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Abstract

At present there are two competing numerical approaches for practical one-dimensional acoustical
analyses of perforated pipe muffler components, namely, the discrete approach and the continuous
approach. In a recent experiment (Journal of Sound and Vibration 265 (2003) 109) on the measurement of
the elements of the transfer matrix across a perforate row with a subsonic low Mach number grazing mean
flow, a discrepancy is observed between the experimental data and the prediction of a discrete approach.
The present analysis shows that this discrepancy can be corrected by including an effect of the mean flow
velocity profile, which is neglected in the current discrete methods as well as the distributed parameter
method. Accordingly, the paper develops, for the first time, a quasi-one-dimensional theory of sound
transmission in a perforated pipe carrying sheared grazing mean flow. The distinguishing features of this
theory are the inclusion of the mean flow velocity in the sense of cross-sectional average and the
introduction of slip flow velocity at the perforate wall. Two alternative formulations of the theory are
presented. The proper formulation should necessarily be based on continuity, momentum and energy
equations for one-dimensional acoustic perturbations. The simpler approximate formulation, which
assumes isentropic wave propagation and neglects the energy equation, is shown to represent the proper
formulation accurately for subsonic low Mach numbers. The current discrete and distributed parameter
methods are reformulated on the basis of the proposed theory. Both the parallel and co-axial perforated
multiple pipe elements are considered and the effect of mean flow velocity profile and slip velocity is shown
by application to a straight-through resonator.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Sound transmission in a perforated pipe, which is a common silencing element in automotive
exhaust lines, have received the attention of a large number of authors. A considerable proportion
of this work is devoted to the development of simplified mathematical models, as the practical
usefulness of general numerical methods such as FEM or BEM is limited due to their
computational overhead. Accordingly, the plane wave approximation is popular in analysis of
mufflers with perforated pipes, as it can provide sufficiently accurate predictions for frequencies of
interest in automotive applications. A further simplification is often provided in previous studies
by assuming zero or uniform mean flow, although mean shear flow is always present in most
applications to some degree. At present there are two competing numerical approaches for
practical acoustical analyses of perforated pipe muffler components, namely, the discrete
approach [1–3] and the continuous approach [4–8]. In the continuous approach, which is also
known as the distributed parameter method, the perforations are modeled as distributed around
the pipe wall continuously, whereas in the discrete approach they are modeled row by row.
In a recent paper, Aurégan and Leroux [9] presented a critical study of the existing discrete

methods for perforated pipes carrying grazing mean flow. Having found that their measurements
do not agree with the predictions of the discrete method of Sullivan [1], which is often referred to
briefly as the segmentation method, they have proposed an empirical discrete model that fits the
experimental data very closely and attributed the source of the discrepancy to the fluid viscosity
causing some momentum transfer from the main flow to the tube wall, which is not taken into
account in the segmentation method. Aurégan et al. [10] have studied this effect of the fluid
viscosity on the wall boundary conditions in lined ducts carrying a parallel shear flow, however, it
is not quite obvious how a similar analysis can be related to plane sound wave motion in a
perforated pipe.
The predictions of the discrete method, and the continuous method for that matter, are

dependent on the perforate impedance model used in calculations. Usually, suitable empirical or
semi-empirical perforate impedance models have to be adopted for satisfactory predictions. But,
in Ref. [9], by employing an ingenious device, the authors have eliminated the need for such
impedance tuning. Therefore, the observed discrepancy should be related to a flaw in the basic
formulation, and the present paper aims to propose that this flaw pertains to the assumption of
the existing theory that the mean flow carried by a perforated pipe has a uniform velocity profile
over the tube cross-sectional area.
In a hard-walled uniform pipe, the actual mean flow velocity profile may vary from a parabolic

shape, characterizing a laminar flow, to a flatter shape characterizing a fully developed turbulent
flow, with the no-slip condition satisfied at the pipe wall. Nevertheless, insofar as plane isentropic
sound wave propagation is concerned, it is usually satisfactory to assume that the mean flow has a
uniform velocity profile over the duct cross-section [11].
In a uniform perforated pipe, on the other hand, the form of the actual mean flow velocity

profile is more difficult to characterize, as the pipe wall consists of rows of perforate holes
separated by solid pipe sections. In the regions of perforate rows, it is plausible to presume some
slip flow at the pipe wall due to the presence of open space and the walls of the solid pipe sections
cannot be specified as exact no-slip regions due to transitional effects from the adjacent perforate
rows. This is a complex enough picture to defy any first attempt to characterize the actual shape of
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the mean flow velocity profile, however, it is clear that, the presence of some slip flow has to be
allowed for in the analyses and, consequently, the commonly made assumption of uniform mean
flow velocity profile requires further investigation. Accordingly, the present paper proposes a
quasi-one-dimensional theory for sound transmission in a perforated pipe carrying a grazing
parallel shear flow.
The distinguishing features of the new theory are the inclusion of the mean flow velocity profile

in the sense of cross-sectional average and the introduction of slip flow at the perforate wall. Two
alternative formulations are presented. The proper formulation should necessarily be based on
continuity, momentum and energy equations for one-dimensional acoustic perturbations. The
simpler approximate formulation, which assumes isentropic wave propagation and neglects the
energy equation, is shown to represent the proper formulation accurately for subsonic low Mach
numbers.
The present paper also presents reformulation of the existing discrete and continuous methods

on the basis of the proposed theory. The discrete implementation of the proposed theory adopts
the approach of Ref. [3] and is shown to predict the empirical model disclosed by Aurégan and
Leroux [9]. The distributed parameter implementation, on the other hand, adopts the matrizant
approach of Ref. [7]. Both the parallel and co-axial perforated multiple pipe elements are
considered and the effect of mean flow velocity profile and slip velocity is shown by application to
a straight through resonator.
2. Isentropic wave approximation theory for perforated pipes with sheared grazing mean flow

2.1. Quasi one-dimensional continuity and momentum equations

Consider a perforated hard-walled uniform pipe of cross-sectional area S. Presuming one-
dimensional acoustic wave motion superimposed on a uniform parallel mean shear flow in the
pipe and neglecting the viscosity effects, the conservation laws for mass and axial momentum of
the fluid flow in the pipe can be expressed in a quasi-one-dimensional form as

S
qr
qt

þ
q
qx

r
Z

S

v dS

� �
¼ S _m (1)

q
qt

r
Z

S

v dS

� �
þ

q
qx

r
Z

S

v2 dS

� �
þ S

qp

qx
¼ S _mw (2)

respectively, where x denotes the duct axis, t denotes the time and _m denotes the rate of mass
inflow into the pipe per unit volume of the pipe. The fluid density, r ¼ r0 þ r0; the fluid pressure,
p=p0+ p0, and the particle velocity in the axial direction, v=v0+v0, are assumed to consist of
acoustic perturbations r 0, p0 and v0, which are superimposed on the time-averaged mean values r0,
p0 and v0, respectively, where prime (

0) denotes a fluctuating part and the subscript ‘0’ denotes a
time-averaged mean part throughout the paper. All fluctuations are assumed to be small to first
order and be functions of t and x only, characterizing a plane sound wave motion. r0 and p0 are
assumed to be constant, and the mean flow velocity, v0, is assumed to be axially uniform but
allowed to have any arbitrary profile over the pipe cross-section. The source term on the right of
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Eq. (1) represents the rate of mass inflow at the pipe wall, and the source term on the right of Eq.
(2) represents the axial momentum convection at the pipe wall, where w denotes the axial fluid
velocity at the pipe wall. w and _m are decomposed similarly into mean and fluctuating parts as
w ¼ w0 þ w0 and _m ¼ _m0 þ _m0; respectively, where the slip velocity w0 is constant and _m0 ¼ 0; as
only grazing mean flow is assumed to be present.
carrying out Upon the indicated integrations over the duct cross-section, Eqs. (1) and (2)

become

qr
qt

þ v̄
qr
qx

þ r
qv̄

qx
¼ _m; (3)

r
qv̄

qt
þ v̄

qv̄

qx

� �
þ

q
qx

½rðv2 � v̄2Þ� þ
qp

qx
¼ _mðw � v̄Þ; (4)

respectively. Here, and throughout the paper, an overbar denotes averaging over the duct cross-
sectional area. Eqs. (3) and (4) are next expanded into mean and fluctuating parts and the
products of acoustic perturbations are neglected as second-order small quantities. This usual
linearization procedure yields the acoustic continuity and momentum equations as

qr0

qt
þ v̄0
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qx
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qv0

qx
¼ _m0; (5)
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qv0

qt
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qr0
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respectively, where

ð1þ bÞv̄20 ¼
1

S

Z
S

v20 dS; v̄0 ¼
1

S

Z
S

v0 dS: (7)

The acoustic continuity equation, Eq. (5), is the same as the continuity equation of the existing
theory [3–8]. The acoustic momentum equation, Eq. (6), differs from the momentum equation of
the existing theory in two respects. First is the b term, which is new and accounts for the effect of
the mean flow velocity profile. The second is the source term on the right, which is also new. Thus,
it transpires that, the existing theory tacitly presumes that w0 ¼ v̄0; that is, the slip velocity at the
pipe wall is equal to the mean flow velocity averaged over the pipe cross-section. This is a
consistent condition only if the mean flow velocity profile is uniform. Therefore, it follows that, if
the mean flow velocity profile is to be allowed to have an arbitrary shape, then w0 should be left as
a parameter. Introduction of this parameter, which is more conveniently considered as a fraction
of v̄0 as Z ¼ w0=v̄0; and the parameter b are the distinguishing features of the present theory.

2.2. Isentropic wave approximation

Eqs. (5) and (6) can be closed for the determination of r0, p0 and v0 in two ways. First is to
assume, as in the existing theory, that sound propagation is isentropic and use the state equation
dp=c2dr , or p0=c2r0, where c denotes the speed of sound, c2=gp0/r0, and g is the ratio of specific
heat coefficients. If the mean flow velocity profile is uniform, this relationship is tantamount to the
energy equation. For a general mean flow velocity profile, however, the energy conservation
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equation itself has to be used. Nevertheless, as it will transpire subsequently, the isentropic wave
relationship provides a good approximation to the energy conservation equation. The present
section describes this approximate theory, which is advocated also for its simplicity. The proper
approach which uses the energy equation is deferred to Section 4.
Upon using the state equation p0=c2r0, and assuming exp(–iot) time dependence, where i

denotes the unit imaginary number and o denotes the radian frequency, Eqs. (5) and (6) can be
expressed as

M̄0
q
qx

� ik

� �
p0 þ r0c

qv0

qx
¼ _m0c; (8)

a2
qp0

qx
þ r0c M̄0

q
qx

� ik

� �
v0 ¼ �ð1� ZÞM̄0 _m0c; (9)

where M̄0 ð¼ v̄0=cÞ is the Mach number of the cross-section averaged mean flow velocity, k (=
o/c) is the wavenumber, Z ð¼ w0=v̄0Þ is the ratio of the slip velocity to the cross-section averaged
mean flow velocity, and

a2 ¼ 1þ bM̄
2
0: (10)

Upon defining effective characteristic impedance, ze, and effective speed of sound, ce, as

ze ¼
r0c
a

; ce ¼ ac; (11)

Eqs. (8) and (9) can be recast as, respectively,

M̄e

q
qx
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� �
p0 þ ze
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qx
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_m0ce

a2
; (12)

qp0

qx
þ ze M̄e

q
qx

� ike

� �
v0 ¼ �ð1� ZÞM̄e

_m0ce

a2
; (13)

where

M̄e ¼
M̄0

a
; ke ¼

k

a
: (14)

In the next section, the discrete method of Ref. [3] is reformulated on the basis of Eqs. (12) and
(13) and applied to the experiment of Ref. [9].
3. An improved discrete method for perforation with grazing mean flow

3.1. Wave transfer across a row of perforate holes

In the discrete method of Ref. [3], a perforation is modeled as an axial distribution of rows of
compact holes drilled on the pipe wall. The wave transfer relationship across a number of rows is
calculated by combining the wave transfer relation across the discontinuity created by each row of
holes with transfer matrices of the solid pipe sections separating those rows. The latter are given
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by the solution of the homogeneous forms of Eqs. (12) and (13) and conveniently expressed in
terms of the acoustic pressure wave components p+ and p� as [11]

pþðxÞ ¼ pþð0Þexp
ikex

1þ M̄e

� �
; (15)

p�ðxÞ ¼ p�ð0Þexp
�ikex

1� M̄e

� �
; (16)

where

p0ðxÞ ¼ pþðxÞ þ p�ðxÞ; zev
0ðxÞ ¼ pþðxÞ � p�ðxÞ; (17)

and the superscripts ‘+’ and ‘�’ refer to waves traveling in forward (+x) and backward
directions.
The sound wave transfer across a row of holes, on the other hand, is determined by the solution

of Eqs. (12) and (13). To obtain this solution, consider a perforate row at x=x. Since the holes are
assumed to be compact, the fluctuating part of the rate of mass inflow at this plane per unit
volume of the pipe can be expressed as

_m0ðxÞ ¼ m0ðxÞdðx � xÞ=S; (18)

where S denotes the pipe cross-sectional area, d(x) denotes a Dirac function located at x=0 and
m0(x) denotes the fluctuating part of the rate of mass inflow. It is convenient to express the latter
as m0(x)=r0Q(x), where Q(x) denotes the fluctuating part of the rate of volume flow into the pipe.
Upon substituting Eq. (18) and integrating across the region x=x, Eqs. (12) and (13) give the

required jump relations across the perforate row at x=x:

M̄e p0ðxþÞ � p0ðx�Þ
� �

þ ze v0ðxþÞ � v0ðx�Þ
� �

¼
zeQðxÞ

S
; (19)

p0ðxþÞ � p0ðx�Þ
� �

þ zeM̄e v0ðxþÞ � v0ðx�Þ
� �

¼ �ð1� ZÞM̄e
zeQðxÞ

S
; (20)

or, in matrix notation

p0ðxþÞ

zev
0ðxþÞ

� �
¼

p0ðx�Þ

zevðx�Þ

� �
þ

�ð2� ZÞM̄e

1þ ð1� ZÞM̄2
e

" #
zeQðxÞ

Sð1� M̄
2
eÞ
; (21)

where the subscripts ‘+’ and ‘�’ denote the planes just downstream and just upstream of x=x.
Alternatively, by using the decomposition of Eq. (17), Eq. (21) can be re-cast in terms of the

pressure wave components p+ and p� as

pþðxþÞ

p�ðxþÞ

2
64

3
75 ¼

pþðx�Þ

p�ðx�Þ

2
64

3
75þ

zeQðxÞ
2S

1�ð1�ZÞM̄e

1þM̄e

�
1þð1�ZÞM̄e

1�M̄e

2
4

3
5: (22)

This relationship corresponds to Eq. (2) of Ref. [3] where it was derived under the tacit
assumptions of b=0 and Z=1, and implemented by applying a heuristic compact correction, e, to x+
and x� as x+=x+e and x�=x�e. Before showing the modifications which Eq. (22) implies for the
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discrete method of Ref. [3], it is expedient to apply it to the experiment of Ref. [9], which apparently
reports the failure of the segmentation method [1], as well as the discrete method of Ref. [3].

3.2. The experiment of Aurégan and Leroux [9]

Measured in this experiment are the elements of the plane sound wave transfer matrix across a
row of perforate holes backed up by a cavity. Eq. (21) can be transformed to the form of the
measured wave transfer relationship by introducing the combined impedance, z(x), of a perforate
row at x=x and its backing cavity

zðxÞ ¼
p0ðx�Þ
UðxÞ

; UðxÞ ¼
QðxÞ

A
; (23)

where U denotes the radial fluid velocity at the interface between the holes and the pipe wall and A
denotes the total open area of the row. Upon introducing Eq. (23), Eq. (21) can be expressed as

p0ðxþÞ

zev
0ðxþÞ

� �
¼

1� ð2� ZÞM̄eCp 0

½1þ ð1� ZÞM̄2
e �Cp 1

" #
p0ðx�Þ

zev
0ðx�Þ

� �
: (24)

Here

Cp ¼
ze

zðxÞ
A

S

1

1� M̄
2
e

¼
Y sðxÞ

1� M̄
2
e

: (25)

Aurégan and Leroux [9] have found that their experimental data fits very accurately to the
relationship

p0ðxþÞ

r0cv0ðxþÞ

� �
¼

1� 1:5M̄0Cp 0

Cp 1

" #
p0ðx�Þ

r0cv0ðx�Þ

� �
; (26)

and, having calculated the corresponding prediction of Sullivan’s segmentation method [1] as

p0ðxþÞ

r0cv0ðxþÞ

� �
¼

1� M̄0Cp M̄
2
0Cp

Cp 1þ M̄0Cp

" #
p0ðx�Þ

r0cv0ðx�Þ

� �
; (27)

have concluded that the segmentation method fails in providing an accurate representation of the
plane wave transmission across a perforate row. The authors tend to present this result as equally
valid also for the discrete method of Ref. [3]. This is not true, as the latter method yields not Eq.
(27) but the relationship

p0ðxþÞ

r0cv0ðxþÞ

� �
¼

1� M̄0Cp 0

Cp 1

" #
p0ðx�Þ

r0cv0ðx�Þ

� �
; (28)

which is the same as the measured transfer relationship (26) except for the factor 1.5. Eq. (28) is
Eq. (24) for b=0 and Z=1. For Z=0.5, Eq. (24) becomes

p0ðxþÞ

zev
0ðxþÞ

� �
¼

1� 1:5M̄eCp 0

ð1þ 0:5M̄
2
eÞCp 1

" #
p0ðx�Þ

zev
0ðx�Þ

� �
; (29)
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which is practically the same as the measured transfer relationship, as the mean flow Mach
number in the experiment of Ref. [9] was M̄0 ¼ 0:143: For a mean flow Mach number of this
order, a ¼ 1 with much less than 1% error, as b is much less than unity for the likely mean flow
velocity profiles (see Section 4.2). Consequently, Eq. (29) represents the measured transfer
relationship (26) with much less than 1% error. Thus, it is seen that, whilst the claim of Ref. [9]
regarding the failure of the segmentation method [1] appears to be true, this is not a general rule
for the discrete approach. The discrete method of Ref. [3] already provided a close representation
of the empirical wave transfer relationship, and the present extension of this method can predict it
almost exactly for Z=0.5.
The improved counterparts of Eqs. (21) and (22) that are based on the energy equation proper

are given in Section 4.

3.3. Modeling of muffler elements with parallel perforated pipes

Presented in this section is a revision of the discrete method of Ref. [3] for sound transmission
across a pack of multiple parallel perforated pipes that are enclosed in a solid pipe or casing. In
this method it suffices to derive a wave transfer relationship for a pack in which the perforated
pipes all have a perforate row at the same axial position, as shown in Fig. 1. The derivation of this
transfer relation in the absence of the mean flow profile effects considered here but with perforate
holes generalized to the concept of compact acoustic devices is given in some detail in Ref. [3].
Essentially, the revision entails the use of Eq. (22) in place of Eq. (2) of Ref. [3], which is Eq.

(22) with b=0 and Z=1. Therefore, to inject the mean flow profile effects into the discrete
method, it suffices to redefine the vector Bj in Eq. (9) of Ref. [3] as

Bj ¼
1

aj

½1� ð1� ZjÞM̄ej�ð1þ M̄ejÞ
�1

�½1þ ð1� ZjÞM̄ej�ð1� M̄ejÞ
�1

" #
; (30)

where the subscript j; j ¼ 1; 2 . . . ; denotes the pipe number, pipe 1 being the enclosing pipe.
Accordingly, the matrix Mj defined by Eq. (23) of Ref. [3] for the two-pipe case should be
Fig. 1. Multiple parallel perforate rows.
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expressed now as

Mj ¼
1

aj

½1� ð1� ZjÞM̄ej�ð1þ M̄ejÞ
�1

�½1þ ð1� ZjÞM̄ej�ð1� M̄ejÞ
�1

½1� ð1� ZjÞM̄ej�ð1þ M̄ejÞ
�1

�½1þ ð1� ZjÞM̄ej�ð1� M̄ejÞ
�1

" #
; j ¼ 1; 2: (31)

The rest of the formulation of Ref. [3] applies as is.
4. The proper form of the theory for perforated pipes with sheared grazing mean flow

4.1. A quasi-one-dimensional energy equation

Now consider the use of the energy equation to close Eqs. (5) and (6). Again, presuming one-
dimensional acoustic wave motion superimposed on a parallel uniform mean shear flow in the
pipe and neglecting the visco-thermal effects, but allowing for an arbitrary mean flow velocity
profile over the pipe cross-section, the energy equation can be expressed in quasi-one-dimensional
form as

q
qt

r
Z

S

edS

� �
þ

q
qx

r
Z

S

h0v dS

� �
¼ S _mh0w; (32)

where

e ¼ u þ 1
2

v2; h0 ¼ e þ
p

r
: (33)

Here, e, u and h0 denote, respectively, the specific total energy, the specific internal energy and the
specific stagnation enthalpy of the fluid, and h0w denotes the specific stagnation enthalpy carried by
the mass flow at the pipe wall. The objective of the subsequent analysis is to transform Eq. (32)
into a form that gives, upon linearization, an equation that closes Eqs. (5) and (6) for the
determination of r0, p0 and v0.
Upon carrying out the indicated integrations over the duct cross-section, Eq. (32) can be written

as

q
qt

rfē þ 1
2
ðv2 � v̄2Þg

h i
þ

q
qx

rv̄ h̄
0
þ 1
2
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v̄
� v̄2

 !( )" #
¼ _mh0w; (34)

where

ē ¼ u þ 1
2

v̄2; h̄
0
¼ ē þ

p

r
: (35)

When Eqs. (3) and (4) are substituted, Eq. (34) simplifies to

r
qu

qt
þ v̄

qu

qx

� �
� v̄

q
qx

½rðv2 � v̄2Þ� þ p
qv̄

qx
¼ _m h0w � v̄ðw � v̄Þ � ē

� �
; (36)
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which, upon using the perfect gas state equation ðg� 1Þrdu ¼ dr� ðp=rÞdr; can be expressed as

qp

qt
þ v̄

qp

qx
þ gp

qv̄

qx
þ 1
2
ðg� 1Þ

q
qt
½rðv2 � v̄2Þ� þ

q
qx

½rðv3 � v̄3Þ�

�

�2v̄
q
qx

½rðv2 � v̄2Þ�

�
¼ _mðg� 1Þ 1

2
ðw � v̄Þ2 þ

c2

g� 1

� �
: ð37Þ

This equation can be linearized as usual by partitioning into mean and fluctuating parts, assuming
the mean part is satisfied by the mean flow and neglecting the products of acoustic perturbations
as second order small quantities. This process yields for the acoustic fluctuations

qp0

qt
þ v̄0

qp0

qx
þ gp0 þ r0ðg� 1Þbv̄20
� � qv0

qx
þ 1
2
ðg� 1Þðw� 3bÞv̄30

qr0

qx

¼ _m0 c2 þ 1
2
ðg� 1Þ ðZ� 1Þ2 � b

� �
v̄20

� �
; ð38Þ

where

ð1þ wÞv̄30 ¼
1

S

Z
S

v30 dS: (39)

Thus, the consideration of the energy equation introduces a new parameter, w, into the analysis.
For Z=1, b=0 and w=0, the energy equation (38) becomes a statement of isentropic propagation
p0 ¼ c2r0; which is readily verified from Eqs. (38) and (5).

4.2. Further improvement of the discrete method for perforation with grazing mean flow

Upon substituting Eq. (18) in Eqs. (5), (6) and (38) and integrating the resulting equations
across a perforate row at x=x, the following jump equations are obtained:

p0ðxþÞ

r0cv0ðxþÞ

c2r0ðxþÞ

2
64

3
75 ¼

p0ðx�Þ

r0cv0ðx�Þ

c2r0ðx�Þ

2
64

3
75þ
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b2

b3

2
64

3
75 r0cQðxÞ

Sð1� M̄
2
0Þ
; (40)

where

b1 ¼ b 1
2
ðg� 1Þfð2� ZÞðw� 3bÞ � 3b2 þ bZ2 � ð1� ZÞ2gM̄2

0 � 2þ Z
h i

M̄0; (41)

b2 ¼ b 1þ 1
2
ðg� 1Þf2b� wþ ð1� ZÞ2g þ bþ 1� Z

� �
M̄
2
0

h i
; (42)

b3 ¼ b 1
2
ðg� 1Þf3b� ð1� ZÞ2g � 2þ Z
� �

M̄0; (43)

b ¼
1� M̄

2
0

1þ 1
2
ðg� 1Þð5b� wÞ þ b� 1

� �
M̄
2
0

: (44)

Eq. (40) is the energy equation based counterpart of Eq. (21). It is noteworthy that Eq. (21)
can be recovered from Eq. (40) by taking g=1. The contribution of the correct g is in general
small, as the mean flow velocity profile parameters b and w are much less than unity for likely
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profiles. The ‘1/n’th power law turbulent flow profile may be used to obtain an idea
about the likely values of the parameters b and w, as, for sufficiently large n, this law
provides an approximate representation of slip flow with a flat core. Thus, assuming that the
actual mean flow velocity profiles can be approximated for nX5, possible estimates for b and w
can be stated as bo0.04 and wo0.1, and the transfer matrix of the experiment of Ref. [9] can be
expressed as

p0ðxþÞ

r0cv0ðxþÞ

� �
¼

1� ½ð2� ZÞM̄0 þ O½M̄
3
0��Cp 0

½1þ ð1� ZÞð3� 2ZÞM̄2
0 þ O½M̄

4
0�Þ�Cp 1

" #
p0ðx�Þ

r0cv0ðx�Þ

� �
; (45)

where increasing n only effects the indicated higher order terms. It is seen that, for subsonic low
Mach numbers, Eq. (45) is almost identical to its counterpart, Eq. (24), which is based on the
isentropic wave assumption. Hence, in general, the isentropic relationship p0 ¼ c2r0 provides a
good approximate representation of the energy equation for subsonic low Mach number mean
flows.
5. An improved distributed parameter method for multiple perforated pipe muffler elements with

grazing mean flow

The existing distributed parameter method [4–8] for acoustic analysis of perforated
multiple pipe mufflers with grazing mean flow is based on Eqs. (12) and (13) with Z=1 and
b=0. Presented in this section is an extension of this method for any Z and b for the grazing mean
flow case. Both, parallel and co-axial multiple perforated pipe arrangements are considered. The
distributed parameter method can also be formulated by the proper approach in which the energy
equation (38) is used to close Eqs. (5) and (6), however, this formulation is not considered, as it is
rather cumbersome and is implemented much more easily by the discrete approach shown in
Section 4. Furthermore, for subsonic mean flow Mach numbers, Eqs. (12) and (13) are sufficiently
accurate.
5.1. Parallel multiple perforated pipes

Consider an arbitrary number of parallel perforated pipes enclosed in a solid pipe or
casing, which communicate with each other over a common perforate length L. The pipes
are numbered consecutively as pipe 1,2,y, pipe 1 being the enclosing casing, as shown in
Fig. 2a. The problem is to derive a plane sound wave transfer relationship between the ends of the
pipes. The solution of this problem is considered in some detail in Ref. [7] and, therefore, here it
suffices to present only the salient modifications arising from the introduction of the parameters Z
and b into the analysis. The notation of Ref. [7] is followed as much as possible for ease of
reference.
When applied to pipes 1,2,y, Eqs. (12) and (13) can be expressed in matrix form as [7]

qQ
qx

¼ UQðxÞ; (46)
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Fig. 2. Multiple perforated pipe elements: (a) parallel element (left); (b) co-axial element (right).
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which is a concise representation of

q
qx

Q1ðxÞ

Q2ðxÞ

..

.

2
664

3
775 ¼ �

M1B11 M1B12 � � �

M2B21 M2B22 � � �

..

. ..
. . .

.

2
664

3
775

Q1ðxÞ

Q2ðxÞ

..

.

2
664

3
775; (47)

where

QjðxÞ ¼
p0jðxÞ

zejv
0
j

" #
; j ¼ 1; 2; . . . ; (48)

Mj ¼
1

1� M̄
2
ej

1 �M̄ej

�M̄ej 1

" #
; j ¼ 1; 2; . . . ; (49)

Bjj ¼
�ð1� ZjÞM̄ejaj �ikej

�ikej þ aj 0

" #
; j ¼ 1; 2; . . . ; (50)

Bj1 ¼
ð1� ZjÞM̄ejaj 0

�aj 0

" #
; j ¼ 2; 3; . . . ; (51)

B1j ¼
ð1� Z1ÞM̄e1bj 0

�bj 0

" #
; j ¼ 2; 3; . . . ; (52)
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and the remaining 2� 2 blocks of matrix B are zero. In the foregoing equations, the subscript ‘j ’
denotes the pipe numbers, and the parameters aj and bj are defined as

aj ¼
2sj

ajrjBj

; bj ¼
ajSj

a1S1
aj; j ¼ 2; 3; . . .

a1 ¼ b2 þ b3 þ � � � ; ð1� Z1Þa1 ¼ ð1� Z1;2Þb2 þ ð1� Z1;3Þb3 þ � � � ;

(53)

where Sj, sj, rj and zj denote, respectively, the cross-sectional area, the porosity, the hydraulic
radius and the perforate impedance of pipe j, and Z1,j denotes the slip velocity ratio, for the mean
flow in pipe 1, on the outer surface of pipe j.
The solution of Eq. (46) over the perforate length L can be expressed as

QðLÞ ¼ W�1

el1x 0 � � �

0 el2x � � �

..

. ..
. . .

.

2
64

3
75WQð0Þ; (54)

since matrix U has constant elements. Here, lj, j=1,2,y, denote the eigenvalues of matrix U in
ascending order and W is the modal matrix whose columns are the corresponding right
eigenvectors.
Eq. (54) is the required wave transfer relation across a pack of arbitrary number of coupled

parallel perforated pipes in impedance matrix form. It can be re-cast in a scattering matrix form
by using the decomposition of Eq. (17), which is expressed now in matrix notation as

QjðxÞ ¼ EjPjðxÞ; (55)

where

PjðxÞ ¼
pþj ðxÞ

p�j ðxÞ

" #
; Ej ¼

1 1

1 �1

� �
: (56)

Upon applying this transformation, Eq. (46) can be expressed as

q
qx

P1ðxÞ

P2ðxÞ

..

.

2
664

3
775 ¼ �

1

2

E1M1B11E1 E1M1B12E2 � � �

E2M2B21E1 E2M2B22E2 � � �

..

. ..
. . .

.

2
664

3
775

P1ðxÞ

P2ðxÞ

..

.

2
664

3
775; (57)

or, briefly,

qP
qx

¼ HPðxÞ; (58)

solution of which gives the required scattering matrix relationship as

PðLÞ ¼ U�1

el1x 0 � � �

0 el2x � � �

..

. ..
. . .

.

2
64

3
75UPð0Þ; (59)
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since matrices H and U have identical eigenvalues. It can be shown that the eigenvectors of these
matrices are related by U=WE, where E denotes the block diagonal matrix having matrices
Ej; j ¼ 1; 2; . . . , as its diagonal blocks.

5.2. Coaxial multiple perforated pipes

Consider an arbitrary number of coaxial perforated pipes enclosed in a solid pipe or casing,
which communicate with each other over a common perforate length L. The pipes are numbered
from the outer to the inner pipe, consecutively as pipe 1, 2,y,N, as shown in Fig. 2b, pipe 1 being
the enclosing casing and pipe N the innermost pipe.. The problem is to derive a plane sound wave
transfer relationship between the ends of the pipes. The solution of this problem is considered in
some detail in Ref. [12]. It can be shown that, except for the definition of matrix B, the solution
represented by Eq. (59) is formally valid for this case, too, provided that matrix B is defined now
as

Bjj ¼
�ð1� Zj;jþ1ÞM̄ejbjþ1 � ð1� ZjÞM̄ejaj �ikej

�ikej þ aj þ bjþ1 0

" #
; j ¼ 1; 2; . . . ;N; (60)

Bj;jþ1 ¼
ð1� Zj;jþ1ÞM̄ejbjþ1 0

�bjþ1 0

" #
; j ¼ 1; 2; . . . ;N � 1; (61)

Bjþ1;j ¼
ð1� ZjÞM̄ejaj 0

�aj 0

" #
; j ¼ 2; 3; :::;N; (62)

and the remaining 2� 2 blocks of matrix B are zero. Here, the subscript ‘j’ denotes the pipe
numbers, Zj denotes the slip velocity ratio on the inner surface of the outer wall of pipe j, Zj,j+1

denotes the slip velocity ratio, for the mean flow in pipe j, on the on the outer surface of pipe j+1,
and the parameters aj and bj are defined as

aj ¼
2sjPj

ajSjzj

; bjþ1 ¼
ajþ1Sjþ1

ajSj

ajþ1; a1 ¼ bNþ1 ¼ 0; (63)

where N denotes the number of pipes, Sj is the cross-sectional area of the annular space between
pipe j and pipe j þ 1; j ¼ 1; 2; . . . ;N � 1; SN being the cross-sectional area of the innermost pipe,
pipe 1 and Pj, sj, and zj are, respectively, the perimeter, the porosity and the hole impedance of the
outer wall of pipe j. The enclosing casing, pipe 1, is assumed to be solid. Then, its porosity is zero,
s1=0, and, therefore, a1=0. By definition: SN+1=0 and, hence, bN+1=0.

5.3. Application to a straight-through resonator

Although the present theory is currently validated only in the context of the experimental data
of Ref. [9], it may be of interest to show the effect of the new parameters b and Z on sound
attenuation of a typical practical perforated pipe muffler element. A well-known muffler
employing a perforated pipe is the straight-through resonator, shown in Fig. 3, which is the N=2
case of Fig. 2a or b with pipe 1 having rigid closed ends. A well-studied geometry of this with
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Fig. 3. Straight-through resonator: L=325mm, LA=175mm, LB=100mm, D1=250mm, D2=75mm.
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mean flow [6] consists of a 600mm long and 250mm diameter casing having rigid end-caps and a
co-axial 75mm diameter pipe of wall thickness 1.5mm, the portion of which that is within the
casing being uniformly perforated with circular holes of diameter 3mm over a length of 325mm,
with 175 and 100mm long inlet and outlet side-branches, respectively. For this muffler element,
Eq. (59) is written as

P1ðLÞ

P2ðLÞ

� �
¼

T11 T12

T21 T22

� �
P1ð0Þ

P2ð0Þ

� �
; (64)

which, upon introducing end-cap boundary conditions, can be expressed as

P2ðLÞ ¼ T2;0P2ð0Þ; (65)

where the transfer matrix T2,0 is

T2;0 ¼ T22 �

T21
1 �r1ðLÞ

r1ð0Þ �r1ð0Þr1ðLÞ

� �
T12

1 �r1ðLÞ
� �

T11
1

r1ð0Þ

� �
2
6664

3
7775: (66)

Here, r1(x) denotes the reflection coefficient at plane x of pipe 1. For the case of rigid end-caps,
r1(0)=exp(i2kLB) and r1ðLÞ ¼ expð�i2kLAÞ: Hence, assuming pipe 2 has an anechoic outlet, the
transmission loss of the element can be calculated from

TL ¼ 20 log ðT2;0Þ11
�� �� dB: (67)

The present results for the transmission loss of this resonator for b2=0 and Z2=1 can be
compared directly with the corresponding results of Ref. [6], as the same lumped hole impedance
model is used in the calculations, that is,

z2 ¼
ffiffiffiffiffiffiffiffi
8no

p
ð1þ t2=d2Þ=c þ 0:3M̄02 � ikðt2 þ 0:25d2Þ; (68)

where n denotes the kinematic viscosity of the fluid, t and d denote the pipe wall thickness and
perforate hole diameter, respectively, and the subscript ‘2’ refers to pipe 2.
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The mean flow Mach number M̄02 is varied in the range 0.1 to 0.3, which is the typical range in
automotive applications. In this range of mean flow Mach numbers, the variation of parameter b2
in its expected range of values, which is less than 0.1 or so, has no discernible effect on the
transmission loss of the resonator. The results to be presented were computed for b2=0.01.
Shown in Figs. 4–6 are the transmission loss characteristics of the resonator for M̄02 ¼ 0:1; 0.2

and 0.3, respectively, for perforate porosity of s2=0.05, each figure giving the characteristics for
Fig. 4. Effect of slip velocity on transmission loss of the straight-through resonator: s2=0.05, b2=0.01, M̄0 ¼ 0:1;
� � �, Z2=0; - - -, Z2=0.5; ——, Z2=1.

Fig. 5. Effect of slip velocity on transmission loss of the straight-through resonator: s2=0.05, b2=0.01, M̄0 ¼ 0:2;
� � �, Z2=0; - - - -, Z2=0.5; ——, Z2=1.
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Fig. 6. Effect of slip velocity on transmission loss of the straight-through resonator: s2=0.05, b2=0.01, M̄0 ¼ 0:3;
� � �, Z2=0; - - -, Z2=0.5; ——, Z2=1.

Fig. 7. Effect of slip velocity on transmission loss of the straight-through resonator: s2=0.15, b2=0.01, M̄0 ¼ 0:1;
� � � Z2=0; - - -, Z2=0.5; ——, Z2=1.
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three values of the slip velocity parameter, that is, for Z2=0, 0.5 and 1. The characteristics for
Z2=1 in Figs. 4 and 6 are same as those of Ref. [6], which checks the accuracy of the present
calculations. For the case M̄02 ¼ 0:1; the slip velocity parameter has only slight effect on the
transmission loss, however, as the mean flow Mach number increases, the effect of Z2 on the
characteristics becomes increasingly significant.
Shown in Figs. 7–9 are the transmission loss characteristics for the same resonator but for a

perforate of porosity s2=0.15. Again, it is observed that, the effect of slip velocity parameter
tends to be more significant as the mean flow Mach numbers increases.
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Fig. 8. Effect of slip velocity on transmission loss of the straight-through resonator: s2=0.15, b2=0.01, M̄0 ¼ 0:2;
� � �, Z2=0; - - -, Z2=0.5; ——, Z2=1.

Fig. 9. Effect of slip velocity on transmission loss of the straight-through resonator: s2=0.15, b2=0.01, M̄0 ¼ 0:3;
� � �, Z2=0; - - -, Z2=0.5; ——, Z2=1.
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6. Conclusion

A quasi-one-dimensional theory of sound transmission in perforated pipes carrying a grazing
uniform parallel shear flow is presented for the first time, and applied for the improvement of the
previously published discrete and distributed parameter methods for multiple parallel and coaxial
perforated pipe muffler elements. The approximate form of the theory, which assumes isentropic
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wave propagation, is simpler and provides a good approximation to the proper theory for
subsonic low mean flow velocity Mach numbers.
In essence, the proposed theory is distinguished from the existing theory [3–8], in which mean

flow is assumed to be uniform, by the inclusion of the effect of the mean flow velocity profile in the
sense of cross-sectional average, and the introduction of the slip flow at the perforate wall. For
subsonic low mean flow Mach numbers, the effect of the mean flow profile is not discernible;
however, the slip velocity parameter appears to have substantial effect on acoustic transmission
characteristics.
At present, the proposed theory is validated only in the context of the experimental data of Ref.

[9]. Further measurements are required for the validation of the theory outside this context.
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