.

line), compared to the optimal solution (faint line) and the uncontrolled case (solid line). It
can be noted that high attenuations can be achieved at low frequency due to the similarity
between optimal solution and passive equivalent approximation. Although k,=9 x 10°N/m
seems to be a good choice at low frequency, as discussed above, at higher frequency its effect is
merely to pin the structure at the secondary location and therefore a redistribution of the
resonances is experienced.

4.2. Control with a damper

Fig. 13 shows the ratio of the frequency-averaged power, P, as a function of damping ¢,
introduced at P;. The minimum of the function at about ¢,=4000N/m/s is —14.5dB, and it
indicates the value of damping that provides the greater attenuation in terms of power. At low
gains, the frequency-averaged power is very steep then, after reaching a minimum value, it settles
towards the constant value —14 dB, which indicates that the system is pinned and it does not
benefit from higher damping values. This limiting value is the same as that in Fig. 11. Fig. 14
shows the total power when ¢, =4000 N/m (dashed line), compared to the optimal solution (faint
line) and the uncontrolled case (solid line). Compared to Fig. 12, lower attenuations are
experienced below the first plate resonance and higher attenuations can be achieved at high
frequency.
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Fig. 13. Ratio of the uncontrolled to controlled frequency-averaged power, as a function of the damping value ¢,. The
minimum of the function at about ¢,=4000 N/m/s indicates the value of the gain that provides the greater attenuation
in terms of power. The distance between primary and secondary forces is 2 cm.
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Fig. 14. Total power transmitted to the finite plate due to the primary force only (solid black), the primary and
secondary forces when the optimal feedforward solution is applied (faint blue), and the primary and secondary forces
when the ideal velocity feedback is applied and the damping value ¢,=4000 N/m/s (dashed). The distance between
primary and secondary force is 2 cm.
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4.3. Control with a spring and a damper

We now assume that the secondary force is generated by a spring and a damper, whose values
are chosen by a joint optimisation. Fig. 15 shows the contour plot of the ratio of the frequency-
averaged power, P, as a function of damping and stiffness. The ratio is maximum at the origin,
then it descends. The minimum of the function (about —14.62 dB) occurs when the damping value
¢,=4,000 N/m/s , which coincides with the minimum of the curve in Fig. 13, and the stiffness
value k,=35.5x 10° N/m. Fig. 16 shows both the equivalent impedance of the optimal solution
and the impedance of the chosen spring—damper system. In particular, the passive approximation
does not match the equivalent impedance at low frequency, and this is due to the particular choice
made for the stiffness, which minimises the frequency averaged power. Fig. 17 shows the total
power when the chosen spring—damper system is applied (dashed line). Compared to Fig. 14, the
system clearly benefits at low frequency from the stiffness, and above the first plate resonance, it
benefits from the energy that has been taken away by the damper. Compared to Figs. 12 and
Fig. 14, this case provides a better performance.

In summary, although the power reduction due to the parallel of a stiffness term and a damping
term is greater than the results obtained by using either a spring or a damper, the difference in
frequency-averaged power between the parallel case and the single cases is not substantial. This
result holds for the case where the relative distance between primary and secondary forces is
relatively small and the frequency band of interest includes low- and high-frequency components.
These conditions are often met in practical vibration isolation problems, while for limit cases, at

x 108
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Fig. 15. Contour plot of the ratio of the uncontrolled to controlled frequency-averaged power, as a function of the
damping value ¢, and the stiffness value k,. The minimum of the function at —14.62 dB occurs when ¢, =4000 N/m/s and
k,=5.5x 10°N/m. The distance between primary and secondary forces is 2 cm.
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Fig. 16. Equivalent impedance due to the optimal secondary force (solid black) and the ideal displacement and velocity
feedback control, where the stiffness value k,=35.5 x 10°N/m and the damping value ¢,=4000 N/m/s (dashed). The
distance between primary and secondary force is 2 cm.
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Fig. 17. Total power transmitted to the finite plate due to the primary force only (solid black), the primary and
secondary forces when the optimal feedforward solution is applied (faint blue), and the primary and secondary forces
when the ideal displacement and velocity feedback is applied, where the stiffness value k,=35.5 x 10°N/m and the
damping value ¢,=4000 N/m/s (dashed). The distance between primary and secondary force is 2 cm.
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very low or very high frequency, or very short or very long relative distances, as discussed above,
the equations derived previously are valid.

5. Conclusions

In this study the total power of the forces exerted on a structure was chosen to be the cost
function to be minimised. In particular, the effect of the distance between primary and secondary
excitations was taken into account and simulations were run for both infinite and finite plates.

The core of this study was the comparison between optimal solutions and the performance of
idealised passive control treatments. In particular, the optimised equivalent impedance for global
control was compared to its passive approximation. It was found that, although the equivalent
impedance is able to provide a substantial total power reduction compared to the other
treatments, ideal passive solutions, based on the parallel configuration of a spring and a damper,
can guarantee a good power reduction. The locations of the primary and secondary excitations
and their relative distance may become an important aspect of the design of the panel vibration
controller. In fact, depending on the location of the primary force with respect to the nodal lines,
the power distribution of the uncontrolled system changes and, depending on the location of the
secondary force with respect to the nodal lines, the optimal solution turns out to be more or less
effective. Unfortunately, in many practical applications a rigid ground is not available and
therefore these idealised passive solutions cannot be implemented. The development of devices
using inertial actuators [10] that can be industrially manufactured in order to provide substantial
attenuation in panel vibration is under study.
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