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Abstract

In this paper a straightforward perturbation procedure will be presented for a class of ordinary
differential equations with piecewise smooth terms in the equations. From the constructed approximations
of the solutions a map can be derived from which the existence and the stability of time-periodic solutions
can be determined.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Ordinary differential equations as model equation for piecewise smooth systems occur in a wide
variety of applications. For dry friction problems the equation

m €x þ cx ¼ F0 sgnðv0 � _xÞ (1)

is frequently used. In Eq. (1) m; c;F0; and v0 are constants and sgn is the signum function defined
by sgnðuÞ ¼ 1 for u40; 0 for u ¼ 0; and �1 for uo0: For oscillation problems with a symmetrical
restoring force of constant magnitude the equation

€x þ sgnðxÞ ¼ 0 (2)
see front matter r 2004 Elsevier Ltd. All rights reserved.
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can be used. Eqs. (1) and (2), and many similar equations can for instance be found in Ref. [1].
Another example of an equation for a piecewise smooth system is

€x þ c _x þ mxþ � nx� ¼ f ðt; x; _xÞ, (3)

which has been introduced by Lazer and McKenna [2] as a simple model equation for the vertical
oscillations of a long-span suspension bridge. In Eq. (3) c;m; and n are positive constants, f ðt;x; _xÞ
is an external force function, and xþ ¼ maxfx; 0g is the positive part of x, and x� ¼ maxf�x; 0g its
negative part. Recently Hogan [3] studied the equation

€x þ �ðjxj � 1Þ _x þ x ¼ 0, (4)

where � is a small positive constant, that is, 0o�51: Eq. (4) is related to the equation

€x þ �ðj _xj � 1Þ _x þ x ¼ 0, (5)

which has been studied in Ref. [1]. In fact by differentiating Eq. (5) with respect to t (and by
rescaling x by a factor 2) an equation like Eq. (4) is obtained. In Ref. [1] the averaging technique
and the harmonic balance method have been used to construct approximations of the periodic
solution of Eq. (5) and in Ref. [3] the two-time-scales perturbation method has been applied to Eq.
(4). To prove the existence of a unique, nontrivial periodic solution a Liénard theorem has been
used in Ref. [3]. Usually, it is difficult to find (if available) the appropriate Liénard theorem for a
given differential equation. In this paper it will be shown that for perturbed equations (like Eqs.
(1)–(5)) a straightforward perturbation procedure can be used to construct approximations of the
solutions. From these approximations a map can be defined. By using this map the existence and
the stability of time-period solutions can be established. It should be remarked that the presented
perturbation procedure is applicable to those equations (with piecewise smooth coefficients and a
small parameter) for which on different (usually finite) time-intervals approximations of the
solutions can be constructed. The so-constructed approximations on these different time intervals
are then matched to obtain approximations of the solutions on sufficiently long time-intervals. A
mathematical justification of the constructed results (that is, giving error estimates on time-scales)
can be obtained by using standard mathematical techniques from perturbation theory as for
instance described in Refs. [4–6]. As a prototype of problem Eq. (4) will be treated in detail.
2. Construction of an approximation of the solution

In this section an approximation of the solution of Eq. (4) will be constructed. Since Eq. (4) is
autonomous it can be assumed, without loss of generality, that xð0Þ ¼ 0 and _xð0Þ ¼ A40: So, the
following problem has to be considered (as long as xðtÞX0 for t40Þ:

€x þ �ðx � 1Þ _x þ x ¼ 0; t40,

xð0Þ ¼ 0; _xð0Þ ¼ A40, ð6Þ

where 0o�51; and where A is an �-independent constant. To solve the initial-value problem for
Eq. (6) approximately the following expansion in � for xðtÞ; that is,

x0ðtÞ þ �x1ðtÞ þ �2x2ðtÞ þ 	 	 	 (7)
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is substituted into Eq. (6). By taking together terms of equal powers in � the following problems
are then obtained:

Oð1Þ-problem: €x0 þ x0 ¼ 0; t40,

x0ð0Þ ¼ 0; _xð0Þ ¼ A, ð8Þ

Oð�Þ-problem: €x1 þ x1 ¼ �ðx0 � 1Þ _x0; t40,

x1ð0Þ ¼ _x1ð0Þ ¼ 0, ð9Þ

and so on. The Oð1Þ-problem (8) can readily be solved, yielding

x0ðtÞ ¼ A sinðtÞ. (10)

Substituting Eq. (10) into Eq. (9) the Oð�Þ-problem (9) then also can be solved, yielding

x1ðtÞ ¼
�A2

3
sinðtÞ þ

A2

6
sinð2tÞ þ

A

2
t sinðtÞ. (11)

Now it should be observed that the approximation x̄ðtÞ ¼ x0ðtÞ þ �x1ðtÞ satisfies the original
differential equation (6) and the initial values up to order �2; that is,

€̄x þ �ðx̄ � 1Þ _̄x þ x̄

¼ €x0 þ x0 þ �ð €x1 þ x1 þ ðx0 � 1Þ _x0Þ þ �2ððx0 � 1Þ _x1 þ _x0x1Þ þ �3x1 _x1

¼ Oð�2tÞ þ Oð�3t2Þ, ð12Þ

and x̄ð0Þ ¼ 0; _̄xð0Þ ¼ A:
By writing down the equivalent integral equations for the initial-value problems (6) and (12), by

subtracting the so-obtained integral equations, by using the Lipschitz continuity of the
nonlinearities, and by applying Gronwall’s inequality it can be shown simply (see for instance
Chapter 1 of Verhulst [4]) that (as long as xðtÞX0Þ

jxðtÞ � x̄ðtÞj ¼ Oð�2t2Þ. (13)

Estimate (13) implies that (as long as xðtÞX0Þ xðtÞ ¼ x̄ðtÞ þ Oð�2Þ ¼ x0ðtÞ þ �x1ðtÞ þ Oð�2Þ for
times t of order 1, where x0ðtÞ and x1ðtÞ are given by Eqs. (10) and (11), respectively. Now let ~t40
be the shortest time for which xðtÞ ¼ x0ðtÞ þ �x1ðtÞ þ Oð�2Þ becomes zero, and assume that ~t can be
approximated by ~t0 þ �~t1 þ �2 ~t2 þ 	 	 	 : By substituting this approximation for ~t into xð~tÞ ¼
x0ð~tÞ þ �x1ð~tÞ þ Oð�2Þ ¼ 0 it easily follows that ~t0 ¼ p; and ~t1 ¼ 0; and so ~t ¼ pþ Oð�2Þ: It then
follows from xðtÞ ¼ x0ðtÞ þ �x1ðtÞ þ Oð�2Þ that (for � sufficiently small) _xð~tÞo0: So, for t4~t the
following initial value problem has to be solved (until x becomes zero again):

€x þ �ð�x � 1Þ _x þ x ¼ 0; t4~t,

xð~tÞ ¼ 0; _xð~tÞ ¼ �A þ �A
2

3
A �

p
2

� �
þ Oð�2Þ, ð14Þ

where ~t ¼ pþ Oð�2Þ: To solve this initial value problem (14) approximately the function xðtÞ is
again approximated by expansion (7). This expansion is submitted into Eq. (14), and terms of
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equal powers in � are taken together, yielding as

Oð1Þ-problem: €x0 þ x0 ¼ 0; t4~t,

x0ð~tÞ ¼ 0; _x0ð~tÞ ¼ �A, ð15Þ

Oð�Þ-problem: €x1 þ x1 ¼ ðx0 þ 1Þ _x0; t4~t,

x1ð~tÞ ¼ 0; _x1ð~tÞ ¼ A 2
3
A �

p
2

� �
, ð16Þ

and so on. Again the initial value problems (15), (16), and so on can be solved consecutively,
yielding

x0ðtÞ ¼ � A sinðt � ~tÞ, ð17Þ

x1ðtÞ ¼ A A �
p
2

� �
sinðt � ~tÞ �

A2

6
sinð2ðt � ~tÞÞ �

A

2
ðt � ~tÞ sinðt � ~tÞ, ð18Þ

and so on. Again it can be shown simply that the approximation x̄ðtÞ ¼ x0ðtÞ þ �x1ðtÞ (where x0

and x1 are given by Eqs. (17) and (18), respectively) satisfies the following estimate: jxðtÞ � x̄ðtÞj ¼

Oð�2Þ for times t of order 1 (as long as xðtÞp0). Now let t̂4~t be the shortest time for which
xðtÞ ¼ x0ðtÞ þ �x1ðtÞ þ Oð�2Þ becomes zero again, and assume that t̂ can be approximated by
t̂0 þ �t̂1 þ �2t̂2 þ 	 	 	 : By substituting this approximation for t̂ into xðt̂Þ ¼ x0ðt̂Þ þ �x1ðt̂Þ þ Oð�2Þ ¼
0; where x0 and x1 are given by Eqs. (17)and (18), respectively, it easily follows that t̂0 ¼ 2p; and
t̂1 ¼ 0; and so t̂ ¼ 2pþ Oð�2Þ: Now _xðt̂Þ can also be computed, yielding

_xðt̂Þ ¼ A þ �Að�4
3

A þ pÞ þ Oð�2Þ. (19)

For � sufficiently small it follows from Eq. (19) that _xðt̂Þ40: So, for t4t̂ Eq. (6) has to be solved
again subject to xðt̂Þ ¼ 0 and _xðt̂Þ as given by Eq. (19). Since A40 is arbitrary it can be concluded
that in fact all initial value problems for Eq. (4) have been solved already (up to Oð�2Þ) for times of
order 1. Comparing _xð0Þ ¼ A with _xðt̂Þ as given by Eq. (19) it can also be concluded that for
A4 3

4
p (and � sufficiently small and positive) the amplitude of the oscillation will decrease, and

that for Ao 3
4
p the amplitude will increase. This suggests the existence of (at least) one non-trivial

periodic solution (or closed orbit in the ðx; _xÞ phase plane). In the next section it will be proven
that there exists a unique, non-trivial periodic solution for Eq. (4).
3. The existence of time-periodic solutions

To prove the existence of a time-periodic solution of Eq. (4) a map Q (actually the Poincaré-
return map on the section x ¼ 0; and _x40 in the ðx; _xÞ phase-plane) will be considered. Based
upon the error estimate (13) and upon Eq. (19) this map Q is defined by (for n ¼ 1; 2; 3; . . .):

An ¼ An�1 þ �An�1 �4
3

An�1 þ p
� �

þ Oð�2nÞ, (20)

where An is the value of _xðtÞ with t such that the solution xðtÞ returned to the Poincaré section
(that is, x ¼ 0 and _x40) for the nth time. A map Q : A ! QðAÞ3An ¼ QðAn�1Þ has now be
defined. By neglecting terms of Oð�2nÞ in Eq. (20) a new map P is defined: ~A ! Pð ~AÞ3 ~An ¼

Pð ~An�1Þ: The maps P and Q will now be studied, and it will be shown that
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(i)
 if jA0 � ~A0j ¼ Oð�Þ for � # 0; then jAn � ~Anj ¼ Oð�Þ for n ¼ Oð1=
ffiffi
�

p
Þ; that is, for n
1=

ffiffi
�

p
and

� # 0;An and ~An remain ‘‘�-close’’;

(ii)
 the map P has a unique, hyperbolic fixed point ~A ¼ 3p=4; which is asymptotically stable;

(iii)
 there exists an �040 such that for all 0o�p�0 the map Q has a unique, hyperbolic fixed point

A ¼ 3p=4þ Oð�Þ with the same stability property as the fixed point A ¼ 3p=4 of the map P.
Proof. (i) From jA0 � ~A0j ¼ Oð�Þ for � # 0 it follows that there exists a positive constant M0

such that jA0 � ~A0j ¼ M0�: Further, jAn � ~Anj ¼ jPðAn�1Þ � PðAn�1Þ þ Oð�2nÞjpjPðAn�1Þ �

Pð ~An�1Þj þ M1�2n; where M1 is a positive constant. We also have jPðAn�1Þ � Pð ~An�1ÞjpLjAn�1 �
~An�1j; where L is a Lipschitz-constant with L ¼ 1þ �M2 in which M2 is a positive constant. And
so, jAn � ~Anjpð1þ �M2ÞjAn�1 � ~An�1j þ M1�2np 	 	 	p�ðM0 þ �n2M1Þe

�nM2 : Thus for n ¼

Oð1=
ffiffi
�

p
Þ it follows that jAn � ~Anj ¼ Oð�Þ:

(ii) The fixed points of the map P follow from ~An ¼ Pð ~An�1Þ for n ! 1; or equivalently from
~A ¼ ~A þ � ~Að� 4

3
~A þ pÞ3 ~Að� 4

3
~A þ pÞ ¼ 0: Therefore for ~A40 the unique fixed point is ~A ¼ 3

4
p:

If the linearized map of P around this fixed point has no eigenvalues of unit modulus, then this
fixed point is hyperbolic. Let DP be this linearized map; then DP ¼ 1� �p: Obviously the
eigenvalue l of DP is 1� �p: Since 0o�51 it follows that jljo1; and so the fixed point is
hyperbolic and stable.
(iii) It follows from (ii) that I � DP is invertible. Therefore from (i), the implicit function

theorem, and the linearization theorem of Hartman–Grobman, it follows (see also Chapter 1 in
Ref. [5] or [6]), that the map Q continues to have a unique fixed point, which is �-close to 3p=4:
Furthermore, the eigenvalue of DQ (DQ is the linearized map of Q around its fixed point) depends
continuously on �; and is (up to Oð�3=2Þ) equal to the eigenvalue of DP. Therefore for sufficiently
small � the two fixed points have the same stability properties. &

So far it can be concluded that a unique, asymptotically stable, non-trivial periodic solution
exists for Eq. (4). The period T of this unique, nontrivial periodic solution can be approximated
by 2pþ Oð�2Þ; and the periodic solution itself can be approximated by

3p
4
sinðtÞ þ � �

3p2

16
sinðtÞ þ

3p2

32
sinð2tÞ þ

3p
8

t sinðtÞ

� �
þ Oð�2Þ

for 0ptp~t; and by

3p
4
sinðtÞ þ � �

9p2

16
sinðtÞ �

3p2

32
sinð2tÞ þ

3p
8

t sinðtÞ

� �
þ Oð�2Þ

for ~tptpT ; where ~t is the time as defined before and ~t can be approximated by pþ Oð�2Þ: Higher
order approximations of the period T and of the periodic solution can be obtained by solving the
Oð�nÞ-problems with nX2 as defined in Section 2 of this paper.
4. Conclusions and remarks

In this paper it has been shown how in a straightforward way approximations of the solutions
can be obtained for a class of ordinary differential equations with piecewise smooth terms and
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with a small parameter in the equations. By using these approximations a map can be constructed
from which the existence and the stability of time-periodic solutions can be determined. As
example the equation

€x þ �ðjxj � 1Þ _x þ x ¼ 0

has been studied in detail. Not only approximations of the solutions of this equation have been
constructed but also order �2 accurate approximations of the unique and stable periodic solution
have been presented. The perturbation procedure as presented in this paper can be applied to a
large class of ordinary differential equations with piecewise smooth terms and with a small
parameter in the equations. In a forthcoming paper the equation

€x þ mxþ � nx� ¼ �ð _x � _x3Þ (21)

will be studied. In this equation m; n; and � are positive constants with 0o�51; and xþ ¼

maxfx; 0g; and x� ¼ maxf�x; 0g: This equation serves as a simple model equation to describe the
wind-induced vertical vibrations of a long-span suspension bridge. When m ¼ n the well-known
Rayleigh equation is obtained, which is related to the Van der Pol equation. The presented
perturbation procedure can also be applied successfully to Eq. (21), and it can be shown that also
Eq. (21) has a unique and stable periodic solution.
In this paper a straightforward perturbation expansion for the solutions has been used. As a

consequence so-called secular terms can or will occur in the approximations. When only
approximations are needed on timescales of order 1 then these secular terms will not cause
problems. However, when for instance approximations are needed on timescales of order ��1 then
these secular terms will lead to inconsistencies. To avoid these incorrect results other perturbation
methods (such as the multiple timescales perturbation method, or the averaging method, or etc.)
instead of the method of straightforward expansions have to be used to construct asymptotically
valid results.
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