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The nonlinear oscillator differential equation [1]

€x þ ð1þ _x2Þx ¼ 0 (1)

has the interesting feature that the application of the first-order harmonic balance method [2]
gives the following functional relationship between the amplitude, A, and the angular frequency
o:

oðAÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� A2
p : (2)

This result is obtained by use of the initial conditions

xð0Þ ¼ A; _xð0Þ ¼ 0: (3)

Inspection of Eq. (2) shows that oðAÞ is not defined for amplitudes of magnitude equal to or
larger than two in value. The issue that immediately arises is whether this restriction is an actual
property of the solutions to Eq. (1) or is this an artifact of the harmonic balance method itself? It
should also be indicated that even using more advanced techniques, such as the one constructed
by Chatterjee [1], the angular frequency, oðAÞ; still has a singularity as a function of the
amplitude; see for example Eq. (28) in Ref. [1].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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The purpose of this communication is to examine the properties of the solutions to Eq. (1) by
studying the behavior of its trajectories in the two-dimensional phase space ðx; yÞ; where y ¼ _x:
The major advantage of doing this is that the general properties of the solutions can be
determined without the application of any approximation method or explicit knowledge of the
actual solutions to Eq. (1). The phase-space technique for two-dimensional dynamical systems is
discussed in Refs. [2,3]. For completeness it should be stated that Eq. (2) is an example of a
nonlinear oscillator having a velocity-dependent frequency [4].

To begin, Eq. (1) can be written as a system of two coupled, first-order differential equations

dx

dt
¼ y;

dy

dt
¼ ð1þ y2Þx: (4)

The equilibrium solution or fixed-point for this system is located at ðx̄; ȳÞ ¼ ð0; 0Þ: The first-order
differential equation that must be solved to obtain the trajectories, y ¼ yðxÞ; in the ðx; yÞ phase
space, is [2,3]

dy

dx
¼ �

ð1þ y2Þx

y
: (5)

The two nullclines, i.e., curves along which the slope of the trajectories are either zero, y0ðxÞ; or
unbounded, y1ðxÞ; are given by [2,3]

dy

dx
¼ 0 : along the curve y0ðxÞ; which is the y-axis; (6a)

dy

dx
¼ 1 : along the curve y1ðxÞ; which is the x-axis: (6b)

These two nullclines divide the ðx; yÞ phase plane into four domains which coincide with the
standard four quadrants of the Cartesian plane. It also follows, from inspection of Eq. (5), that
this equation is invariant under the three coordinate transformations:

T1 : x ! �x; y ! y; (7a)

T2 : x ! x; y ! �y; (7b)

T3 : x ! �x; y ! �y: (7c)

Note, however that the topological structure of the ðx; yÞ phase plane for the trajectories,
y ¼ yðxÞ; for Eq. (1), is exactly that of the linear harmonic oscillator equations [2,3]

dx

dt
¼ y;

dy

dt
¼ �x: (8)

Since all the trajectories for the system given by Eq. (8) are closed curves, it follows that all the
trajectories for Eq. (1) are also closed curves in the ðx; yÞ phase space. Since closed curves in phase
space correspond to periodic solutions [2,3], it follows that all the solutions to the original
equation (1) are periodic. This specific result for Eq. (1) is clearly consistent with the more general
conclusions presented in Ref. [4].

In summary, it has been shown, using phase-space methods, that Eq. (1) has periodic solutions
for all initial conditions in phase space. A further consequence is that the fixed point, located at
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ðx̄; ȳÞ ¼ ð0; 0Þ; is a center [2,3], i.e., it has neutral stability. From these results, it can be concluded
that the solutions to Eq. (1) do not contain singularities in its angular frequency, oðAÞ; as a
function of the initial amplitude, A. The observed singularities occurring in the various methods
to calculate approximate solutions for Eq. (1) are therefore artifacts of the perturbation methods
and thus indicate limitations on these techniques. This study is consistent with the result that
perturbation techniques generally have validity only for small oscillations about a given fixed-
point or equilibrium solution.
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