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1. Introduction

This paper extends the rolling element bearing stiffness matrix formulation developed by Lim
and Singh [1-5] to include the time-variation effect of raceway rotation. In that earlier work, the
rolling element bearing stiffness matrix was formulated in time-invariant form assuming fixed
element position. However, due to the orbital motion of the elements under most rotating
conditions, the true nature of the bearing stiffness is periodic in time. Characterizing the time-
varying form of the stiffness function, and computing its impact on the vibration response of
geared rotor system is the focus of this communication.

The first few major works on rolling element bearing were performed by Jones [6], Harris [7],
and Palmgren [8]. They described the radial and axial load-deflection behavior using a nonlinear
stiffness coefficient, which were subsequently adopted in numerous bearing analyses [9-11].
However, these early bearing stiffness models were inadequate and incapable of predicting the
vibration transmission across bearings. To address the problem, a more generalized formulation
based on the Hertzian theory, which relates the raceway displacement vector to the bearing load
vector, was formulated by Lim and Singh [1-5]. The new theory led to the derivation of a time-
invariant bearing stiffness matrix [K],,, of dimension 5 corresponding to 2 radial, 1 axial, and 2
angular coordinates; the rotation about the shaft axis by design is free. This new bearing stiffness
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theory was further applied to examine bearing systems in rotor and geared machineries [2—4]. In
another study, Houpert [12] proposed a comparable set of nonlinear algebraic equations relating
the 3 bearing forces and 2 tilting moments to the displacement vector and design parameters. The
work simply produced a time-invariant nonlinear bearing element for structural analysis of
systems with shafts, bearings and housing. Also, Houpert’s theory fell short of providing an
explicit stiffness matrix that can be used for vibration transmissibility.

2. Time-varying stiffness

The basic assumptions and nomenclature employed by Lim and Singh [1-5] in the earlier
studies are adopted here unless indicated otherwise. For reference, Fig. 1 shows the ball and roller
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Fig. 1. Rolling element bearing kinematics and the corresponding coordinate systems: (a) radial view; (b) axial view of
ball bearing; (c) axial view of roller bearing; outer ring (cup), 1; rolling element, 2; inner ring (cone), 3.
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bearing kinematics and their corresponding coordinate systems employed here. The Hertzian
theory is applied to describe the elastic contacts between the rolling elements and raceways (i.e.
cup and cone).

To track the movement of the rolling elements, we can define the instantaneous orbital position
angle , of the sth element at time ¢ from the pre-defined x-axis assuming pure rolling as

t//s(t)zl(l—r—bcos(oco))QZl—{—M, s=1,2,...,7. (1)
rq Z

2

where r; is the element radius, o is the unloaded contact angle, Q. is the mean shaft rotational
speed, r, is the inner race curvature center radius for ball type or pitch radius for roller type, and
Z is the number of elements. Due to the orbital rotation Q., the number and position of each
element under stress will vary with time as shown qualitatively in Figs. 2(a) and (b) that depict two
snapshots in time given a radial force F. The resultant perturbation in the bearing stiffness is
illustrated in Fig. 2(c).

In the subsequent analysis, the rotation effect of Eq. (1) is applied to the [K],,, model developed
by Lim and Singh [1,5] to give rise to a new time-varying formulation. For ball bearings, the
elastic deformation 0 ,(¥/(¢)) of the sth element is

(AW~ Ao, 5,>0
8s((1)) = {0’ S } (2a)
A1) = 1/ (4o cos(@) + (3),,)” + (o sin(zo) + (9).,)2, (2b)

/
! / Ws (!0+At)

1 Position
. (@)
8 Position
£ ®)
% l K@®
K,

"?I:— K (90=0) l

(b) : > Timc,t

Fig. 2. Time-variation effect of the orbital motion on radially loaded rolling element bearing stiffness: (a) loaded
elements (shaded circles) at time 7y; (b) loaded elements at time 7y + A¢; (c) expected time variation in radial stiffness.
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where 4 and A are the loaded and unloaded relative distance between the inner ¢; and outer a,,
raceway groove curvature centers. In Eq. (2a), 05, <0 implies that the element is stress free. The
net radial (0),, and axial ()., displacements are given by

(0)y5 = Oxm COS(Y (1)) + Oym SN ((1)) — 1L, (3a)
(0)z5 = 0zm + 1a{Bry SNy (D) = B cOS(W5()}, (3b)

where r; is the bearing radial clearance, and ;, f,, are the translational and
angular displacements, respectively. Here, the subscript i can take on the bearing coordinate x,
y or z, and w only refers to x or y. Note that Eq. (3) applies to roller type as well, and will be
discussed later.

From the Hertzian theory, the load-deflection relation of a single element is given by

0, = K4, 4

where Q, is the normal load, K, is the Hertzian stiffness coefficient that is a function of materials
and dimensions of element and raceways, and J;, is given in Eq. (2a). The superscript n is the
element load-deflection exponent that is exactly % for ball type with elliptical contact. By
performing a vector sum of all the non-zero element loads Q,, i.e. 6,>0, the resultant bearing
loads and moments can be shown to be

Fpam [ cos(a) cos(,(1))
Foym 7 cos(ory) sin(y (1))
Foon = 0, sin(a) : (5)
My * ra sin(o) sin(y (1))
( Mpym ) —rq sin(oy) cos(y (7)) )

where Fpip, Mpym, i = X,y,zand w = x, y, are the mean force and moment of the corresponding
coordinate i or w, respectively, and «; is the instantaneous contact angle of the sth element. Then
by evaluating the partial derivatives of the bearing loads with respect to each bearing
displacement term, a symmetric bearing stiffness matrix [K(?)];,,, i.e., kp; = kp;;, that is periodic
in time can be formulated as

an[m/a(Sjm anim/aﬁjm

K =
[ (t)]hm aMbim/a5jm aMb[m/aﬁjm

], Lj=Xx,),z (6)

The elements of the matrix for ball bearing are explicitly given in Appendix A.

For roller bearing, the elastic deformation Jgs(/,(?),{) of the sth element is a function
of both () and the normalized length { that accounts for load distribution along the
roller axis:

5Rs(ws(r>,o={oV () + LLW L), ‘;izg} _05<(<0.5, (7a)
V(1) = (0)y, c0s(0) + (3),, sin(a) — re, (7b)

W () = =P sin((1) + By, cos(y (1)), (7c)
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where r. is the crown drop. Again, applying the Hertzian contact stress principle and integrating
along the roller contact line yields the load-deflection relation for the sth element:

&
O, =Ky [ (VW 0)+ LW ()" dL, ®)

81

where n now is equal to 19—0 assuming a rectangular contact area. The subset ({;,{,) in Eq. (8) is
bounded by the following limits of integration given by

o {0,031 LI 020 o
T -0, LW (1)<0
0.5, LW (1)=0
¢ ={ . } (9b)
min[—V(y())/LW () (1)),0.5], LW((1)<0

The resultant bearing loads can then be attained by doing a vector sum of all non-zero element
loads Q;:

Fhm cos(os) cos(y(1)
Fpym . cos(a,) sin( (1))
Foom =Y 0, sin(o) : (10a)
My * (ra sin(ay) + ey) sin(¥ (1))
{ My ) [ —(ra sin(oy) + e5) cos((1)) )

LUV O0.0 + LWL, 0 de
P00+ LW0.0) A

From the load-displacement relations given above, the roller bearing stiffness matrix [K(?)],,, can
be derived by evaluating the appropriate partial derivatives as shown in Eq. (6). The explicit
expressions for the roller bearing stiffness terms are given in Appendix B.

For both ball and roller types, the instantaneous time-varying stiffness coefficients can be
represented in a more general form as Kp;(1) = Kpjjp + Kpija(t), i,j =18 x,,2,0y,0,,0.. In this
form, Kj;;4(?) is in fact the periodic component that fluctuates about the mean stiffness Ky ,.

(10b)

3. Parametric analysis

The bearing systems previously studied by Lim and Singh [1,5] are re-analyzed here to
determine the effect of orbital motion .. To demonstrate the nature of time-variation, the
stiffness coefficients are computed as a function of the normalized orbital position angle given by
W/ where Yy = 2n/Z radians is the element-to-element angular distance. Figs. 3 and 4 plot the
dominant K; terms for a radially loaded angular contact ball type (og>0°) and a straight roller
bearing (o = 0°), respectively. The results clearly show the periodic nature of the stiffness
coefficients with the fundamental time period given by y;/Q.. For these same cases, the
calculations by Lim and Singh only give a single value for each Kj;. Most of the terms in Fig. 3
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Fig. 4. Variation in the dominant stiffness coefficients of a radially loaded roller bearing for dy,, = 0.025mm, ry =
21.25mm, o9 = 0°, R, = 10mm, r, = 3mm, r;, = 0.00175mm, Z = 12, K, = 3 x 10} N/m", and n = 10/9 (
0.00175mm; ----- , 1. =0).

> 'L =

(ball type) appear nearly sinusoidal except Kj.., Kjyox and Ky, that vary like a rectified sine
wave. The discontinuity observed in Fig. 4 (roller type) is essentially due to the variation in the
number of loaded rolling elements within one element-to-element cycle, and is more acute when
radial clearance is greater.

The ratio of the peak-to-peak to root-mean-square (PPRMS) parameter is proposed to assess
the depth of variation of the bearing stiffness coefficient. For the same two ball and roller cases,
their PPRMS ratios are given in Figs. 5 and 6, respectively, as a function of the unloaded contact
angle og. Results show, for both cases, the largest PPRMS levels are observed in the translational
stiffness coefficients Kj,, and Kp,., the translational-rotational stiffness coefficients Kj-gx, Kpxox,
and Kp,g,, and the rotational stiffness coefficient Kp.g,. Hence, these terms are expected to have
the most significant contributions to the difference between a linear time-invariant and a time-
varying vibration response.

4. Geared rotor system

As an example, a lumped parameter dynamic model of the bearing supported gear pair system
shown in Fig. 7 is examined to determine the extent of the effect of time-variation in bearing

«

Fig. 3. Variation in the dominant stiffness coefficients of a radially loaded ball bearing for dy,, = 0.025mm, r; =
19.65mm, Ay = 0.05mm, oy = 30°, r, = 3mm, r;, = 0.00005mm, Z =12, K,, = 1.45 x IOION/m”, and n = 3/2.
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Fig. 5. Effect of oy on the PPRMS of dominant stiffness coefficients of the radially loaded ball bearing results of Fig. 3.
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stiffness on vibration response. The linear time-varying (LTV) formulation can generally be
represented as

[M){g(D} + [CONG(D} + [K(D{q(D)} = {f (D}, (11)
where {g(1)} is {x, ¥, zp O Oy 0y X4 ¥, z4 Oxy Oy 0-4}". The mass matrix [M] can be written
as

[M] = diag{{m}} {1}, {m};{I}}}, (12)

Here, m stands for mass, I represents mass moment of inertia, subscripts p, g refer to the pinion
and gear, and superscript T is the transpose operation. The system stiffness matrix [K(¢)] is
explicitly given in Appendix C, while the damping matrix is assumed [C(?)] = B[K(¢)] where £ is
the proportionality constant. The applied load vector {f(f)} due to the transmission error
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Fig. 7. Geared rotor system model with transmission error e(¢) as the primary excitation function. Rolling element
bearing, 1; pinion, 2; gear, 3; my=m, =05kg I,=1,=3.0x 1074 kgm™2; Ry =R, =346mm; K, =10 x
108 N/m; [, = 25 mm; pressure angle = 20°; number of teeth = 28.
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excitation e(?) is

0 \
—Ke(t) — Cpé(t)
0
0
0
K, Rye(t) + CR,é(1)
0 )
Kme(1) + Cpeé(t)
0
0
0
K Rye(t) + CRyé(1) )

)= (13)

where K,, is the gear mesh stiffness and C, is the mesh damping coefficient. The
time-varying governing equation (11) can be solved for the steady-state vibrations using
the Runge-Kutta time-integration scheme. For time-invariant cases where [K] is constant,
the steady-state response vector in the frequency domain is {§(w)} = (—w’[M]+
io[C] + [K]) "' {f(w)}. Two time-invariant cases are analyzed here. One is the linear time-invariant
(LTI) case similar to the analysis by Lim and Singh, which consists of constant bearing stiffnesses
based on fixed element position. The other is the mean linear time-varying (MLTV) case
formulated from averaging the bearing stiffness values over one element-to-clement angular
distance.

Using the three different models described above, the vibration response functions of the
geared rotor system due to transmission error excitation are shown in Figs. 8 and 9 for
angular contact ball bearing and straight roller bearing applications, respectively. For each case,
the pinion and gear translational and rotational response are computed. The translational
motion is parallel to the gear mesh line-of-action that is along the pressure angle direction.
From the response computed, it is quite clear that the MLTV predictions give nearly
the same results as the true linear time-varying (LTV) model. On the other hand, the LTI
model tends to underestimate the resonance frequency even though the peak amplitude is
not too far off from both the LTV and MLTV results. This is evident from Table 1 that
lists the natural frequency deviations of both LTI and MLTV modes, and also from the
locations of peak responses seen in Figs. 8 and 9. Note that the pinion and gear behaviors are
nearly identical due to the symmetry of the system defined. From these results, we can conclude
that the time-variation effect is moderate.

However, the models do show that adopting the averaged bearing stiffness formulation is
sufficient, which a slight improvement over the earlier quasi-static, fixed element position, bearing
model proposed by Lim and Singh.
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Fig. 8. Vibration response of the geared rotor system supported by angular contact ball bearing under radial preload
(see Fig. 3 for bearing parameter) due to transmission error excitation: (a) pinion/gear translation motion along the y-
direction; (b) pinion/gear rotational motion about the z-axis. (A, LTV, ----- , MLTV; ——, LTIL)

5. Summary

A new time-varying rolling element bearing stiffness formulation is proposed by extending an
earlier quasi-static, linear time-invariant theory. The formulation takes into the account of the effect
of shaft rotational speed that causes the orbital motion of the rolling elements of the bearings, which
in turn produces time-varying, periodic load and stiffness patterns. The nature of the time-varying
stiffness coefficients is also studied generally by transforming the dependence on shaft speed and time
into a function of normalized orbital position angle. The proposed time-varying theory provides a
basis for an improved time-averaged bearing stiffness model that yield comparable predictions for a
gear pair example to the direct numerical integration results. The new model is a slight improvement
over the earlier quasi-static, fixed element position, bearing stiffness formulation.
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Fig. 9. Vibration response of the geared rotor system supported by straight roller bearing under radial preload (see Fig.
4 for bearing parameter) due to transmission error excitation: (a) pinion/gear translation motion along the y-direction;
(b) pinion/gear rotational motion about the z-axis. (A, LTV; ----- , MLTV;, ——, LTIL)

Appendix A. Expression of the ball bearing stiffness coefficients

(A4, — Ao)" cos () {00 1 g2 — (5%)2,
Kbxx—K Z ! j3 }’

. (Ay — Ao)" sin( (1) cos( (DT + 42 — (52}
A4

Kbxy = Kn

b
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Table 1

Natural frequency (Hz) comparisons of flexible geared rotor system modes

Mode S Smrtv 4 (%)

Angular contact ball bearing

1,2 1444 1581 8.7
3 2761 2929 5.7
4 3709 4006 7.4
5,6 4141 4474 7.4
7,8 5072 5069 0.1
9 6040 6150 1.7
10,11 6553 6574 0.3

Straight roller bearing

1 3128 3376 73
2 4391 4949 11.3
34 5653 5651 ~ 0.0

5 6313 6591 4.2

A(%) = (furry — L)/ mervl x 100.

= (As — A0)"(5"),5(5"). cos(r (D)1 7245 — 1
oo 5 O v 0

N

B

= ra( Ay — Ag)"(0%),,(8%). sin(P,(1)) cos(hy(0)3 745 — 1
Kpxox = K, Z ‘ ’ e {A.‘ A }

b

z Vd(As - AO)n(é*)rs(é* zs COSZ(IPS(Z)){I - A:lf;lo}
Kbxf)y = Kn Z A3

b

. nAy(5*)? *
Ay — Ag) s () 4 2 — (572}
Kpyy = K, E : P

s

b

= (Ay = A0)(5"),(8")z sin(W(0)] 725 — 1
RS GYN )

N

b

= ra( Ay — Ap)"(8%),5(8%). sin* (Y, (D)4 42 — 1
Kby@x =K, Z ‘ ’ A3 {AS 4 }

s

2
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2 ra(As — A0)'(0%),(87)- sin(¥ (1)) cos(P (1)1 1 — 12
Kby@y = Kn Z ’ " A3 { e }

B

nA. S¥\2 "
: (4 = Ao)”{—ﬁ_jf) R e C )_35}
Kp.: = K, Z A3 s

. nAy(5*)2. *
: ra(As — AgY’ Sln(lﬁs(l‘)){% + A2 (0 )35}
Kpz0x = Ky Z A3

b

S%2
= ra(dy — Ao)' cos ({7, — P05+ 42}
sz@y = Kn Z A3

N

N

B

73, — o) sin? () {405 + 42 — (7))
Kb@x@x = Kn Z A3
A

s

B

. * nA;(5%)2
7= A" sin(Y (1)) cos, ()] (6", — "4 — 2}
Kb()xOy =K, Z A3

s

9

nA,(5*)%, *
= 13(d, — o) cos?( () {5 + 42— (7}
Kb()y()y = Kn Z A;

b

Kpio- = Kpoig- =0, i=x,y,z.

Appendix B. Expressions of the roller bearing stiffness coefficients
Ko = 1K cos' () Y Tocos' (0
Kuny = 1K cos'en) Y I cos () sint (1),
Kise = K,y cos(an) sino) Z Iy cos(y(0).

K = 1K,y cos(20) S (Lorq sin(oo) — 1) cos((1)) sin(y (1),
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— - ; 2
Ky = nK, cos(a) Z(I 1 — Lorq sin(o)) cos~(4(1)),
A
Ky = nK, cos™(ag) Y Iosin’(,(1),
N
Kypy. = nK, cos(ag) sin(a) Z 1y sin(y (7)),
S

Koy = 1Ky cos(o) S (Tora sin(ag) — 1) sin’(,(1),

Kby@y = _Kthx,

Kp:: = nK,, sin’(2) Z Iy,
Ky.9 = nK,, sin(og) z::(lord sin(og) — 1) sin(y4(2)),
Kp-0y = nK, sin(a) Z::U 1 — Lorg sin(og)) cos( (1)),
Kpoxox = 1K, i(lorj sin®(ctg) — 21174 sin(sp) + I2) sin’ (Y (1)),
Kuay = K, i(zllrd sin(ag) — Tor3 sin®(z) — 1) sin, (1) cos(y (1),

Kpoyoy = nK, Z(lorfl sin®(otg) — 21174 sin(s) + I2) cos* (1)),

Kpio: = Kpoip: =0, i=x,),z,
where I, and T'(u, () are given by
I,=Tw()—Tw (), u=0,1o0r2,

V+iLwy u _ uLO T VHIW) | uu=D(VHLW)
nWw (L) (n+HW + (n+1)(n+2)W? } w0

(Lozﬁrl anl _
R W =0

T(u,{) =



1178 H.-V. Liew, T.C. Lim | Journal of Sound and Vibration 283 (2005) 1163—1179

Appendix C. Expressions of the system stiffness coefficients for Eq. (11)

[K(0)]
K] [K]i2 [Klis [Klis [Klis [Kls 0 0 0 0 0
(K [Klx KLy [Kls [Kls [Klys 0 Kn 0 0 0
KLz [Kl [Klz [Kls [Kls [Klss 0 0 0 0 0
[Klsr  [Klg [Kliz [Klag [Klis [Klss 0 0 0 0 0
(K51 [Kls [Kls3 [Klss [Klss [Klse 0 0 0 0 0

| Kler [Kle, [Kles [Kles [Klgs [Klss 0 KnR, 0 0 0

oo o 0 0 0 (Kl [Khs (Kl [Khio (Kl
0 —-K,, 0 0 0 KR, [Klg7  [Klgs [Klgg [Klsio [Klsa
0 0 0 0 0 0 [Klo7  [Klg  [Klog [Kloio [Klon
0 0 0 0 0 0 [Klio7 [Kliog [Klioy [Klioio [Klion
0 0 0 0 0 0 [Klii7 [Klig [Klie [Khio [Khin
L0 —KnR; 0 0 0 KnRyRy [Kling [Kliog [Kliog [Klinio [Klion

[KTi1 = [Kpxxlp + [Kpxxlyps  [Klio = [Kbxyplyp + [Kbxylyps
(K114 = [Kbxox]jp + [Kbxox)yy + {[Kbxpljy — [Kbxyl,phrs
[Klys = [Kpxoplyp + [Koxoyliy + UKbxxliy — [Koxxlp}rs  [Klie = [Kpxoz1jy + [Kbxoz]ps
(K] = [Knyylp + [Kbyylip + Ky [Klaz = [Kpy:ly, + [Kbyzl,ps

[KLos = [Kbyoxlp + [Knyoxlyy + K byylyy — [Kyylip}r,
[Kls = [Knpoyljp + [Kpoylyp + {IKbyxlyy — [Kbpalip} s
(K33 = [Kbzz)pp + [Kpzzlyps  [Klsa = [Kpzoxlyy + [Kbzox]yp + {Kbzylyy — [Kbzylipt
(K35 = [Kbz0y])p + [Kbzop)yy + {Kbzxlyy — [Kbexlptrs  [Klse = [Kbzozlyy + [Kbzoz)ps
[Klaq = [Kpoxox) + [Kpoxoxly + {IKepylpp + Kbyl } 7 + (IR poxslyp + [Kboxslip} s
[Klss = [Kroxoylyp + [Kboxoylyy + {[Kboxxlyp + [Kpoxxljptlr,
[Klss = [Kooyoslyp + [Kbososlp + ([Kpxalpy + [Kbaxlyp}7 + {Kbysl,y + [Koyeclpp o
[Klss = [Kpoyo:lpp + [Koyozpr  [Klos = [Knozo:)y + [Kpozo2l,, + KR,

[K]l77 = [Kpxxlig + [Kbxxligs  [Klis = [Kbaylig + [Kbxylygs

[Kl7g = [Kpxzlig + [Kbxzligs  [Kl710 = [Kbxoxlig + [Kbxoxlrg + {[Kbxylie — [Kbxylig o
[K17.11 = [Kbxoylig + [Kbxoylrg + {IKbxxlrg — [Kbxxlighrs
[Klss = [Kbyy]lg + [Kbyy]rg + K, [Klgy = [Kbyz]lg + [KbyZ]rgv

[K]13 = [Kbxz]lp + [Kbxz]rp,

[Klzs = [Kbyo:ly, + [Kbyozl,, — K

(K712 = [Kbxo:Dig + [Kbxoz]ygs

K, R,R,

>~

]7,12

Klg 1>

>~

b,
Lio12
K2

12,12 |

=

—, e/ /s e e

5

me,

[Klss = [Kpoxo:ly + [Kboxo-]ps
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[Kls 10 = [Kbyoxlig + [Kbyoxlrg + {IKbyylie — [Kbyyligrs

[K]s,ll = [KbyUy]lg + [Kby()y]rg + {[Kbyx]rg - [Kbe]lg}lra

(K512 = [Kpyozlig + [Kbyozlry + KRy,

[Kloo = [Kbzz)ig + [Kbzzlrgs  [Klo10 = [Kbzoxhie + [Kbzoxlyg + {[Kbzplig — [Kbzylighrs

[Klo.11 = [Kbzoylig + [Kbzoplyg + {[Kbzxlry — [Kpexlighlrs  [Klo 12 = [Kbzo:]ig + [Kbz0:1y5

[K1i0.10 = [Kboxoxlg + [Kboxonlyy + {Kbyplig + [Knpylig 7 + (IKposylig + [Kboxylog )

[Kio,11 = [Kboxoplig + [Kpoxoylig + {[Kpoxxlrg + [Kpoxclighlr,  [Klio,12 = [Kboxozlig + [Kpoxo-1rg»
[KTi101 = [Kboyoylg + [Knoyorlrg + UK pxihig + Kol s + K poyslsg + [Kporlighrs

(K112 = [Kpoyo-lig + [Kpoyozlgs  [Klinio = Kooz + [Kbozo:1y + KR,

where subscripts /,7,p and ¢ refer to left bearing, right bearing, pinion and gear, respectively.
Also, R, and R, are the pinion and gear pitch radii, /, is the distance from pinion/gear to the
bearing support location, and K, is the gear mesh stiffness.
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