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Abstract

A linear autonomous mechanical system under non-conservative positional forces is considered. The
influence of small forces proportional to generalized velocities on the stability of the system is studied.
Necessary and sufficient conditions are obtained for the matrix of dissipative and gyroscopic forces to make
the system asymptotically stable. A system with two degrees of freedom is studied in detail. Explicit
formulae describing the structure of the stabilizing matrix and the stabilization domain in the space of the
matrix elements are found and plotted. As a mechanical example, a problem of stability of the
Ziegler–Herrmann–Jong pendulum is analyzed.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Consider a linear mechanical system with non-conservative positional forces proportional to
the vector of generalized coordinates and small forces proportional to the vector of generalized
velocities

M€qþ �D_qþ Aq ¼ 0; (1)

where M; D and A are constant real square matrices of order m; corresponding to inertial,
dissipative plus gyroscopic, and non-conservative positional forces, respectively, �X0 is a small
see front matter r 2004 Elsevier Ltd. All rights reserved.
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parameter, q is a vector of generalized coordinates, and dot indicates differentiation with respect
to time t: The matrix M is assumed to be non-singular.

Separating time with q ¼ uelt we get the eigenvalue problem

ðMl2
þ �Dlþ AÞu ¼ 0: (2)

The eigenvalues l1; . . . ; l2m are solutions of the characteristic equation

detðMl2
þ �Dlþ AÞ ¼ 0: (3)

Consider now system (1) in the absence of velocity-dependent forces ð� ¼ 0Þ: Such a system is
called circulatory. In this case it follows from Eq. (3) that if l is an eigenvalue, then �l; l̄;�l̄ are
eigenvalues too. Therefore, a circulatory system is marginally stable if and only if all the
eigenvalues �ioj;ojX0 are purely imaginary and semi-simple. The semi-simple eigenvalue means
that the number r of linearly independent eigenvectors corresponding to that eigenvalue is equal
to its algebraic multiplicity k: If rok; then secular terms proportional to taeoj t; apk � 1
(instability) appear in the general solution of Eq. (1). Thus, existence of a pair of algebraically
double eigenvalues �io0;o040 with only one eigenvector, other eigenvalues being purely
imaginary and simple, corresponds to the boundary between stability and flutter instability (i.e.,
oscillations with growing amplitude).

Perturbation of the circulatory system by small velocity-dependent forces �D destroys the
symmetry of eigenvalues. The eigenvalues can move to the right or left half of the complex plane.
As the result, the non-conservative system can become unstable or asymptotically stable
depending on the behavior of perturbed eigenvalues. It is important and practical to know what
kind of matrices of velocity-dependent forces D stabilize or destabilize the unperturbed circulatory
system.

The dependence of stability of a linear autonomous mechanical system on the structure of
forces acting on the system is a classical subject going back to the works by Thomson and Tait [1].
However, the general interest to the problem of influence of small velocity-dependent forces on
the stability of a linear non-conservative system arose in the early 1950s due to the famous work
by Ziegler [2].

The destabilizing effect of viscous damping in the specific linear systems with two degrees of
freedom subjected to non-conservative forces was first recognized by Ziegler [2,3] and Bolotin [4].
This effect was further explored by Herrmann and Jong [5], Nemat-Nasser and Herrmann [6],
Bolotin and Zhinzher [7], Kounadis [8], Beletsky [9], Bolotin, Grishko and Panov [10], Gallina
and Trevisani [11] and others. However, this effect was not placed into the framework of theorems
of sufficient generality. Nor was it shown whether a more general system with many degrees of
freedom can also exhibit such behavior. The destabilization paradox has attracted much attention
in the world literature; see review papers by Herrmann [12], Seyranian [13], Bloch et al. [14], and a
recent work by Kirillov [15].

However, already in 1960s Bolotin [4] and Herrmann and Jong [5] found that for some specific
problems there exist damping configurations for which the destabilization paradox does not take
place. Done [16] tried to find the stabilizing matrices in a general formulation, however, he did not
succeed in getting results in an explicit form even for 2�2 matrices. Walker [17] formulated
a stabilization problem: assuming that the unperturbed circulatory system is stable how to get
the asymptotic stability due to small velocity-dependent forces. He found a class of
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‘‘non-destabilizing’’ mTimesm matrices �D by the Lyapunov direct method. It should be noted
that his theorems provided some sufficient but not necessary conditions for the matrix D to be
‘‘non-destabilizing’’. Another attempt to find stabilizing configurations of the matrix D

was done in a cluster of works by Banichuk, Bratus and Myshkis published in the early
1990s; see for example Refs. [18,19]. They succeeded in getting one of the necessary conditions
for the matrix D of velocity-dependent forces but failed in constructing stabilizing matrices
even for 2�2 case. The next clarifying step was taken by O’Reilly et al. [20,21] who
obtained in explicit form the domain of stabilization for general systems with two degrees
of freedom assuming that the unperturbed system has only distinct purely imaginary
eigenvalues. In important papers by Seyranian and Pedersen [22], and Seyranian [23], two-
dimensional stabilization domains for the classical examples by Bolotin [4] and Herrmann-Jong
[5], assuming that the unperturbed system is on the boundary between flutter and stability, were
found.

The purpose of the present paper is to find the necessary and sufficient conditions that the
matrix D of velocity-dependent forces must satisfy in order to stabilize the unperturbed
circulatory system with arbitrary degrees of freedom for sufficiently small �: The paper is
organized in the following way:

In Section 2, we derive main formulae for perturbations of eigenvalues of a circulatory
system due to small velocity-dependent forces. Both general and degenerate cases are
considered.

Based on these results, Section 3 treats stabilization conditions for the matrix D of velocity-
dependent forces of a system with arbitrary degrees of freedom. It is assumed either that the
circulatory system is stable or it is taken at the boundary between stability and flutter domains.
Two theorems for the necessary and sufficient stabilization conditions are formulated and proved.
These conditions imply linear and quadratic constraints on the elements of the stabilizing matrix
D: To compute the coefficients of the linear and quadratic forms, one only needs to know the
spectrum of the circulatory system with the corresponding right and left eigenvectors and the so-
called associated vectors.

Section 4 is devoted to synthesis of stabilizing matrices using Walker’s results [17]. We
formulate and prove Theorem 3 giving a class of matrices D making a circulatory system
asymptotically stable.

Section 5 treats systems with two degrees of freedom. Here we find stabilizing matrices in
explicit form with the inequalities implied on the elements of the matrix D: Both cases of non-
symmetric and symmetric matrices are considered.

Finally, in Section 6, we discuss the Ziegler–Herrmann–Jong pendulum loaded by tangential
follower force. The form of the stabilizing matrix D is found and the inequalities on its elements
are derived.
2. Behavior of eigenvalues due to perturbation �D

Let at � ¼ 0 the spectrum of eigenvalue problem (2) contain a complex-conjugate pair of double
purely imaginary eigenvalues �io0 with the Jordan chain of length 2. The left and right
eigenvectors and associated vectors u0; u1 and v0; v1 corresponding to the double eigenvalue l0 ¼
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io0 satisfy the equations [24–27]

ðA� o2
0MÞu0 ¼ 0; ðA� o2

0MÞu1 ¼ �2io0Mu0; (4)

vT0 ðA� o2
0MÞ ¼ 0; vT1 ðA� o2

0MÞ ¼ �2io0v
T
0M: (5)

In addition, these vectors are related by the following conditions:

vT0Mu0 ¼ 0; vT0Mu1 ¼ vT1Mu0a0: (6)

The vectors u0; u1 and v0; v1 are not uniquely defined. Since the matrix A� o2
0M is real the

eigenvectors u0 and v0 in Eqs. (4) and (5) can be chosen real. Then, the associated vectors u1 and v1
are purely imaginary. Other eigenvalues �ioj; j ¼ 3; . . . ;m are assumed to be simple and purely
imaginary. The unperturbed circulatory system is therefore on the boundary between the stability
and flutter [28].

It should be noted that if a circulatory system depends on parameters (for example, non-
conservative load parameter), then it generally has simple eigenvalues, and only at some specific values
of parameters its spectrum contains multiple eigenvalues. The case of a pair of double purely
imaginary eigenvalues with the Jordan chain of length 2 is typical (generic) for one and more
parameter systems [29]. That is why the boundary between flutter and stability domains is generally
characterized by the pair of double purely imaginary eigenvalues with the Jordan chain of length 2,
while the stability domain corresponds to the systems with all simple purely imaginary eigenvalues [28].

Consider a simple eigenvalue lj ¼ ioj with the right and left eigenvectors uj; vj: A perturbation
�D shifts lj from the imaginary axis. The perturbed eigenvalue and eigenvector are smooth
functions of the parameter � and can be represented as the Taylor series [30]

l ¼ lj þ �mj þ � � � ; u ¼ uj þ �zj þ � � � : (7)

Substitution of expansions (7) into eigenvalue problem (2) yields the equation

ðA� o2
j MÞzj ¼ �2ljmjMuj � ljDuj: (8)

Multiplying Eq. (8) from the left by vTj ; we obtain the coefficient mj

mj ¼ �
vTj Duj

2vTj Muj

: (9)

Due to perturbation �D the double eigenvalue with the Jordan chain of length 2 as well as its
eigenvector take increments, which are represented in the form of the Newton–Puiseux series [30]

l ¼ l0 þ �1=2l1 þ �l2 þ �3=2l3 þ � � � ;

u ¼ u0 þ �1=2w1 þ �w2 þ �3=2w3 þ � � � : (10)

Substitution of these expansions into eigenvalue problem (2) and collection of the terms with the
same powers of � gives the equations

ðA� o2
0MÞw1 ¼ �2io0l1Mu0; (11)

ðA� o2
0MÞw2 ¼ �2io0l1Mw1 � 2io0l2Mu0 � io0Du0 �

l2
1

2
Mu0: (12)
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Substituting the vector w1 ¼ l1u1 þ gu0 given by (11) into Eq. (12) and then multiplying both
parts of Eq. (12) by v0; we get the coefficient l1 in expansions (10)

l2
1 ¼ id; d ¼ �

vT0Du0

2ivT0Mu1

: (13)

Note that d is a real number since the eigenvectors u0 and v0 are real and u1 is purely imaginary.
Thus, if da0; then l1a0; and the double eigenvalue splits into two complex eigenvalues.

In the case when the coefficient l1 in expansions (10) becomes zero ðd ¼ 0Þ; the splitting of the
double eigenvalue l0 is described in the first approximation by the following expression:

l ¼ io0 þ l2�þ oð�Þ: (14)

Substituting expansions (10) with l1 ¼ 0 into eigenvalue problem (2) and collecting the terms with
the same powers of �; we get the equations

ðA� o2
0MÞw1 ¼ 0; (15)

ðA� o2
0MÞw2 ¼ �2io0l2Mu0 � io0Du0; (16)

ðA� o2
0MÞw4 ¼ �2io0ðl2Mw2 þ l3Mw1 þ l4Mu0Þ � io0Dw2 � l2Du0 � l2

2Mu0: (17)

Solving Eqs. (15) and (16) we find the vectors w1 and w2

w1 ¼ bu0; w2 ¼ l2u1 þ gu0 � io0GðDu0Þ; (18)

where b and g are arbitrary constants, and G is the operator inverse to A� o2
0M: In particular,

this operator can be represented in the form [31]

G ¼ ðA� o2
0Mþ 2io0v0v

T
1MÞ

�1; (19)

with det Ga0: We multiply Eq. (17) by the left eigenvector v0; and then substitute in the result the
quantity vT0Mw2 obtained from multiplication of Eq. (16) by the left associated vector v1: After
this transformation substitute the vectors (18) into Eq. (17). Finally, we arrive at the quadratic
equation serving for determining the coefficient l2

l2
2 þ l2

vT1Du0 þ vT0Du1

2vT0Mu1

� io0
vT0DGðDu0Þ

2vT0Mu1

¼ 0: (20)

This equation, derived first in Ref. [26], describes with Eq. (14) splitting of the double eigenvalue
in the degenerate case l1 ¼ 0:
3. Stabilization conditions

Stability of the circulatory system perturbed by the velocity-dependent forces with the matrix
�D depends on whether the eigenvalues shift to the left- or to the right-hand side of the complex
plane. The explicit formulae describing splitting of eigenvalues derived in the previous section
allow us to find constructive conditions of stability of the perturbed non-conservative system.

Consider first the case when the unperturbed ð� ¼ 0Þ circulatory system is stable and its
spectrum consists of simple eigenvalues �ioj; j ¼ 1; . . . ;m with the left and right eigenvectors
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uj; vj: After the introduction of small velocity-dependent forces ð�40Þ increments of these
eigenvalues are governed by the formula lj ¼ ioj þ mj�þ Oð�2Þ; where the real coefficient mj is
given by Eq. (9). Therefore, the conditions

vTj Duj

vTj Muj

X0; j ¼ 1; . . . ;m (21)

mean that in the first approximation with respect to � all the eigenvalues lj do not move to the
right-hand side of the complex plane due to perturbation �D; �40: Strong inequalities (21)
guarantee that for a sufficiently small �40 the perturbed eigenvalues lj belong to the left-hand
side of the complex plane.

Thus, we have proved the following:

Theorem 1. The necessary conditions for the small velocity-dependent forces with the matrix D to

make stable circulatory system (1) at � ¼ 0 asymptotically stable are

vTj Duj

vTj Muj

X0; j ¼ 1; . . . ;m:

If all the weak inequalities ðX0Þ are replaced by the strong ð4Þ ones, then the above conditions

become sufficient for asymptotic stability.

Example 1. To illustrate Theorem 1 we consider two-dimensional non-conservative system (1)
with the matrices M; D; and A specified by the relations

M ¼
3 1

1 1

� �
; D ¼

1 2

3 4

� �
; A ¼

183 217

21 25

� �
: (22)

When the velocity-dependent forces are absent ð� ¼ 0Þ; the eigenvalues of the circulatory system
characterized by the matrices M and A are purely imaginary and simple (stability)

l1 ¼ i; l2 ¼ 3i; l̄1 ¼ �i; l̄2 ¼ �3i: (23)

The left v1; v2 and right u1; u2 eigenvectors of the eigenvalues l1; l2 can be chosen real

u1 ¼
6

�5

� �
; v1 ¼

1

�9

� �
; u2 ¼

4

�3

� �
; v2 ¼

1

�13

� �
: (24)

With matrices (22) and eigenvectors (24) the stability conditions of Theorem 1 take
the form

vT1Du1

vT1Mu1

¼
7

2
40;

vT2Du2

vT2Mu2

¼
1

2
40: (25)

Thus, according to Theorem 1 the non-conservative system with small velocity-dependent forces
�D is asymptotically stable. Indeed, for small � all the roots of the characteristic equation of the
system

2l4
þ 8l3�þ 20l2

� 2�2l2
þ 64�lþ 18 ¼ 0 (26)
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have negative real parts, which can be verified by the Routh–Hurwitz conditions. For example, if
� ¼ 0:1; then the eigenvalues are

l1; l̄1 ¼ �0:175 � i0:986; l2; l̄2 ¼ �0:024 � i2:994; (27)

which means asymptotic stability.
Consider now the case when the unperturbed circulatory system ð� ¼ 0Þ is on the boundary

between the stability and flutter and its spectrum contains a pair of the double purely imaginary
eigenvalues �io0 each with only one eigenvector, other eigenvalues being purely imaginary and
simple. Such circulatory system is unstable because of the secular terms in the general solution of
Eq. (1).

After the introduction of small dissipative and gyroscopic forces ð�40Þ; the double eigenvalue
l0 ¼ io0 with one eigenvector splits in general into two simple eigenvalues. This splitting is
governed by expansion (10) where the coefficient l1 is found from the quadratic equation (13).
Note that the quantity d is real because the vectors u0 and v0 are real, and the vector u1 is purely
imaginary. Therefore, for da0 the double eigenvalue l0 ¼ io0 splits due to perturbation �D; �40
into two simple eigenvalues l ¼ io0 �

ffiffiffiffiffiffi
id�

p
þ Oð�Þ; one of them belonging to the right-hand half

of the complex plane (Fig. 1). This means that infinitely small velocity-dependent forces generally
destabilize the circulatory ð� ¼ 0Þ system.

As a consequence, we have that the equality d ¼ 0; i.e.,

vT0Du0

2ivT0Mu1

¼ 0 (28)

is the necessary condition of stabilization of the system by the velocity-dependent forces �D: When
this condition is satisfied, the splitting of the double eigenvalue is governed by the expansion
l ¼ io0 þ l2�þ oð�Þ; where the coefficient l2 is found from the quadratic equation (20).

The coefficients of Eq. (20) are real. If the circulatory system is stabilized by small velocity-
dependent forces, then it is necessary for both roots l2 that Re l2p0: This condition is equivalent
Fig. 1. Destabilization of a circulatory system by the perturbation �D:
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to the weak Routh–Hurwitz conditions written for the polynomial (20)

vT1Du0 þ vT0Du1

2vT0Mu1

X0; (29)

�io0
vT0DGðDu0Þ

2vT0Mu1

X0: (30)

Strong inequalities (29) and (30) guarantee splitting of the double eigenvalue l0 ¼ io0 into two
simple eigenvalues situated in the left-hand side of the complex plane for a sufficiently small �40:

The conditions

vTj Duj

vTj Muj

X0; j ¼ 3; . . . ;m (31)

mean that in the first approximation with respect to � all the eigenvalues �ioj do not shift to the
right-hand side of the complex plane due to perturbation �D; �40: Strong inequalities guarantee
that for the sufficiently small �40 the perturbed eigenvalues lj belong to the left-hand side of the
complex plane.

Thus, we have proved

Theorem 2. The necessary conditions for the small velocity-dependent forces with the matrix D to

make circulatory system (1) at � ¼ 0; being on the boundary between stability and flutter,
asymptotically stable are the following

vT0Du0

2ivT0Mu1

¼ 0;
vT1Du0 þ vT0Du1

2vT0Mu1

X0; �io0
vT0DGðDu0Þ

2vT0Mu1

X0:

vTj Duj

vTj Muj

X0; j ¼ 3; . . . ;m:

If all the weak inequalities ðX0Þ are replaced by the strong ð4Þ ones, then the above conditions

become sufficient for asymptotic stability.

Conditions given by Theorems 1 and 2 are constructive, necessary conditions of
stabilization of a circulatory system by small velocity-dependent forces. Correspondingly, the
sufficient conditions of stabilization of system (1) follow from Eqs. (21) and (28)–(31) after the
change of weak inequalities by the strong ones. These conditions imply restrictions on the
elements of the matrix D: Conditions (21), (28), (29), (31) are linear and condition (30) is quadratic
with respect to the elements of the matrix D: To compute the coefficients of the linear and
quadratic forms, one needs to know the spectrum of the circulatory system with the
corresponding left and right eigenvectors and associated vectors. One can see that the m2

elements of the matrix D must satisfy either m inequalities (21) or one equality (28) and m

inequalities (29)–(31).
Note that necessary conditions similar to (28) and (31) were obtained in Refs. [18,19], but

essential inequalities (29) and (30) were missing in those papers.
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Example 2. Two-dimensional circulatory system with the matricesM andA specified by the relations

M ¼
3 1

1 1

� �
; A ¼

1

11

168 104

50 54

� �
(32)

has a pair of double purely imaginary eigenvalues (stability-flutter boundary)

l0 ¼ 2i; l̄0 ¼ �2i (33)

with the left and right Jordan chains of length 2 consisting of eigen- and associated vectors u0; v0; u1; v1

u0 ¼
5

�3

� �
; u1 ¼ �i

44=3

0

� �
; v0 ¼

1

�6

� �
; v1 ¼ i

0

22

� �
: (34)

Let us perturb the circulatory system by the velocity-dependent forces �D with the matrix

D ¼
1 2

3 4

� �
: (35)

It is easy to see that in this case the first stability condition of Theorem 2 is not satisfied

vT0Du0

2ivT0Mu1

¼
19

88
a0: (36)

Direct calculation of the roots of the characteristic equation (3) with the matrices given by Eqs. (32)
and (35)

2l4
þ 8l3�þ 16l2

� 2�2l2
þ

314

11
�lþ 32 ¼ 0 (37)

for � ¼ 0:1 yields

l1; l̄1 ¼ �0:237 � i2:068; l2; l̄2 ¼ 0:037 � i1:921; (38)

which means instability. It is easy to verify that the Routh–Hurwitz conditions for polynomial (37) are
not fulfilled for small �: However, small velocity-dependent forces with the matrix

D ¼
1

3

15 �47

9 3

� �
(39)

stabilize the circulatory system, because according to Theorem 2

vT0Du0

2ivT0Mu1

¼ 0;
vT1Du0 þ vT0Du1

2vT0Mu1

¼
31

6
40; �io0

vT0DGðDu0Þ

2vT0Mu1

¼
13

2
40: (40)

Indeed, for small � all the roots of the characteristic equation of the system

2l4
þ

62

3
l3�þ 16l2

þ 52�2l2
þ

248

3
�lþ 32 ¼ 0 (41)

have negative real parts according to the Routh–Hurwitz conditions. For example, if � ¼ 0:1; then the
eigenvalues are

l1; l̄1 ¼ �0:300 � i1:977; l2; l̄2 ¼ �0:217 � i1:988; (42)

which means asymptotic stability.
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4. Synthesis of the stabilizing matrix D

The necessary and sufficient conditions of stabilization of circulatory system (1) by the velocity-
dependent forces given by Theorems 1 and 2 are constructive and can be used to check the
stability of the system. However, in practice one often needs to synthesize the stabilizing matrix D
explicitly by means of the coefficients of the matrices M and A of the unperturbed circulatory
system.

It seems that Bolotin [4] was the first who in the early 1960s noticed that the matrix D

proportional to the matrix M stabilizes circulatory system (1) for m ¼ 2: In 1969 this result was
extended to systems with m42 degrees of freedom by Bolotin and Zhinzher [7], being then proved
independently by Done [16] in 1973. In the same year Walker [17] found that the matrix D ¼ c0M

belongs to the class of matrices

D ¼
X1

p¼�1

cpMðM�1AÞ p; det Ma0; det Aa0; cpX0; (43)

which stabilize initially stable circulatory system (1). Note that Walker’s considerations were
based on the direct Lyapunov method, and he did not investigate the initially unstable circulatory
systems situated on the boundary between stability and flutter.

In this section, we find how wide is the class of Walker’s matrices (43) and show that they satisfy
the sufficient conditions of stabilization given by Theorems 1, 2. First of all we need the following:

Lemma 1. Let l0 ¼ io0 ðo0a0Þ be a double eigenvalue with the left and right eigenvectors u0; v0 and
associated vectors u1; v1 satisfying Eqs. (4) and (5). If det Ma0; then for arbitrary integer pX0 the

following relations take place:

MðM�1AÞ pu0 ¼ o2p
0 Mu0; (44)

vT0MðM�1AÞ pu0 ¼ 0; (45)

vT1MðM�1AÞ pu0 ¼ o2p
0 v

T
1Mu0 ¼ o2p

0 v
T
0Mu1 ¼ vT0MðM�1AÞ pu1a0: (46)

Proof. For p ¼ 0 the lemma is obviously true.
Consider the case p40: Let us multiply the first of Eqs. (4) from the left by MðM�1AÞ p�1M�1:

This yields the sequence of equalities, which prove Eq. (44)

MðM�1AÞ pu0 ¼ � � � ¼ o2k
0 MðM�1AÞ p�ku0 ¼ � � � ¼ o2p

0 Mu0; (47)

where 1pkpp: Multiplying Eq. (44) by vT0 from the left and taking into account orthogonality
condition (6) we prove Eq. (45). Multiplication of both sides of Eq. (44) by vT1 from the left yields

vT1MðM�1AÞ pu0 ¼ o2p
0 v

T
1Mu0: (48)

To prove the remaining half of Eq. (46) we multiply the second of Eqs. (4) by MðM�1AÞ p�1M�1

and obtain

ðMðM�1AÞ p
� o2MðM�1AÞ p�1

Þu1 ¼ �2io0MðM�1AÞ p�1u0: (49)
0
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Taking into account orthogonality condition (6) we get from Eq. (49) for p ¼ 1

vT0MðM�1AÞu1 ¼ o2
0v

T
0Mu1: (50)

Suppose that for any k from 2 to p � 1 we have

vT0MðM�1AÞku1 ¼ o2k
0 v

T
0Mu1: (51)

Then, multiplying both sides of Eq. (49) by vT0 from the left and taking into account Eq. (45) and
hypothesis (51) we establish the equality

vT0MðM�1AÞ pu1 ¼ o2p
0 v

T
0Mu1; (52)

which completes the proof.

Now we formulate the statement which gives the stabilizing matrix D of arbitrary order m in an
explicit form.

Theorem 3. Velocity-dependent forces with the matrix

D ¼
Xm�1

p¼0

cpMðM�1AÞ p; det Ma0; cpX0;

where p is an integer number, make circulatory system (1) at � ¼ 0 asymptotically stable if the
unperturbed circulatory system is stable or situated on the flutter boundary.

Proof. First of all we note that summation from �1 to 1 in expression (43) for Walker’s matrix
is superfluous because for any pXm and po0 (if det Aa0Þ the matrix ðM�1AÞ p is a linear
combination of the matrices ðM�1AÞq; where 0pqpm � 1: This is an obvious consequence of the
classical Cayley–Hamilton theorem [24], which states that any matrix satisfies its characteristic
equation. Thus, in formula (43) we should replace the summation limits by 0 and m � 1:

To check the sufficient conditions provided by Theorems 1 and 2 of the present paper, it is
enough to consider the matrix D ¼ MðM�1AÞ p since the coefficients cpX0: Then, from Lemma 1
and the second of Eqs. (4) we have

vT1MðM�1AÞ pu0 ¼ vT0MðM�1AÞ pu1 ¼ o2p
0 v

T
0Mu1; (53)

GðDu0Þ ¼ GðMðM�1AÞ pu0Þ ¼ o2p
0 GðMu0Þ ¼ o2p

0 gu0 �
u1

2io0

� �
; (54)

where g is the arbitrary constant and the matrix G is given by Eq. (19). Substituting Eqs. (53) and
(54) into conditions (28)–(30) we get for the double eigenvalue

vT0Du0 ¼ vT0MðM�1AÞ pu0 ¼ o2p
0 v

T
0Mu0 ¼ 0; (55)

vT1Du0 þ vT0Du1

2vT0Mu1

¼
vT1MðM�1AÞ pu0 þ vT0MðM�1AÞ pu1

2vT0Mu1

¼ ðop
0Þ

240; (56)

�io0
vT0DGðDu0Þ

2vT0Mu1

¼ �io0
vT0Do

2p
0 GðMu0Þ

2vT0Mu1

¼
vT0MðM�1AÞ pu1

4vT0Mu1

o2p
0 ¼

o2p
0

2

 !2

40 (57)
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and for the simple eigenvalues we obtain

vTj MðM�1AÞ puj

vTj Muj

¼ o2p
j

vTj Muj

vTj Muj

¼ ðop
j Þ

240: (58)

Therefore, the sufficient conditions given by Theorems 1 and 2 are satisfied. This completes the
proof.

According to Theorem 3 Walker’s matrix has no more than m free parameters, while the
matrix D satisfying conditions of Theorems 1 and 2 has either m2 or m2 � 1 free parameters. This
means that the class of Walker’s matrices is much narrower than that given by Theorems 1 and 2
of the present paper. Thus, Theorem 3 simplifies Walker’s Theorem 1 from [17] making the
summation in Eq. (43) finite and extends it to the initially unstable systems located on the flutter
boundary.

Example 3. Finally, we return to the circulatory systems of Examples 1 and 2 and synthesize the
stabilizing matrices D according to Theorem 3. The first circulatory system characterized by the
matrices

M ¼
3 1

1 1

� �
; A ¼

183 217

21 25

� �
(59)

has two pairs of simple eigenvalues �i;�3i: It turns out that the velocity-dependent forces with
the matrix �D;

D ¼ Mþ A ¼
186 218

22 26

� �
(60)

make the circulatory system asymptotically stable, because all the roots of the characteristic
equation

2l4
þ 24l3�þ 20l2

þ 40�2l2
þ 56�lþ 18 ¼ 0 (61)

have for small � negative real parts. For example, if � ¼ 0:1; then

l1; l̄1 ¼ �0:100 � i0:995; l2; l̄2 ¼ �0:500 � i2:958: (62)

The circulatory system specified by the matrices

M ¼
3 1

1 1

� �
; A ¼

1

11

168 104

50 54

� �
(63)

has a pair of the double eigenvalues �2i with the Jordan chain of length 2. This system is
stabilized by the small velocity-dependent forces with the matrix

D ¼Mþ A ¼
1

11

201 115

61 65

� �
: (64)

Indeed, all the roots of the characteristic equation for small �

2l4
þ 20l3�þ 16l2

þ 50�2l2
þ 80�lþ 32 ¼ 0 (65)
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have negative real parts according to the Routh–Hurwitz conditions. For � ¼ 0:1 the eigenvalues
of the perturbed system are

l1; l̄1 ¼ �0:250 � i1:984; l2; l̄2 ¼ �0:250 � i1:984; (66)

which means asymptotic stability.
5. Stabilization of a system with two degrees of freedom

In this section we will show that for systems with two degrees of freedom it is possible to find
the structure of stabilizing matrices D in an explicit form, and therefore obtain full description of
the set of stabilizing matrices.

We consider system (1) with m ¼ 2: Multiplying Eq. (1) by M�1 from the left and introducing
the notation

~D ¼ M�1D; ~A ¼M�1A; (67)

we get the equation

€qþ � ~D_qþ ~Aq ¼ 0: (68)

For � ¼ 0 we have a circulatory system. Consider the case when the circulatory system is situated
on the boundary between the stability and flutter. Then its spectrum consists only of a pair of
double purely imaginary eigenvalues �io0: Since there are no simple eigenvalues, stability of the
system depends on the behavior of this pair.

The necessary and sufficient condition of existence of the double eigenvalue l0 ¼ io0 in the
spectrum of the circulatory system can be written in the form

4 ~a12 ~a21 þ ð ~a22 � ~a11Þ
2
¼ 0; (69)

which is equivalent to the following equality det ~A ¼ ðtr ~A=2Þ2 [15].
Therefore,

�l2
0 ¼ o2

0 ¼
~a11 þ ~a22

2
40; ~a12 ~a21p0: (70)

Taking into account conditions (69) and (70), we find from Eqs. (4) and (5) the eigenvectors and
associated vectors u0; v0; u1; v1 of the double eigenvalue l0 ¼ io0:

u0 ¼
2 ~a12

~a22 � ~a11

" #
; v0 ¼

2 ~a21

~a22 � ~a11

" #
; (71)

u1 ¼
0

�4io0

" #
; v1 ¼

0

�4io0

" #
: (72)

With the use of these vectors we find the denominator of formulae (28)–(30)

2vT0 u1 ¼ �8io0ð ~a22 � ~a11Þ; (73)
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since the mass matrix is equal to the identity matrix. Taking into account (69) and (73), we get
from the necessary condition (28)

vT0
~Du0

2ivT0 u1

¼
ð ~d22 �

~d11Þð ~a22 � ~a11Þ þ 2ð ~d12 ~a21 þ
~d21 ~a12Þ

8o0
¼ 0: (74)

This condition can be written in the compact form: 2 trð ~A ~DÞ ¼ tr ~A tr ~D:
Let us find the coefficients of quadratic equation (20). For the coefficient at the linear term, we

obtain

vT1
~Du0 þ vT0

~Du1 ¼ �8io0ð
~d22ð ~a22 � ~a11Þ þ

~d12 ~a21 þ
~d21 ~a12Þ ¼ �4io0 tr ~Dð ~a22 � ~a11Þ: (75)

To find the free term of Eq. (20) we must solve the non-homogeneous equation for the vector w

ð ~A� o2
0IÞw ¼ ~Du0; (76)

where the eigenvector u0 is taken from Eq. (71). Solving Eq. (76), we get

Gð ~Du0Þ � w ¼
�2 ~d12

2 ~d11

" #
; (77)

vT0
~DGð ~Du0Þ ¼ 2ð ~a22 � ~a11Þdet ~D: (78)

Substitution of Eqs. (73), (75), and (78) into quadratic equation (20) yields

l2
2 þ l2

1
2
tr ~Dþ 1

4
det ~D ¼ 0: (79)

Thus, for the system with two degrees of freedom ðm ¼ 2Þ the necessary conditions (28)–(30)
written in the compact form are the following:

2 trð ~A ~DÞ ¼ tr ~A tr ~D; (80)

tr ~DX0; det ~DX0: (81)

Note that analogous conditions and Eq. (79) were obtained in Ref. [15] by the analysis of the
characteristic polynomial (3) of system (1).

Let us find the stabilization domain in the space of the elements of the matrix ~D; which satisfies
conditions (80) and (81). Two cases naturally arise. In the first case ~a12a0 we find the term ~d21

from equality (80) and obtain the structure of the matrix of dissipative and gyroscopic forces as

~D ¼

~d11
~d12

ð ~d22 �
~d11Þð ~a11 � ~a22Þ � 2 ~a21

~d12

2 ~a12

~d22

2
64

3
75: (82)

Using condition (69) of existence of the double eigenvalue l0; we transform inequalities (81) for
matrix (82) in the following way:

~d11 þ
~d22X0; (83)

~d11 �
~d12

~a11 � ~a22

2 ~a12

� �
~d22 �

~d12

~a22 � ~a11

2 ~a12

� �
X0: (84)
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These inequalities are equivalent to the following conditions:

~d11X
~d12

~a11 � ~a22

2 ~a12
; ~d22X

~d12
~a22 � ~a11

2 ~a12
: (85)

Inequalities (85) define two half-spaces in the space of three parameters ~d11; ~d22; ~d12: The
intersection of these half-spaces yields a dihedral angle, which is the domain of stabilization of a
circulatory system by small dissipative and gyroscopic forces with the matrix ~D from Eq. (82)
(Fig. 2).

When ~a21a0 the necessary stability conditions are

~d11X
~d21

~a11 � ~a22

2 ~a21
; ~d22X

~d21
~a22 � ~a11

2 ~a21
; (86)

which correspond to the dihedral angle in the space of three parameters ~d11; ~d22; and ~d21: In this
case the structure of the matrix ~D is defined by the expression

~D ¼
~d11

ð ~d22 �
~d11Þð ~a11 � ~a22Þ � 2 ~a12

~d21

2 ~a21

~d21
~d22

2
64

3
75: (87)

If ~a12a0 and ~a21a0; then conditions (85) and (86), corresponding to matrices (82) and (87), are
equivalent.

Consider separately the case when ~a11 ¼ ~a22: Then, ~a12 ¼ 0 or ~a21 ¼ 0: Note that these two
equalities cannot be satisfied simultaneously because this means that the double eigenvalue l0

would have two linearly independent eigenvectors in contradiction with the initial assumption.
From Eq. (80) we find ~d12 ¼ 0 or ~d21 ¼ 0: In accordance with the strong conditions (85) and (86)
Fig. 2. Asymptotic stability domain (its boundary is double-hatched) for the non-symmetric matrices ~D given by Eqs.

(57) and (62) for ð ~a11 � ~a22Þ=2 ~a1240 (or ð ~a11 � ~a22Þ=2 ~a2140).
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the domain of stabilization in the space of three parameters ~d11; ~d22 and ~d12 (or ~d21) is the dihedral
angle ~d1140; ~d2240:

Let us find now the structure of the symmetric matrices ~D stabilizing a circulatory system. Then,
gyroscopic forces are absent and inequalities (81) mean the non-negativeness of the matrix ~D:
Note that the strong inequalities (81) mean that the dissipation is full. Isolating the coefficient
~d12 ¼

~d21 in Eq. (80), we get

~D ¼

~d11
ð ~a22 � ~a11Þð

~d11 �
~d22Þ

2ð ~a12 þ ~a21Þ

ð ~a22 � ~a11Þð
~d11 �

~d22Þ

2ð ~a12 þ ~a21Þ
~d22

2
6664

3
7775: (88)

Note that ~a12 þ ~a21a0: Otherwise, the double eigenvalue l0 would have two linearly independent
eigenvectors in contradiction with the initial assumption. Calculating the determinant and the
trace of matrix (88) and assuming their non-negativeness we obtain the necessary conditions of
stabilization in the plane of the two parameters ~d11; ~d22

~d11; ~d22X0;

ffiffiffi
x

p
� 1ffiffiffi

x
p

þ 1
~d22p ~d11p ~d22

ffiffiffi
x

p
þ 1ffiffiffi

x
p

� 1
; x ¼ 1 þ

~a22 � ~a11

~a12 þ ~a21

� �2

: (89)

Note that conditions (88) and (89) were first derived in Ref. [15] by the direct analysis of the
characteristic equation (3) of system (1). Strong inequalities (89) describe the domain of
stabilization of system (1) by small velocity-dependent forces. Therefore, the domain of
stabilization of the circulatory system by the symmetric matrices � ~D with the structure given by
Eqs. (88) and (89) is an angle in the plane of the parameters ~d11 and ~d22 (Fig. 3). One can see from
formula (89) that in general this angle is less than p=2; being right only for ~a11 ¼ ~a22:

Now we show how the set of stabilizing matrices ~D defined by Theorem 3 is located in the
domain of stabilization given by Eqs. (82) and (85) or Eqs. (86) and (87). According to Theorem 3
Fig. 3. Asymptotic stability domain (hatched) for the symmetric matrix ~D given by (63).
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for m ¼ 2 the stabilizing matrix ~D has the form

~D ¼ c0Iþ c1
~A ¼

c0 þ c1 ~a11 c1 ~a12

c1 ~a21 c0 þ c1 ~a22

" #
: (90)

Denoting ~d11 ¼ c0 þ c1 ~a11; ~d22 ¼ c0 þ c1 ~a22 and expressing the coefficient c1 we obtain the
following matrix of velocity-dependent forces

~D ¼

~d11

~a12ð
~d22 �

~d11Þ

~a22 � ~a11

~a21ð
~d22 �

~d11Þ

~a22 � ~a11

~d22

2
6664

3
7775: (91)

Since the coefficients c0 and c1 are non-negative, tr ~D40: Besides, with Eq. (69) we get from Eq.
(91)

det ~D ¼
~d11 þ

~d22

2

 !2

40: (92)

Consider the case when ~a12a0: Then matrix (91) follows from Eq. (82) if we denote there

~d12 ¼
~a12

~a22 � ~a11
ð ~d22 �

~d11Þ: (93)

This means that Walker’s matrices form a two-dimensional-subset of the three-dimensional-
stability domain given by inequalities (85). Eq. (93) defines a plane in the space of parameters
~d11; ~d22; and ~d12; coming through the edge of the dihedral angle given by Eqs. (85) as shown in
Fig. 2. The part of plane (93) satisfying the condition ~d11 þ

~d2240 is a set of the matrices ~D given
by Theorem 3 stabilizing the circulatory system with two degrees of freedom. This set is shown in
Fig. 2 as a hatched region. Note that the case ~a21a0 can be considered analogously.

We conclude that Walker’s matrices given by Eq. (43) for the systems with two degrees of
freedom are equivalent just to ~D ¼ c0Iþ c1

~A: Therefore, in this case Walker’s matrices do not
‘‘enlarge considerably’’ the class of stabilizing damping configurations as it was announced in Ref.
[17]. It turns out that Walker’s matrices constitute a 2d-subset belonging to the 3d-set of
stabilizing matrices given by Eqs. (85) and (86).

Finally, we return to the general problem (1) with two degrees of freedom with an arbitrary
non-singular matrix M: The structure of stabilizing matrix D in terms of the matrices M and A is
given by the following equalities:

D ¼M ~Dð ~AÞ; ~A ¼M�1A: (94)

Thus, D ¼M ~DðM�1AÞ is the stabilizing matrix for system (1) expressed in terms of the matrices
M;A; and ~D given by Eqs. (82)–(87).
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6. Mechanical example: Ziegler–Herrmann–Jong pendulum

Consider a double pendulum [2,5] composed of two rigid weightless bars of equal length l;
which carry concentrated masses m1 ¼ 2m and m2 ¼ m: The generalized coordinates j1 and j2

are assumed to be small. A follower load Q is applied at the free end as shown in Fig. 4. The visco-
elastic hinges are characterized by the same stiffness c but different damping coefficients �b1 and
�b2: Introducing the dimensionless quantities

q ¼
Ql

c
; k1 ¼

b1ffiffiffiffiffiffiffiffiffiffi
cml2

p ; k2 ¼
b2ffiffiffiffiffiffiffiffiffiffi
cml2

p ; t ¼ t

ffiffiffiffiffiffiffiffi
c

ml2

r
; (95)

where t is time, we write the equations of small vibrations of the pendulum in the form

d2y

dt2
þ �D

dy

dt
þ Ay ¼ 0; y ¼

j1

j2

" #
(96)

with the matrices

D ¼
1

2

k1 þ 2k2 �2k2

�k1 � 4k2 4k2

" #
; A ¼

1

2

3 � q q � 2

q � 5 4 � q

" #
: (97)

It is known that in the absence of viscous damping ð� ¼ 0Þ the equilibrium of the pendulum is
stable for qoq0 ¼ 7=2 �

ffiffiffi
2

p
; [5]. The critical load q0 corresponds to the boundary between

stability and flutter of the circulatory system. At this point the spectrum of the system contains a
pair of the double, purely imaginary eigenvalues �io0;o0 ¼ 2�1=4 with only one eigenvector.

Let us find with the use of stabilization conditions (80) and (81) the values of damping
parameters k1 and k2 making the perturbed system asymptotically stable. Calculating the
invariants of the matrices A and D for q ¼ q0

trA ¼
ffiffiffi
2

p
; trD ¼

1

2
k1 þ 3k2; det D ¼

1

2
k1k2; (98)



ARTICLE IN PRESS

O.N. Kirillov, A.P. Seyranian / Journal of Sound and Vibration 283 (2005) 781–800 799
trðADÞ ¼ �
1

2
þ

ffiffiffi
2

p

2

 !
k1 þ �

1

2
þ 3

ffiffiffi
2

p
� �

k2 (99)

and substituting them into Eqs. (80) and (81), we obtain the necessary stabilization conditions as

k1 ¼ ð5
ffiffiffi
2

p
þ 4Þk2; k2X0: (100)

Therefore, if the damping coefficients at the hinges satisfy the strong conditions (100), then the
pendulum is asymptotically stable. This result coincides with that found in Ref. [5].

Let us find now the general structure of the matrix D stabilizing circulatory system (1) without
assumption that the matrix D has form (97). Substituting the coefficients of the matrix A;
evaluated at the critical point q ¼ q0 into formulae (86) and (87), we get the stabilizing matrix in
the form

D ¼
d11 ð17 � 12

ffiffiffi
2

p
Þd21 þ ð3 � 2

ffiffiffi
2

p
Þðd22 � d11Þ

d21 d22

" #
; (101)

with the coefficients satisfying the following inequalities:

�d22pd21ð3 � 2
ffiffiffi
2

p
Þpd11: (102)

It is easy to verify that if the matrix D has form (97), then conditions (101) and (102) are
equivalent to conditions (100).
7. Conclusion

Stabilization and destabilization phenomena of circulatory systems due to small velocity-
dependent forces have been attracting substantial interest from researchers for half a century since
the work by Ziegler [2]. In the present paper three theorems on the necessary and sufficient
conditions for the matrices of velocity-dependent forces to stabilize an unperturbed circulatory
system are established. These results are of general nature and have an applicable form allowing
one to find elements of the stabilizing matrices.
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