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Abstract

Strategies for the suppression of plate vibration are investigated by considering approximations to the
equivalent impedance of power-minimizing vibration controllers. The total power transmitted to a plate by
both a primary and a secondary point force is minimized and the equivalent impedance presented by the
secondary source to the plate is considered.
A novel device for active vibration control, based on an inertial actuator with displacement sensor and

local PID controller and an outer velocity feedback control loop, is used to control the vibrating flexible
plate. The impedance presented to the plate by this actuator is compared with the equivalent impedance of
the optimal active control system. A frequency-domain formulation is used to analyse the stability and
performance of an active vibration suppression system using this modified inertial actuator.
The results of an experimental study of active vibration suppression on a flexible plate using the modified

inertial actuator are then described. Theory and experiments agree well, demonstrating the effectiveness of
the modified inertial actuator.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration control of flexible structures is an important issue in many engineering applications,
especially for the precise operation performances in aerospace systems, satellites, flexible
see front matter r 2004 Elsevier Ltd. All rights reserved.
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manipulators, etc. Balancing the stringent performance objectives of modern structures such as
superior strength and minimal weight introduces a dynamic component that needs to be
considered. Depending on the application, low structural damping can lead to problems such as
measurement inaccuracy of attached equipment, transmission of acoustic noise or structural
failure. Two types of control methods are generally used to solve this problem: passive control
and active control. Passive vibration control and the use of tuned systems can be effective on
single-frequency vibrations [1]. This work considers the possibility of broadband control of a
distributed system, such as a flexible panel, using local vibration controllers.
A description has been given in Bardou et al. [2] of the performance of two possible strategies

that can be used to design an active vibration controller: total power minimization and
maximization of the power absorption of the secondary source. Maximization of the power
absorption of the secondary source generally reduces the total input power from both primary
and secondary sources on an infinite plate. On finite plates, maximizing the power absorption of
the secondary sources can result in increases in the total power supplied to the plate, particularly
at low frequencies. On the other hand, in the case of finite plates, reductions in total power input
can be obtained with a single secondary force or moment adjusted to maximise total input power,
but only at the natural frequencies of modes with which these sources can efficiently couple. As
long as it is possible to have knowledge of all the power transmission paths, the total power
minimization strategy thus offers better results than maximizing the power absorption of the
secondary source. Although the strategy of maximizing the power absorbed by the secondary
sources should be avoided on structures with strong reflections, it may be worthwhile on more
anechoic structures and may be simpler to implement than total power minimization.
In this paper, the total power generated by the forces exerting on the structure is used as a

function to be minimized [2]. This approach has also been used in active sound control [3,4]. If we
assume the system to be linear such that the velocity fields produced by the forces can be
superimposed, then the total power has a known minimum value that is associated with an
optimal solution [3,5]. The ratio of the optimal secondary force and the resultant velocity at the
secondary force location is termed the equivalent impedance of the active control system.
Unfortunately, a drawback of the optimal equivalent impedance is that it is non-causal [6] and so
cannot be implemented for broadband random excitations.
A lot of work has been carried out in order to synthesize load impedances which achieve desired

performances [7,8], and in this study optimal impedances and sub-optimal impedances generated
by passive and active devices will be compared. The goal is to use these devices in order to achieve
global control, acting on a local basis. In particular, the use of inertial actuators in active
vibration suppression systems is investigated. Inertial actuators do not need to react off a base
structure, so that they can be used as modules that can be directly installed on a vibrating
structure. It has previously been shown, however, that in order to implement stable skyhook
damping with an inertial actuator, the natural frequency of the actuator must be below the first
resonance frequency of the structure under control and the actuator resonance should be well
damped [9,10].
A vibrating flexible finite plate will be considered in Section 2 and its equivalent impedance for

optimal global control will be described. In Section 3, the use of sub-optimal impedances will be
considered, generated by a modified inertial actuator with local displacement feedback control. In
Section 4, the vibration suppression of a flexible plate is investigated experimentally, using the
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modified inertial actuator. In Section 5, the effect of installing the modified inertial actuator at
different locations on the flexible plate is analysed. Finally, in Section 6, some overall conclusions
are drawn.
2. Optimized impedance for global control of vibrating finite plates

In order to apply the optimal solution to a finite plate, we now examine a single-point
secondary force, fs, acting at a point P1 ¼ ðx1; y1Þ; separated by a distance r from a point primary
force, fp, acting at a point P0 ¼ ðx0; y0Þ; both forces being applied along the z-axis on a finite plate.
This configuration is depicted in Fig. 1. In the simulations, it is assumed that the
700� 500� 1.85mm3 plate is clamped on two opposite ends and free to move on the other
two. These particular dimensions and boundary conditions were chosen to correspond to those of
the experimental plate described in Section 4 and also used in previous investigations [11]. Y00 is
the driving point mobility at P0, defined as Y 00 ¼ _z0ðoÞ=f 0ðoÞ; where _z0ðoÞ is the velocity in the z-
direction evaluated at P0, and f 0ðoÞ is the excitation force at P0. Y10 is the transfer mobility when
the point of excitation is P0 and the measurement occurs at P1, and Y11 is the driving point
mobility at P1. The driving point and transfer mobilities for this system, relating the vertical
velocity and the force excitation at the locations P0 and P1, can be derived using a modal
superposition approach [12–15]. In this study, the system is divided into individual components
and the dynamics of each component, modelled either as a lumped or distributed system, is
evaluated in terms of input and transfer mobilities or impedances.
It is possible to define a cost function that will be used as the reference for all the remaining

computations. The chosen cost function is the total power supplied to the plate, which is given by
the sum of the power Pp due to the primary force acting in P0 and the power Ps due to the
secondary force acting in P1. It can be expressed as

P ¼ Pp þPs ð1Þ

and rewritten considering that the total power is also one half of the real part of the forces times
the complex transverse velocity of the plate at the position of the application of the forces. This
Flexible Plate

 fp
 fs

Fig. 1. A point primary force and a point secondary force applied to a finite 700� 500� 1.85mm3 plate clamped on

two opposite edges and free on the other two edges.
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total power can also be written as [16]

P ¼ 1
2
Reff �

pvp þ f �
s vsg ¼ A f s

�� ��2 þ f �
s b þ b�f s þ c; ð2Þ

which is a quadratic form where the parameters of the last term of Eq. (2) are

A ¼ 1
2
ReðY 11Þ; b ¼ 1

2
ReðY 10Þf p; c ¼ 1

2
f p

�� ��2ReðY 00Þ: ð325Þ

In particular, the power of the primary force only, which provides the power of the system
without any sort of treatment, is given by setting the secondary force in Eq. (2) to zero. This leads
to

Pp ¼ c: ð6Þ

Eq. (2) has a well-defined minimum value [16]

Popt ¼ c 	
bj j

2

A
; ð7Þ

which is associated with an optimal secondary force fso given by

f so ¼ 	
b

A
¼ 	

Re Y 10ð Þ

Re Y 11ð Þ
f p: ð8Þ

The solid line in Fig. 2 shows the power supplied to the finite plate due to the primary force
only, applied at an arbitrary location P0 ¼ ð0:32m; 0:27mÞ; and the faint line shows the total
power due to the combination of the primary and optimal secondary force, applied at a distance
r ¼ 2 cm; at a location P1 ¼ ð0:3059m; 0:2841mÞ; from the primary location. The reduction is
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Fig. 2. Total power transmitted to the finite plate due to the primary force only (solid) and due to the primary and

secondary forces when the optimal feedforward solution is applied and the distance between primary and secondary

force is 2 cm (faint).
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substantial, with some of the modes being almost cancelled, while others are greatly reduced. This
is due to the particular location that was chosen for the secondary force. At that location, the
secondary force can couple into most modes, but this location is either on or close to the nodal
lines of those modes that are not completely flattened out. The impedance that the secondary
force has to present to the system in order to minimize the total power is obtained by computing
the optimal secondary force, fso, per unit velocity at the secondary location, vbo: The velocity of
the base vbo at P1 when the optimal solution is implemented

vbo ¼ Y 10f p þ Y 11f so: ð9Þ

Substituting Eq. (8) into Eq. (9), the equation becomes

vbo ¼ Y 10f p 	 Y 11
ReðY 10Þ

ReðY 11Þ

� �
f p; ð10Þ

which represents the velocity as a function of the primary force. Combining Eqs. (8) and (10), the
impedance when the optimal secondary force is implemented can be obtained. It is given by

Zopt ¼
f so
vbo

¼
ReðY 10Þ

ReðY 10ÞY 11 	ReðY 11ÞY 10
: ð11Þ

This equivalent impedance, which is entirely reactive [17], is shown in Fig. 3, where sharp
transactions between the stiffness-dominated regions and the mass-dominated regions occur.
Between 0 and about 45Hz, below the first natural frequency, the impedance is stiffness
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Fig. 3. Equivalent impedance due to the optimal secondary force. The distance between primary and secondary force is

2 cm and the plate is finite. It can be noted that the real part of the impedance is zero.
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dominated, as it is between about 60 and 120Hz, and between 155 and 175Hz. In the remaining
intervals within the 0–200Hz window, the impedance is mass dominated.
The primary drawback of the optimal equivalent impedance shown in Fig. 3 is that it is non-

causal [6] and so cannot be implemented for broadband random excitations. Therefore, other
solutions must be investigated even though their performance will be worse than the one provided
by the optimal solution. An equivalent impedance of the optimal power minimizing controller on
a finite plate, based on the parallel of a spring and a damper, has been investigated by Benassi and
Elliott [17]. Attenuation is primarily achieved at low frequencies by the stiffness, and above the
first plate resonance by the damper. Adding a stiffness can be seen, in control terms, as skyhook
displacement control, while the effect of the dashpot can be interpreted as skyhook damping.
Unfortunately, the use of a spring or a damper that react off a rigid base is not often possible in
practice. In many practical applications, a rigid ground is not available and the desired impedance
must be generated by an inertial (or proof-mass) device.
3. Sub-optimal impedance for global control of vibrating finite plates

The objective of this section is to compare the previous results with solutions obtained using
passive and active vibration controllers employing an inertial actuator.

3.1. Mass–spring–damper system on the flexible plate

Fig. 4 shows the case where a passive system, comprising a mass, spring and a damper, is
installed on the plate at P1 ¼ ð0:3059m; 0:2841mÞ; 2 cm from the primary force at P0 ¼

ð0:32m; 0:27mÞ: The values that were used in the simulations for this passive system were chosen
to match those in the experimental investigation and were ma ¼ 0:24 kg; ca ¼ 18Ns=m and ka ¼

2000N=m; where ma is the moving mass, ca is the damping of the passive system and ka is its
stiffness. Adding a passive mass–spring–damper system on a finite plate does not imply any
Flexible Plate

 fp

Fig. 4. A point primary force and a point secondary force, obtained through a mass–spring–damper system, applied to

a finite 700� 500� 1.85mm3 plate. The plate is clamped on two opposite edges and free on the other two edges.
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restriction on the stability margin of the whole structure. Thus, other values of the parameters can
be chosen, which will affect performance according to the well-known behaviour of a vibration
neutraliser. However, in order to implement skyhook damping with a good stability margin using
an inertial actuator, the natural frequency of the actuator must be below the first resonance
frequency of the structure under control and the actuator resonance should be well damped [9].
This implies some limitations in the choice of the parameters, as it will be explained in the next
section.
The transmitted force, ft, exerted by a mass–spring–damper system is equal to the secondary

force fs and is given by [10]

f s ¼ f t ¼ 	
jomaka 	 o2maca

ka þ joca 	 o2ma

vb ¼ 	Zopenvb: ð12Þ

The velocity, vb, of the base at P1 is given by

vb ¼ Y 10f p þ Y 11f t ¼ Y 10f p 	 Y 11Zopenvb; ð13Þ

which can be rewritten as

vb ¼
Y 10

1þ Y 11Zopen
f p: ð14Þ

The total powerP, described by Eq. (2), can be computed from Eqs. (12) and (13). Fig. 5 shows
the power of the finite plate and in particular the dashed line shows the effect of the passive
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Fig. 5. Total power transmitted to the finite plate due to the primary force only (solid), the primary and secondary

forces with the optimal feedforward solution (faint), and the primary and secondary forces when the mass–spring–dash-

pot system with no other inner loop is applied (dashed). The distance between primary and secondary force is 2 cm.
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controller. The addition of the resonance frequency, oa; which is given by

oa ¼

ffiffiffiffiffiffi
ka

ma

s
ð15Þ

at about 14.5Hz can be hardly noticed, nor can the fact that the first resonances are slightly
shifted to higher frequencies due to the presence of the vibration neutralizer [18]. Although some
reduction in the total power is obtained, compared to the case where only the primary force is
present, the difference with the optimal solution is large. The impedance of the passive system is
shown in Fig. 6. The impedance is passive and it is mass dominated between 0Hz and the
resonance frequency of the passive device, whereas it is mainly damping dominated at higher
frequencies. The behaviour of the magnitude of the impedance is typical of the dynamic response
of a vibration neutralizer, which is quite different from the optimal solution in Fig. 3. This
difference in the impedance presented to the system explains the considerable difference in
performance, together with the fact that the damping value of the actuator is 18Ns/m, which is
much less than that calculated in Section 2 that is required for optimal control (4000Ns/m).

3.2. Inertial actuator with local displacement feedback and plate velocity feedback on the flexible

plate

An inertial actuator has a mass, a ‘‘proof-mass’’, supported on a spring and driven by an
external force. The force in small actuators is normally generated by an electromagnetic circuit.
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Fig. 6. Mechanical impedance of the mass–spring–dashpot system.
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The suspended mass can either be the magnets with supporting structure or in some cases the coil
structure. The transduction mechanism which would supply the force to the system is not
modelled in detail because its internal dynamics are typically well beyond the bandwidth of the
structural response. Fig. 7 illustrates the case where a modified inertial actuator, based on an
inertial actuator with local displacement feedback, described in Ref. [19], is installed on the plate.
The measured displacement of the proof mass relative to the inertial actuator’s base is fed to a
PID controller, which modifies the frequency response of the actuator. If it is necessary to reduce
the resonance frequency of the actuator because it is greater than or equal to the first structural
mode of the system that needs to be isolated, this can be done with a negative position feedback
gain. If this action induces unwanted deflections because of the low stiffness of the closed-loop
system, then a self-levelling mechanism can be employed, which is based on a integral
displacement feedback. By doing so, however, the overall system gets closer to instability and
additional damping is needed. Another reason why damping may be necessary is if an outer
velocity feedback is to be implemented. It was shown by Elliott et al. [9] that this kind of system is
conditionally stable and the vicinity to the (	1,0) point in the Nyquist plot depends on how well
damped the inertial actuator is. For these reasons, the implementation of a local rate feedback
control turns out to be very effective in increasing the damping of the actuator. A modified
actuator resonance frequency at about 8Hz was considered sufficient in this case since the first
plate resonance is at about 35Hz. The values within the PID controller that were used in the
simulations are: proportional gain gP ¼ 	1000; integral gain gI ¼ 10;000; and differential gain
gV ¼ 18: The secondary force fs is equal to the transmitted force ft exerted by the device and its
Flexible Plate

 fp
PID 

 fc

 vb

ZD

Fig. 7. A point primary force and a point secondary force, obtained through the modified inertial actuator with outer

velocity feedback control, applied to a 700� 500� 1.85mm3 plate obtained through the modified inertial actuator. The

plate is clamped on two opposite edges and free on the other two edges.
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equation, as a function of the command signal, fc, and the plate velocity at P1, vb, is
given by [19]

f s ¼ f t ¼
	o2ma

	o2ma þ joca þ ka þ gP þ gI=ðjoÞ þ jogV

f c

	
jomaka 	 o2maca

� �
� gP þ gI=ðjoÞ þ joðgV þ ZaÞ
� �

	o2ma þ joca þ ka þ gP þ gI=ðjoÞ þ jogV

� �
joZa

vb; ð16Þ

where Za=ca+ka/(jo). The command force, fc, will be used to implement the outer velocity
feedback control loop. Eq. (16) can be grouped as

f t ¼ T 0
a f c 	 Z0

avb; ð17Þ

where T 0
a and Z0

a are the blocked response and mechanical impedance of the
actuator [19], as modified by the local displacement feedback. The base velocity at P1 is
given by

vb ¼ Y 10f p þ Y 11f t; ð18Þ

Substituting Eq. (17) into Eq. (18) the base velocity is computed as a function of the primary
force fp and the control command fc:

vb ¼
Y 10

1þ Y 11Z
0
a

f p þ
Y 11T

0
a

1þ Y 11Z
0
a

f c: ð19Þ

When the outer velocity feedback loop, described by

f c ¼ 	ZDvb; ð20Þ

is implemented, the choice of the outer gain ZD becomes important in order to guarantee a good
performance. Fig. 8 shows the ratio of the frequency-averaged power between power of the
controller (without outer loop) and the active control (with outer loop) as a function of the outer
velocity feedback gain, ZD, assuming that the feedback loop is stable. The minimum of the
function at ZD ¼ 2080 indicates the value of the gain that provides the greatest attenuation in
terms of power. In this case, the attenuation is about 11.2 dB. In terms of stability, when the
device is installed and the outer velocity feedback control loop is implemented based on the
measurement of vb, the Nyquist plot of the second term of Eq. (19) provides the means to
determine the stability of the closed-loop system [20]. The theoretical active controller becomes
unstable when the outer velocity feedback gain is greater than 2410, as can be deduced from the
Nyquist plot in Fig. 9. In the simulations, a velocity feedback gain of ZD ¼ 150 was chosen in
order to guarantee a 6 dB stability margin when the additional phase shifts present in the
experimental system are accounted for [21]. This implies, from Fig. 8, that an attenuation of only
about 4 dB can be achieved. When the outer velocity feedback loop in Eq. (20) is implemented, the
base velocity, described in Eq. (19), becomes

vb ¼
Y 10

1þ Y 11Z
0
a þ Y 11Y

0
a ZD

f p: ð21Þ
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Fig. 8. Ratio of the frequency averaged total power transmitted to the plate with the modified actuator before and after

the outer feedback loop is implemented, as a function of the outer velocity feedback gain ZD. The minimum of the

function at ZD ¼ 2080 indicates the value of the gain that provides the greatest attenuation (about 11.2 dB) in terms of

power. The active controller becomes unstable for outer velocity gains ZD42410: The distance between primary and
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is finite. The values within the PID controller that were used in the simulations are: gP ¼ 	1;000; gI ¼ 10;000; gV ¼ 18;
and the outer velocity feedback gain ZD ¼ 150:
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Substituting Eq. (20) into Eq. (16), the transmitted force, ft, as a function of the bas velocity, vb,
is given by

f t ¼ 	
jomaka 	 o2maca

� �
� gP þ gI=ðjoÞ þ joðgV þ ZaÞ
� �

	 jo3ZaZD

	o2ma þ joca þ ka þ gP þ gI=ðjoÞ þ jogV

� �
joZa

vb: ð22Þ

Once the base velocity in Eq. (21) is computed, then the transmitted force in Eq. (22) can be
obtained and therefore the total power can be calculated. This is plotted in Fig. 10, where it can be
noted that the reduction of the total power due to the modified inertial actuator (dashed line) is
greater than the results obtained with the passive treatment, shown in Fig. 5. Although the
difference with the optimal solution is still large, useful reductions in power are predicted, which
shows that the modified inertial actuator can be used effectively in reducing the vibration of
panels. The impedance presented by the active mount to the system is given by Eq. (22), which is
plotted in Fig. 11. The impedance is not passive, unlike the previous case, and it is mainly
damping dominated at frequencies greater than the inertial actuator’s resonance frequency. As
explained in Ref. [19], this is due to the choice of the local feedback gains, and in particular the
derivative term within the PID controller. At high frequencies, the impedance tends to ZD þ

ca þ gV : Thus, out of the three gains within the inner PID controller, the derivative term plays an
important role in the performance results when the outer velocity feedback control loop is
implemented. Ideally, its value should be chosen such that the modified inertial actuator’s input
impedance is damping controlled [19]. In conclusion, the modified inertial actuator with outer
velocity feedback loop is an effective way of adding damping to the system.
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Fig. 10. Total power transmitted to the finite plate due to the primary force only (solid), the primary and secondary

forces when the optimal feedforward solution is applied (faint), and when the feedback system, based on the modified

inertial actuator and an outer feedback loop with ZD ¼ 150; is applied (dashed). The distance between primary and

secondary force is 2 cm.
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Fig. 11. Mechanical impedance of the inertial actuator with inner and outer feedback loops when the local

displacement feedback control and the outer velocity feedback control are implemented. In particular, gP ¼

	1000; gI ¼ 10;000; gV ¼ 18 and ZD ¼ 150:
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When the outer control gain ZD is chosen to be the equivalent impedance described in Eq. (11),
the control system turns out to be unstable. If the outer feedback controller is an integrator of the
form ZD=kD/(jo), interesting results are obtained. Choosing such a control impedance implies
that only the first part of the optimal impedance in Eq. (11) is considered. In other words, kD is
chosen to be the low-frequency passive approximation of the optimal solution. In particular, when
kD ¼ 550;000N=m (the same value was chosen as the passive approximation for this system in
Ref. [17]), the closed-loop system turns out to be conditionally stable, and a 6 dB stability margin
is guaranteed. This is shown in the Nyquist plot in Fig. 12, where the curve at low frequency
intersects the real axis at about –0.5. The total power for this case is plotted in Fig. 13, where the
reduction of the total power due to the modified inertial actuator and the outer controller, based
on the passive approximation of the optimal solution, is quite outstanding and not very dissimilar
from the optimal solution. At low frequency, attenuations of more than 40 dB can be obtained,
which indicates that the panel vibrations are almost suppressed. Unfortunately in real systems,
due to low-frequency phase shifts of the electronic components [21], the stability margin of the
system is greatly reduced and the performance of the closed-loop system is not dissimilar to the
outer velocity feedback case. By considering an outer feedback controller of the form ZD=kD/

(jo), stiffness is added to the system (also illustrated in the impedance plot in Fig. 14) and this
implies that the peaks in Fig. 13 are moved to higher frequencies. This is beneficial in the low-
frequency range [17], but those peaks are not suppressed, they are simply moved to higher
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Fig. 12. Predicted Nyquist plot of the open-loop system when the modified inertial actuator is applied and an outer

feedback control loop, based on an integrator of the form ZD/(jo), is implemented. The distance between primary and

secondary force is 2 cm and the plate is finite. The values within the PID controller that were used in the simulations are:

gP ¼ 	1;000; gI ¼ 10;000; gV ¼ 18; and the outer feedback gain ZD=kD/(jo), where kD ¼ 550;000:
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Fig. 13. Total power transmitted to the finite plate due to the primary force only (solid), the primary and secondary

forces with the optimal feedforward solution (faint), and the primary and secondary forces when the modified inertial

actuator and the outer feedback controller, based on a passive approximation of the optimal solution ZD=kD/(jo) with
kD ¼ 550;000; are applied (dashed). The distance between primary and secondary force is 2 cm.
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Fig. 14. Mechanical impedance of the inertial actuator with inner and outer feedback loops when the local

displacement feedback control and the outer integral feedback control are implemented. In particular, gP ¼

	1;000; gI ¼ 10;000; gV ¼ 18 and ZD=kD/(jo), where kD ¼ 550;000:
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frequencies. Also, a portion of the inertial actuator resonance which occurs at low frequency is
greatly amplified because of the integral velocity feedback control law. The impedance presented
to the system is plotted in Fig. 14. It is not passive, and it is mainly stiffness dominated, except at
very low frequency, where a phase shift occurs. The magnitude of the impedance is ‘‘that of
the dynamic response of a vibration neutralizer’’, which is quite different from the optimal
solution in Fig. 3.
4. Experiments on active vibration suppression with the modified inertial actuator

In this section, we consider the practical use of an inertial actuator with local feedback for the
active suppression of a vibrating flexible plate. The arrangement is illustrated in Fig. 15. It consists
of a flexible steel plate 700� 500� 1.85mm3, clamped on the two longer sides [22], on which is
mounted a modified inertial actuator. The primary force is provided by an LDS Ling 401 shaker,
placed underneath the plate. The inertial actuator used for the experiments to produce the control
force was a mechanically modified version of an Active Tuned Vibration Absorber (ATVA)
manufactured by ULTRA Electronics, described in detail in Ref. [23] and shown in Fig. 14, from
which the internal springs were removed, leaving the proof mass (ma ¼ 0:24 kg) attached to the
case by eight thin flexible supports. This modification in the stiffness (so that ka ¼ 2000N=m)
changed the actuator resonance frequency from 73.8 to 14.5Hz [19]. The measured damping ratio
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Fig. 15. The experimental arrangement, which consists of a finite flexible plate, driven by a primary force (shaker

underneath), and controlled by a modified ULTRA Electronics inertial actuator placed on the flexible plate.
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Fig. 16. Predicted (a) and measured (b) frequency response of the plate velocity at the secondary location per primary

excitation when no control is implemented (solid), and when both the modified inertial actuator and the outer velocity

feedback loop are implemented with ZD ¼ 150 (faint). Under experimental conditions, stability is guaranteed when

ZDo300:
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was used to estimate the damping factor as ca ¼ 18Ns=m: An inner displacement feedback loop is
used to modify the response of the inertial actuator, as discussed above, and an outer velocity
feedback system is used to provide active skyhook damping for the equipment. The values of the
gains within the PID controller were chosen in order to provide a modified inertial actuator with
the characteristics described in Section 3.2. In this experimental configuration, an outer velocity
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Fig. 17. Measured frequency response of the plate velocity at the secondary location per primary excitation when no

control is implemented (solid), when a passive vibration absorber, based on foam, is installed and covers the whole plate

(a, faint), and when a passive vibration absorber, based on foam and aluminium layers, is installed and covers the whole

plate (b, faint).
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feedback control gain ZD ¼ 150 was chosen, which guarantees a 6 dB stability margin. Fig. 16(a)
shows theoretical prediction of the equipment velocity per unit primary excitation for the
uncontrolled and the control cases when the relative distance is 2 cm. Good vibration isolation
conditions can be achieved by the modified inertial actuator and the outer velocity feedback loop.
The outer loop, with response ZD, improves the behaviour of the plate, but it also enhances its
frequency response at low frequency, as predicted by the conditional stability of the closed loop
system. The corresponding measured data are shown in Fig. 16(b), where a 20 dB reduction at the
first plate resonance frequencies was observed. The theoretical prediction and the experimental
measurements agree well, demonstrating the effectiveness of the active control system based on a
modified inertial actuator with local displacement feedback control.
This result was compared with an entirely passive vibration control method, when the flexible

plate was entirely covered by either a passive unconstrained viscoelastic layer, composed of foam,
or a 2.5-cm-thick passive constrained layered absorber, composed of the same viscoelastic material
with layers of aluminium. Fig. 17 shows the measured data, compared to the uncontrolled case.
Although the passive treatment is equally or slightly more effective at higher frequencies, compared
with Fig. 16(b), it is much less effective then the active treatment at lower frequencies. The mass of
the first passive coating was 0.275 kg, while the mass of the second passive coating was 0.645 kg,
which compared to either the mass of the proof mass (0.24 kg) or the mass of the whole modified
inertial actuator (0.42 kg) confirms the potentiality of the active solution.

4.1. Kinetic energy analysis of the active vibration suppression system with the modified inertial
actuator

The control performance of the active vibration suppression system with the modified inertial
actuator has been re-examined based on the kinetic energy. To calculate the true kinetic energy of
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Fig. 18. Predicted (a) and measured (b) sum of square velocities of the plate when no control is implemented (solid),

and when both the modified inertial actuator and the outer velocity feedback loop are implemented with ZD ¼ 150

(faint).
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the system, the vibration of both the rigid body modes and the flexible body modes would have to
be accounted for. In the experiments, however, only the plate velocities at 40 locations were
measured, when the modified inertial actuator with outer velocity feedback loop was installed at
the same location as described above. The sum of squared velocities at each location is therefore
used to evaluate the control performance of the system. Fig. 18 shows the predicted and
experimental results, which lead to similar conclusions as those drawn in the previous section.
Theory and measurements agree well, showing up to 20 dB reduction in the vibration level and
demonstrating the effectiveness of the modified inertial actuator.
5. Variation of performance with the location of the modified inertial actuator

The objective of this section is to compare the previous results with solutions obtained by
placing the modified inertial actuator with outer velocity feedback loop in other locations on the
flexible plate.
Fig. 19 shows the contour plot of the ratio of the frequency-averaged power between power of

the uncontrolled plate and the controlled plate using a modified inertial actuator and no outer
loop, as a function of the x and y positions of the actuator on the flexible plate. In other words,
the primary force is assumed to be at a location P0 ¼ ð0:32m; 0:27mÞ; which guarantees that a
sufficient number of modes are excited, while the controller, based on the modified inertial
actuator with no outer loop, is assumed to be installed in turn on the plate at different locations.
For this purpose, 500 potential secondary locations were selected. Fig. 19 shows that the
controller achieves at least a 3 dB reduction in the ratio of the frequency-averaged power not only
around the location of the primary force, as expected, but also at symmetrical locations on the
plate. This distribution obviously changes if the location of the primary force changes. When the
outer velocity feedback loop is implemented, the choice of the outer gain ZD becomes important
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in order to guarantee a certain stability margin and good performance. As Fig. 8 shows, the ratio
of the frequency-averaged power between power of the controller (without outer loop) and the
active control (with outer loop), as a function of the outer velocity feedback gain is ZD, has a
minimum, which indicates the value of the gain that provides the greatest attenuation in terms of
power. When the active control, based on the modified inertial actuator with outer velocity
feedback loop, is implemented, the value of the feedback control gain ZD that minimizes the ratio
of the frequency-averaged power can be computed at each of the 500 selected locations on the
plate, and is shown in Fig. 20. For each case, the stability of the closed-loop system was
guaranteed, although no specific stability margin was set. Depending on the location, the
maximum gain ZD before instability can change considerably, but the gain which minimizes the
ratio of the frequency-averaged power was always computed to be less or equal than the stability
limit. In Fig. 20 three main regions can be identified: around the location of the primary force high
outer loop gains are needed in order to achieve the best attenuation possible with the active
controller. High gains are also required close to the clamped edges. In the rest of the plate,
although there are some differences, lower gains are needed. Fig. 21 shows the contour plot of the
ratio of the frequency-averaged power when the gains in Fig. 20 are used in the outer feedback
loop controller. In other words, Fig. 21 shows the best attenuation that can be obtained with the
active controller for that specific primary force location. If the active controller is placed near the
primary force, average attenuations of up to 12.9 dB can be achieved within the selected frequency
range between 0 and 200Hz, using the high outer gains shown in Fig. 20. This attenuation is
decreased down to about 9 dB if the active controller is installed about 8 cm away from the
primary force, where the x-direction seems to be a little more privileged than the y-direction in
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terms of attenuation. Although high gains are needed along the edges, as shown in Fig. 21, the
attenuation is not significant, while in the rest of the plate attenuations, which vary from 2.3 to
5.4 dB, can be obtained, depending on the location of the secondary force.
In summary, the performance of the control strategy, based on the modified inertial actuator

with outer velocity feedback control, depends on both the relative distance between primary and
secondary forces as well as their absolute location on the plate. Ideally, the best solution would be
to install the controller as close as possible to the primary disturbance.
6. Conclusions

In this study, the total power of the forces exerting on a structure was minimized and a
comparison was made between optimal solutions and the performance of various passive and
active control treatments involving inertial actuators. In particular, the optimized impedance for
global control was compared to the performance of a modified inertial actuator. It was found
that, although the optimal impedance is able to provide a more substantial total power reduction
than the other treatments, the modified inertial actuator can still guarantee a good power
reduction, especially when combined with an outer velocity feedback controller. This seems to be
a very promising solution to the vibration suppression problem, even though attention must be
paid to the location of the secondary force in order to achieve the best possible attenuation.
In using an inertial actuator for active vibration isolation, the resonance frequency should be

lower than the first natural frequency of the system under control and it should be well damped.
Actuators with very low resonance frequencies, however, have large static displacements due to
gravity. The modified inertial actuator solves this problem. It is based on an inertial actuator and
a local PID feedback loop which uses the measurement of the relative displacement between the
actuator base and the actuator moving mass. The control law is the sum of an integral term, which
provides self-levelling and solves the sagging problem, a derivative term, which provides the
device with sufficient initial damping to guarantee a very good stability margin, and a positive or
negative proportional term, which determines the actuator resonance frequency. The phase shifts
due to transducer-conditioning circuitry limit the maximum gain which can be achieved in the
outer loop of the actuator before instability. In the current arrangement, a maximum gain of only
150N/m s has been used, which only gives an impedance close to the optimal value when the
actuator is positioned some distance from the primary source, as shown in Fig. 20. Much larger
reductions in power output from a single primary force are, in principle, possible if the
destabilizing phase shifts could be reduced and the inertial actuator was placed close to the
primary excitation with a gain which was perhaps ten times that currently used.
References

[1] M.J. Brennan, J. Dayou, Global control of vibration using a tunable vibration neutralizer, Journal of Sound and

Vibration 232 (3) (2000) 585–600.

[2] O. Bardou, P. Gardonio, S.J. Elliott, R.J. Pinnington, Active power minimization and power absorption in a plate

with force and moment excitation, Journal of Sound and Vibration 208 (1) (1997) 111–151.



ARTICLE IN PRESS

L. Benassi, S.J. Elliott / Journal of Sound and Vibration 283 (2005) 69–9090
[3] S.J. Elliott, P. Joseph, P.A. Nelson, M.E. Johnson, Power output minimizations and power absorption in the

active control of sound, Journal of the Acoustical Society of America 90 (5) (1991) 2501–2512.

[4] S.J. Sharp, P.A. Nelson, G.H. Koopman, A theoretical investigation of optimal power absorption as a noise

control technique, Journal of Sound and Vibration 251 (5) (2002) 927–935.

[5] P.A. Nelson, S.J. Elliott, Active Control of Sound, Academic Press, New York, 1992.

[6] D.W. Miller, S.R. Hall, A.H. von Flotow, Optimal control of power flow at structural junctions, Journal of Sound

and Vibration 140 (3) (1990) 475–497.

[7] P.J. Titterton, Synthesis of optimal, single-frequency, passive control laws, with applications to reducing the

acoustic radiation from a submerged spherical shell, Journal of the Acoustical Society of America 105 (4) (1999)

2261–2268.

[8] D. Guicking, J. Melcher, R. Wimmel, Active impedance control in mechanical structures, Acoustica 69 (1989)

39–52.

[9] S.J. Elliott, M. Serrand, P. Gardonio, Feedback stability limits for active isolation systems with reactive and

inertial actuators, Journal of Vibration and Acoustics 123 (2001) 250–261.

[10] L. Benassi, S.J. Elliott, P. Gardonio, Active vibration isolation using an inertial actuator with local force feedback

control, Journal of Sound and Vibration 276 (2004) 157–179.

[11] L. Benassi, P. Gardonio, S.J. Elliott, Equipment isolation of a SDOF system with an inertial actuator using

feedback control strategies, Proceedings of the ACTIVE2002 Conference, Southampton, UK, 15–17 July 2002.

[12] W. Soedel, Vibration of Shells and Plates, Marcel-Dekker, New York, 1993.

[13] L. Cremer, M. Heckl, E.E. Ungar, Structure-borne Sound, Springer, Berlin, 1988.

[14] R.E.D. Bishop, D.C. Johnson, The Mechanics of Vibration, Cambridge University Press, Cambridge, 1960.

[15] A.W. Leissa, Vibration of Plates, NASA SP-160, 1969.

[16] C.R. Fuller, S.J. Elliott, P.A. Nelson, Active Control of Vibration, Academic Press, New York, 1997.

[17] L. Benassi, S.J. Elliott, The equivalent impedance of power-minimising vibration controllers on plates, Journal of

Sound and Vibration 283 (1+2) (2005) 47–67, this issue; doi:10.1016/j.jsv.2004.03.060.

[18] Den Hartog, Mechanical Vibrations, Dover Publications, New York, 1985.

[19] L. Benassi, S.J. Elliott, Active vibration isolation using an inertial actuator with local displacement feedback

control, Journal of Sound and Vibration 278 (2004) 705–724.

[20] G.F. Franklin, Feedback Control of Dynamic Systems, 3rd ed., Addison-Wesley, Reading, MA, 1994.

[21] K.A. Ananthganeshan, M.J. Brennan, S.J. Elliott, High and low frequency instabilities in feedback control of a

vibrating single-degree-of-freedom system, Proceedings of the ACTIVE2002 Conference, Southampton, UK, 15–17

July 2002.

[22] M. Serrand, Direct Velocity Feedback Control of Equipment Velocity, M.Phil. Thesis, University of

Southampton, 2000.

[23] R. Hinchliffe, I. Scott, M. Purver, I. Stothers, Tonal active control in production on a large turbo-prop aircraft,

Proceedings of the ACTIVE2002 Conference, Southampton, UK, 15–17 July 2002.


	Global control of a vibrating plate using a �feedback-controlled inertial actuator
	Introduction
	Optimized impedance for global control of vibrating finite plates
	Sub-optimal impedance for global control of vibrating finite plates
	Massndashspringndashdamper system on the flexible plate
	Inertial actuator with local displacement feedback and plate velocity feedback on the flexible plate

	Experiments on active vibration suppression with the modified inertial actuator
	Kinetic energy analysis of the active vibration suppression system with the modified inertial actuator

	Variation of performance with the location of the modified inertial actuator
	Conclusions
	References


