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Abstract

Generic expressions of mass and stiffness matrices of the portal frame are presented. These are derived by
means of the substructure synthesis method. This method is exceptionally characterised by low-order
eigenvalue problems and highly accurate eigensolutions.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The symmetrical clamped portal frame is the basic framed or civil engineering structure. Thus,
its dynamic characteristics have drawn attention since the early 20s (see Ref. [1] for an early
survey); nevertheless, solid results were obtained later [2,3]. The determinant of eigenfunction
coefficients and the dynamic stiffness methods [4] can be regarded as the first analytical
procedures; several versions of the second method, however, were employed throughout the mid-
century to obtain the frame’s natural frequencies and modes: the receptance method [3], one based
on the reciprocal theorem [5], another by Rieger and McCallion [6] and the force method [7]. Of
course, the conventional finite element method (FEM) is the next method to consider and that has
been used to solve the problem [§].
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Nomenclature me columns mass per unit length
M inertia matrix
EI, beam flexural rigidity q eigenvector
EI. columns flexural rigidity B Euler—Bernoulli beam characteristic
K stiffness matrix betas
L, beam length On Euler—Bernoulli beam characteristic
L, columns length sigmas
my, beam mass per unit length o natural frequency

The modern approaches to dynamic analysis of framed structures are based on the ideas
of reducing the computational effort of the FEM [9-12] and enhancing the dynamic
stiffness method which deals with highly irregular frequency functions [13,14]. For instance, it
can be observed in one of these references that the FEM may not be the most indicated
one for simple structures as the portal frame [10]; in fact, by means of the substructure
synthesis method (SSM) [15], it is demonstrated in that work that the convergence characteristics
of this method are superior to the ones associated with the FEM for the simple frame.
Of course, faster convergence is synonymous with lower order system matrices or eigenvalue
problems. Therefore, the structural dynamics question of how to obtain an accurate model with
as few degrees of freedom as possible can be answered by means of the SSM in the one-portal
frame case.

In this technical communication, generic expressions of those low-order SSM stiffness
and mass matrices of the portal frame are presented. These matrices will permit easy and
precise computation of natural frequencies and mode shapes of any symmetrical portal
frame; furthermore, this accurate and low-order model can be utilised advantageously
in additional analyses such as dynamic response, stability, active control and model
updating.

2. SSM inertia and stiffness matrices

The analysed symmetrical portal frame is shown in Fig. 1. It is understood that both
columns share the same flexural rigidity EI., mass per unit length m. and length L. which
may differ from the corresponding properties of the beam: EI,, m; and L,; subscripts ¢ and b
stand for column and beam, respectively. Furthermore, the usual engineering assumption of
slenderness is considered to neglect the effects of shear deformation, rotatory inertia and axial
motion.

The application of the SSM to multiply supported structures, or to the one-portal frame for
that matter, has been presented in a previous work [10]; in this short work only generic
expressions, which are of course original, of the system matrices are presented along with the
necessary definitions directly related to the matrices; thus, for the theoretical aspects of the SSM,
readers are referred to that previous work and another [11].
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Fig. 1. Portal frame.
2.1. Inertia matrix
The primary expression for the inertia matrix can be written as
M = me M121 M122 —+ my M221 M222 —+ mbLb M321 M322
Ml;; Mls; Ml M2;; M2;3; M23; M3;; M35 M3s;

(1)

The first term represents the columns inertia, the second one the beam elastic inertia and
the third, the beam rigid-body inertia; the blanks indicate symmetry and the submatrices are
defined as

S
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M1, = Sso—=Sa sns+ D0 fsa—Sfa Sfss+ @3+ Df ,
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where in turn f,;, f,; and f,; are the in-increasing-magnitude-order and high-precision roots of
cos B;L. cosh ;L. = —1, cos f,;L.cosh ;L. =1, tan f3,L, = tanh 5,1, (4a—c)

and 0y;, 02, 034, 04i, 05; and o¢; are defined by

sinh ;L. — sin ;L. sinh B,,L. + sin fB,,L,

01 = 5 02 = 5 (4dae)
cosh f;L. + cos p;L. cosh f,;L. — cos fy; L.

g3 = cot By, Ly, 04; =cschfy; Ly, as; = cscfa;Ly, (4f—h)

06; = sinh f§,,L./4 + sin f,;L./4 — aai(cosh fy;L./4 — cos fr;L./4). (4i)

2.2. Stiffness matrix

The primary expression for the stiffness matrix is

K=EI.| K11 Kl» +EI, | K21 K2 ) ®)
K13, K13, Kls; K23, K23 K233

The first term represents the columns stiffness and the second one the beam stiffness; the
submatrices are defined as
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3. Remarks on these results

The implication of this work is that there now are available generic system matrices expressions
that will allow the attainment of very accurate natural frequencies and mode shapes of the portal
frame through very-low-order eingenvalue problems. This is possible by means of the SSM [10]
because of two reasons: (1) the structure is divided into its natural and intuitive substructures or
superelements and (2) the selection of admissible functions that are dynamically related to the
vibration problem at hand and that make up a quasicomparison function. It has been shown that
in this structural case the FEM demands larger order eigenvalue problems to satisfy the same
specified accuracy, with the associated numerical and computational-cost problems; granted, the
system matrices are simpler by this more widespread method.

Note that the order of the submatrices in Egs. (2) and (6) is just 5 for 5-digit convergence of the
first three natural frequencies in actual cases [10]. This computational fact has been corroborated
with a steel structure with dimensions different from the ones in Ref. [10], where a concrete frame
was considered.

Further, the expressions in Egs. (3) and (7) are that simple because of the simplest-expression
integrals involving beam eigenfunctions and derivatives that have been previously obtained
[16,17]. The inherent computational superiority of the SSM is enhanced by these integrals because
these reduce the number of computer operations (e.g. with badly behaved hyperbolic functions)
and eliminate the need of numerical integration. Also, note that many of the simplifying zeros in
the submatrices in Egs. (2) and (6) are a result of the orthogonality of beam eigenfunctions [8].

Regarding obtaining the (approximate) mode shapes or eigenfunctions of the frame, which
might not have been clear in Ref. [10], these are obtained, as well as the natural frequencies,
through the solution of the usual vibrational eigenvalue problem

Kq = w;Mq (8)

by inserting the eigenvectors q into Eq. (25) of Ref. [11], by introducing the resulting vectors q, in
conjunction with the vectors of the admissible functions (Egs. (29) of Ref. [11]) into Egs. (10) of
Ref. [11] and ultimately by synthesising.

Finally, this SSM has been applied to an n-story single-bay frame [11], which means that system
matrices expressions can also be developed for that case or, in principle, for the n-story m-bay
general case.
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4. Conclusions

Generic expressions of substructure-synthesis mass and stiffness matrices of the one-portal
frame have been presented, which will allow easy and accurate computation of its natural
frequencies and mode shapes through the solution of low-order eigenproblems.
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