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Abstract

The classical Van der Pol equation with delayed feedback and a modified equation where a delayed term
provides the damping are considered. Linear stability of the equations is investigated by analyzing the
associated characteristic equations. It is found that there exist the stability switches when delay varies, and
the Hopf bifurcation occurs when the delay passes through a sequence of critical values. The bifurcation
diagram is drawn in (g, k)-plane, and the stability and direction of the Hopf bifurcation are determined by
applying the normal form theory and the center manifold theorem.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Van der Pol’s equation provides an example of an oscillator with nonlinear damping, energy
being dissipated at large amplitudes and generated at low amplitudes. Such systems typically
possess limit cycles, sustained oscillations around a state at which energy generation and
dissipation balance, and they arise in many physical problems, see Refs. [1,2]. It is well known that
the limit cycle oscillations with strong stability property are important in applications, hence,
being able to modify their behavior through feedback is a question of interest. On the other hand,
most practical implementations of feedback have inherent delays, the presence of which leads to
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an infinite-dimension system, thus complicating the analysis, see Refs. [3-6]. Recently, Atay [3]
employing the averaging method introduced by Hale [7] has studied the behavior of the limit cycle
to the Van der Pol’s equation with nonlinear damping

¥4+e(x*—Dx+x=f(), xeR,e>0, (1)

where the forcing fis a delayed feedback of the position x. Precisely, Atay [3] investigated the
equations

3(0) 4 e(x(1)* — Dx(t) + x(1) = ekx(t — 1) 2)
and
3(1) + e(x (1)’ = Dx(t — 1) + x(¢) = 0. (3)

Clearly, Eq. (2) is the classical Van der Pol’s equation with delayed feedback of position x, and
Eq. (3) is a modification of Van der Pol’s equation

3(1) + e(x(1)* — Dx(t) + x(¢) = 0. 4)

In fact, it is supposed that the delayed position x(¢ — 7) incorporates some characteristics of the
derivative x(¢) in Eq. (4), and hence Eq. (3) follows.

Using the averaging methods Atay [3] shows that Egs. (2) and (3) have stable and unstable
periodic solutions when ¢< 1 and other conditions are satisfied. An interesting question is how the
delay affects the dynamics to Egs. (2) and (3). Particularly, when ¢>0 and t = 0, the characteristic
equations associated with the linearization of Egs. (2) and (3) around x = 0 have a root with
positive real part and a pair of purely imaginary roots, respectively. How is the stability to be
changed as the delay varies, and how are periodic solutions to arise? The aim of the present paper
is to answer these questions partially from bifurcation. It is found that there are stability switches
when the delay varies, and the system undergoes a Hopf bifurcation at the origin when t passes
through a sequence of critical values. Furthermore, using the normal form and center manifold
theory, the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation
are determined. It is interesting that there are stability switches for Egs. (2) and (3) even though
the zero solution of Eq. (3) without delay is unstable and the characteristic equation of Eq. (2)
without delay has a pair of imaginary roots. With regards to the stability switches we refer the
reader to Cooke and Grossman [8].

Recently, there has been similar works in this research topic. For example, for a Van der
Pol-Duffing oscillator and a co-dimension two-bifurcation system which possesses one zero
eigenvalue and a pair of purely imaginary eigenvalues that are excited parametrically by a real
noise with small intensity, which assume to be the first component of an output of a linear filter
system and conforms to the detailed balance condition [9], Liu and Liew [10,11] have obtained the
asymptotical expansions of the top Lyapunov exponents for the relevant systems. Furthermore,
Liu and Liew [12] extended the research work in Ref. [11], where they have investigated the
almost-sure stability condition for a co-dimension two-bifurcation system on a three-dimensional
center manifold, which was parametrically excited by a real noise. The results they obtained are
very interesting.
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We would like to mention that, in the recent paper, the properties of Hopf bifurcation such as
the direction of bifurcation and stability of bifurcating periodic solutions from the origin are
determined precisely. Meanwhile, the bifurcation diagram for Van der Pol’s oscillator with
delayed feedback is drawn in the parameters, (¢, k)-plane. On the other hand, ¢>0 (resp. 0 <e<1)
with other conditions can ensure the existence of periodic solutions for Eq. (2) (resp. Eq. (3)) other
than 0<e<1 like Atay [3].

The remainder of the present paper is as follows: in Section 2, we investigate the stability of the
zero solution and the occurrence of Hopf bifurcation. In Section 3, direction and stability of the
Hopf bifurcation are determined. Some numerical simulations to support the analysis results are
given in Section 4.

2. Stability and Hopf bifurcation

For convenience, we write Eqgs. (2) and (3) as the following forms, respectively:

x(1) = y(1),
() = =x(8) + skx(t — ) — e(x(2)" — D(2) (%)
and
x(1) = y(2),
) = =x(8) — a(x(2)* — Dx(t — 7). (6)
Firstly we consider Eq. (5). The linearization of Eq. (5) around the origin (0, 0) is given by
X(1) = y(0),
(1) = —x(1) + ekx(t — 1) + ey(2). (7)
Its characteristic equation is
P —ed—eke™ 4+ 1=0. (8)

Note that when t = 0 Eq. (8) becomes
P—el—ek+1=0,
and its roots are
Jp = 3o £ V& — 41 — k).

Clearly, there is at least one root A satisfying Re A>0 when &> 0. For convenience, we make the
following assumptions:

H) K+ (2) >0,

1
(Hy) [kl<~.
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Lemma 2.1. For Eq. (8), we have

(i) if (Hy) is not satisfied and k* + (¢/2)* # 1, or (Hy), (Hy) and e > /2 are satisfied, then Eq. (8) has
at least one root with positive real part for all ©>0;
(i) if (Hy) is not satisfied and |k| # 1 /e, then there exists 1y <t < --- <t < ---, such that Eq. (8)
has a pair of purely imaginary roots *iw, when t = rj*;
(i) if (Hy), (Hy) and 0<e<+/2 are satisfied, then there exist 1y <t{<--- <t <--- and
1) <ty <:--<t; <--- such that Eq. (8) has a pair of imaginary roots =iwy when
T= rfc,respectively, where

;

1 . Wy .
_ _ el < _
o (275 arcsin |k|+2]77:>, k< —1,
1
—<n+arcsm—+2jn> —1<k<0,
’E+_ Wy |k| (9)
R (aresin“* + 2/ 0<k<l
o arcsin B in ), <1,
1 .y . .
_ — — > =
o <7t arcsin 2 +2]7r>, k=1,j=0,1,...,
1
<7‘C + arcsm— + 2jn) k<0,
o= “’1* k] (10)
. _ . .
E(arcs1n7+2]n), k>0, j=0,1,...
and
1/2
Wy = 7_[(2—82)i8\/4(k2—1)+82:| . (11)
Let

A= o(t) + iw(t)

be the root of Eq. (8) satisfying oc(rji) =0, a)(rji) = w4, respectively. Substituting A(7) into Eq. (8)
and taking the derivative with respect to 7, one can obtain the following conclusions easily.

Lemma 2.2. ¢/(t;)>0, and o/(t;) <0.

Claim 1. Suppose (H)), (H,), 0<e<+/2 and k>0 are satisfied. Then 1y >1(, and there exists an
integer m=0 such that

— + —
Ty <Tg <T] <+ <Tp <Th<Th 1 <Tnii-
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Proof. Conditions (H)), (H,) and 0<¢<+/2 imply that r are defined well. It is sufficient to verify
that 7§ >1;. From

and Egs. (9) and (10) we have

I S =D o}
_! L
’ ; Qn+ D2 2+ <k<l,

= b (n — arcsin a)_) > b <arcsin &)
0 4 k (D+ k

(0]
L& @Dl o
— 1
=it @it e <

and

i Q2n— 1! W
— (2n+ DHE2)!! et

This and Eq (11) imply that 7 >ro

+ _ 2n —
From /| — 1/ = o> T — T =4 and oy >o_ we have

+ - -
Tl = ST T T
Hence the conclusion follows. [

Lemma 2.3. (i) If (Hy) is not satisfied, then Eq. (8) has at least one root with positive real part for all
7>0.

(i) If 0<e<+/2,k>0, and (H,) and (H») are satisfied, then there exists an integer m=0 such that
Eq. (8) has a pair of roots with positive real parts when t € (r 1, ) forj=0,1,....,mwith =0,
and all roots of Eq. (8) have negative real parts when t € (r/ \ T ) forj=0,1,...,m, and Eq. (8) has
at least a pair of roots with positive real parts when >t/

Note that Eq. (8) with 7 =0 has at least one root with positive real part, and hence the
conclusion of (i) follows from (ii) in Lemmas 2.1 and 2.2. The conclusion of (ii) follows from (iii)
in Lemmas 2.1, 2.2 and Claim 1 and Rouché’s Theorem [14, Theorem 9.17.4].

From Lemmas 2.1-2.3 and the Hopf bifurcation theorem for functional differential equations [5,
Chapter 11, Theorem 1.1], we have the following results on stability and bifurcation to system (5).

Theorem 2.4. For system (5),

() if (H,) is not satisfied and k* + (e/ 2)2#1, or (H)),(H,) and ¢>~/2 are satisfied, then the zero
solution is unstable for all 1=0;

(i1) if (Hy) is not satisfied and |k|#1/¢, then the zero solution is unstable for all =0, and system (5)
undergoes a Hopf bifurcation at the origin (0,0) when t =1}, j=0,1,...;
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(i) if (Hy), (Hy) and O<8<«/§ are satisfied, then system (5) undergoes a Hopf bifurcation at the
origin (0,0) when 1 = ‘L’ ,j=0,1,. Parlicularly, when k>0, there exists an integer m=0
such that the zero solutlon is unstable when 1 € ( ) SJor j=0,1,...,m and t>1}, and
asymptotically stable when © € (1}, ) for j =0,1,.

Remark. From the conclusions of Theorem 2.4, we can draw the bifurcation diagram in the
parameter plane as Fig. 1. Under hypotheses (H;), (H,) and 0<e<+/2, we have proved that
1y <ts when k>0. But in the case k<0, either t; <t or 1; <t may occur. The numerical
simulations in Fig. 2 show this.

Next, we consider system (6). Its linearization around the origin is given by

X =y,
¥ = —x(t) + ex(t — 7). (12)
The characteristic equation associated with Eq. (12) is
P e+ 1=0. (13)

One can easily get the following conclusion.

Lemma 2.5. Suppose that 0<e<1 is satisfied. Then there exist
i<ti<-- <p;r<

and

Ty <Tp <+ <T; <--o

1% 05 1 15 ) 25

Fig. 1. The bifurcation diagram for Eq. (5). The curves k> + (8/2)2 = 1 and k = £1/e divide the right half (¢, k)-plane
into six regions. The zero solution is unstable for all T>0 when (¢,k) € D; U Dy. When (¢,k) € D U D5, the zero
solution is unstable for all >0, and system (5) undergoes a Hopf bifurcation when 1 = ‘c ,j=0,1,...; DT UD7 isa
conditional stability region. Partlcularly, when (¢,k) € D, there exists an mteger m=0 such that the Zero solutlon is
asymptotically stable when 7 € Uj= ,77) and unstable when t € (UI ot 1) U (g, 00).
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&=0,05,0.06,0.07 0.08,0.09

Fig. 2. These (|k|, rg — 13 )-curves are for k<0, and ¢ = 0.05,0.06,0.07,0.08, and 0.09, respectively, which show that for
(e,k) € Dy, 1y <t or 1y >1{ may occur.

such that Eq. (13) has a pair of imaginary roots +iw. when v = rf, j=0,1,..., respectively, where

wr =+1=x¢, (14)
. Qi+ D
o AT 01,2, 15
T; T (15)
and
Y
=2 j=0,12.... (16)
: 1 —¢
Let

A1) = a(t) + 1w(7)

be the root of Eq. (13), satisfying «(7;") = 0 and w(c;") = w.. Similar to Lemma 2.2, we have
following: ‘

Lemma 2.6. If 0<e<1 is satisfied, then

oc/(rj?L) >0 and o/(1;)<0.

For convenience, we denote
{tahpco = (77 U {7} (17)
satisfying

— T —
T2j+1 —Tj , T25 —Tj .
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Claim 2. For the sequence {t,},-,, we have

O=1<t1<02< " <Tom <Tomt1 <Toms3 <T2m+2s

where
V1 —¢
m= .
2(WT+e—+1—%¢)
Proof. Clearly, toj_1 <7241, 72/ <Tyj42 and 1p;_1 <7y for j=1,2,... . For j<m, we have

T+l _ 1 —c¢ 1+i - 1 —¢ 1+L
Vi+e 2i) 7 Vi+e 2m
N /L—ri 1+2(~/1+g—«/1—s)]=1,

2Vl —¢
which implies that 75; <1541 for j<m. Hence

< <T< -+ <Top <Tom+l-
Meanwhile, from m + 1>+/1 — ¢/(2(v/1 + & — +/1 — ¢)) it follows that

Tomed 1—8<1+ 1 >< l—c¢ 1+«/1+£—\/1—3 _1
Tomia VIt 2m+ 1)) V1+e Vi—¢ -

which means that 75,43 <T2,42. Thus T2,,41 <Tomi3z <Tomi2, and this completes the proof. [

Noting the roots of Eq. (13) with 1 =0 are
A=£ivl—¢
and applying Lemmas 2.5, 2.6 and Claim 2, we get the following conclusion.
Lemma 2.7. Suppose that 0<e<1 is satisfied. Then there exists a sequence {t;};2, which is
defined by Eq. (17) such that all the roots of Eq. (13) have negative real parts when

T emU;.io(rzj,rsz), and Eq. (13) has at least a pair of roots with positive real parts when t €
(Uj:l(TZj—l 5 TZj)) U (sz-‘rl 5 OO), Whe}"e

. V1 —¢
C R2WT+e—V1—9|

Theorem 2.8. Suppose that 0<e<1 is satisfied. Then there exists a sequence {t;};> such that the
zero solution of system (6) is asymptotically stable when t € U;;O(rzj, Toj41), and unstable when
T € (U]m:](fzj—l, 72;)) U (Tomt1, 00), as well as system (6), undergoes a Hopf bifurcation at the origin
when t =1, j=0,1,..., where {1;};>( and m is defined by Eq. (17) and Lemma 2.7, respectively.

It is easy to obtain the conclusions of Theorem 2.8 from Lemmas 2.6, 2.7 and the Hopf
bifurcation theorem for functional differential equation [5, Chapter 11, Theorem 1.1].
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3. Direction and stability of Hopf bifurcation

In Section 2 we have obtained some conditions which guarantee that Van der Pol’s equation
with delayed feedback and its modification undergo Hopf bifurcation at some critical values of .
In this section we shall study the direction, stability, and the period of the bifurcating periodic
solutions. The method we use is based on the normal form method and the center manifold theory
introduced by Hassard et al. [13].

We first re-scale the time by #—(#/7) to normalize the delay so that system (5) and (6) can be
written as the form

x(t) = F(xs, 7).

In fact, system (5) and (6) become, respectively,

X(1) = (1),
(1) = —tx(2) + ekx(t — 1) — ex(x>(¢) — Dy(7) (5)
and
x(1) = (1),
(1) = —tx(1) — er(x*(f) — Dx(¢ — 1). (6)

3.1. The properties of Hopf bifurcation to Eq. (5)

In this subsection, we consider Eq. (5). The characteristic equation associated with the
linearization of Eq. (5") around the origin is given by

22— ez —¢ckt’e 4+ 1> = 0. (18)

Comparing Eq. (18) with Eq. (8), one can find that z = 74. So from conclusions (iii) in Lemma 2.1
and (ii) in Lemma 2.3 we have that there are tj <t/ < --- <tf <---and 15 <17 <--- <17 < -+,
and an integer m>0 such that Eq. (18) has a pair of imaginary roots +it*m. when 7 =1,
respectively, and all the roots of Eq. (18) with T = r/?—L for 0 <j<m, except :I:ir]icui, have negative
real parts. Let z(t) be the root of Eq. (18) satisfying Re z(rj?—L) =0and Im z(rji) = rf(ui. By Lemma
2.2, we have

dRez(7}")
dr

where o(t) is defined by Lemma 2.2.

Clearly, the phase space is C = C([—1,0], R?). For convenience, let 7 = 79 + u, u € R and 7 be
taken in {rjr} U {z; }. Then p = 0 is the Hopf bifurcation value for Eq. (5"). Let itgwg be the root of
Eq. (18) when © = 1¢, where either wg = @, or wy = w_. For ¢ € C, let

Lyp = (to + 1)B19(0) + ek(t0 + ) Brp(—1), (20)

dRez(t;)
dz

=70/ (¢])>0; =1, ¢/(1;) <0, (19)
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where

and

0
= . 21
o) (—e(row)co%(oypz(m) @)

By the Riesz representation theorem, there exists a matrix whose components are bounded
variation functions (0, i) in 0 € [—1, 0] such that

0
Lio= [ an0.000) forpec 22)
In fact, we choose
(to + B, 0 =0,
n(0, w) =
—ek(to + )B20(0), 0 € [—1,0).

Then Eq. (22) is satisfied.
For ¢ € C!([—1,0], R?), define

de(6)/d0, 0 e[-1,0),
A= {fiﬁ dn(e, (), 0=0 .
and
R(wp = {0’ VelLo) (24)
S @), 0=0.
Hence, we can rewrite Eq. (5') as the following form:
i, = A(pu; + R(uwyu, (25)
where u = (u1,u)", u, = u(t + 0) for 6 € [—1,0].
For y € C'([0, 1], R?), define
. —dy(s)/ds, s €(0,1],
AV6) = { 12 (=0 dy(1,0), s=0.
For ¢ € C[—1,0] and ¥ € C[0, 1], define the bilinear form
0 0
W) = 5000 = [ [ G- 0)ane) e 6)
-1 J¢=0

where 17(0) = n(0,0). Then A* and A4(0) are adjoint operators, and Fitgw, are eigenvalues of A4(0).
Thus, they are also eigenvalues of A*.
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By direct computation, we obtain that

1 i 0
q(e) — ) el’l’()a)()
1o

is the eigenvector of A(0) corresponding to itgwy, and
q*(s) = D(—¢ + iy, 1)e ™™
is the eigenvector of A* corresponding to —itgwy, where
D = (—¢ + ektoe™™) 7",
Moreover,
(¢.9)=1, (¢".q)=0.

Using the same notation as in Ref. [13], we first compute the coordinates to describe the center
manifold %, at u = 0. Let u, be the solution of Eq. (5') when u = 0.
Define

2(n) = q"u),  w(t,0) = u,(0) — 2Re{z(1)g(0)}.
On the center manifold %, we have
w(t, 0) = w(z(1), 2(2), 0),
where

72 72

w(z,z,0) = Wzo(e)j +wii(0)zZ + W02(0)5 +--,

z and Z are local coordinates for center manifold %, in the direction of ¢* and §*. Note that w is
real if u, is real. We consider only real solutions.
For solution u, in %, of Eq. (5), since u = 0,

(1) = itgwoz + (g™ (0), f(w + 2Re{z(1)q(0)})
= itgwoz + ¢*(0)f (w(z, Z,0) + 2 Re{z(1)¢(0)})
Litgwoz + ¢ (0)f (2. 2).
We rewrite this as
2(t) = itgwoz(t) + g(z, 2), (27)

where

9(z,2) = q*(0)f (w(z, £,0) + 2 Re{z(1)q(0)})

72 z2 72z

=92034‘91122-"‘9023'1‘92174"“ . (28)
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By Egs. (25) and (27), we have

W=t — 2q — 2§

B {Aw “2Re[FO)fq0),  0e[-1,0)
Aw = 2Re(GF(O0) o4O} +fos 0 =0,
© g+ H(z,z,0),

where
72 52
H(z,z,0) = Hzo(e)g + H1(0)z2 + H02(9)3+

Expanding the above series and comparing the coefficients, we obtain

(A = 2itgwowo(0) = —H(0), Aw11(0) = —H11(0),. .. .

Notice that
q"(0) = D(—& +iwy, 1),

x(t) =z + 2+ w'(z, 2,0)

and
(1) = iwoz — 1wz + w?(z, z,0),
where
=2
w(z,2,0) = wil >(0) =+ lDO)zz + wglg(m% +
2 @) @) @y
w(z,2,0) = whg (0) + w((0)zZ 4wy, (0)3+
and
0= (o)
O\ —erox¥(0p(n) )
we have

9(z,2) = ¢*(0)f y = —Detox*(1)y(?)

_ 72 22
= — Der <z +i4 wgg(O)_ +w{(0)2z + Wg;m)? +

)
. <iwoz —iwoZ + w<2>(0) =+ w(0)2z + wgfg(m% +

= - DETO(—iwoz2z' + 21woz Z4--)

= — DSTo(i(U()ZzZ- + - )

(29)

(30)
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Comparing the coefficients with Eq. (28), we have
920 = 911 = Yo =0,

gr1 = —2iDetgwy.

Hence, from

1 1 g
Ci(0) = Ttem0 (920911 —2lgyI* - 3 |goz|2> + %,

we get
C1(0) = —iDS‘Co(Do.
Notice
b 1
T —g 4 ekTpeiTow
and
e—iouto _ 1 — w% — lewg
ek ’
we have
b 1
(1 — @) — e — ety |
Hence
Ci(0) = [8 Towo ieTomo(to(l — w%) — )],
where
= (1o(1 — w%) — &)’ + 827:(2)6()6.
Thus
2.2
Re C;(0) = % >0,

__Re{Gi(0)} 1 &gwp >0, 19=1
2T o) Of/(fo) <0, t=r1

2¢? Towo

fr = 2Re(C1(0)} = =]

>0.

813
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Theorem 3.1. Suppose that (H,), (Ha) and 0<e<~/2 are satisfied. For 0<j<m, we have

(i) the Hopf bifurcation at the origin when t = 1" is subcritical and the bifurcating periodic solutions

j
are unstable;

(i) the Hopf bifurcation at the origin when t=1; is supercritical and the bifurcating periodic
solutions are unstable.

The conclusions follow from the general theorem in Ref. [13].
3.2. The properties of Hopf bifurcation to Eq. (6)

In this subsection, we consider Eq. (6"). The characteristic equation associated with the
linearization of Eq. (6') around the origin is

?—ette T+ 12 =0. (18"
Similar to Section 3.1 we have
Lyp = (o + W)B19(0) + &(to + w)Bagp(—1), (20")
where
B — [ 0 1} B — {O 0}
-1 0 1 0
and
0 /
160= e+ potomin e

There exists a matrix whose components are bounded variation functions #(0, u) in 0 € [—1,0]
such that

0
L= [ d0.ue0) forpec, (22)
-1
where
(to + W B, 0=0,
n(0, p) =
et + WBO+ 1), 0 [~1,0)

By direct computation, we obtain that

1 i 0
qO) = | |
1mg

is an eigenvector of A(0) corresponding to itgwy, and
g"(s) = Doy, )™
is an eigenvector of 4™ corresponding to —itowy. Moreover,

(¢",q) =1 and (¢*,q) =0,
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where

Notice that
q"(0) = D(iwo, 1),

x(1) = 24(0) + 270(0) + wh(z, 2,0)

2 52
V4 y4
= 2+ 24wy (0) 5 + Wi 0)zZ + w0 + -+

2 =2
x(t — 1) = zgV(=1) + 2g8V(=1) + wgg(_n% +wl)(=1)zz + Wg;(_l)% +.e
— Ze—i‘to(l)o + Z—eifga)o + e

0
Jo= —etox(O)x(t — 1) |
we have
9(z,20) =7/

= — Derogx’(t)x(t — 1)

= — Derg(e™ 22z 4 2e 7002z 4.
Comparing the coefficients, we have

920 =911 = Yo = 0,
921 = —2Deto(e™ 4 2e710),

Since +itgmyg is a pair of imaginary roots of Eq. (18") with t = 1o,

1T 1
eFieo =-( — }).

We have
2
go = —8—2[(1 — wp)’ +2¢°]
Clearly,
i 1 g g
Ci(0) = Ttemg (920911 —2lgu I - 3 |902|2> + % - %’
and hence

1
Re C1(0) = —5[(1 - w3)* + 2671 <0.
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Thus
> =2Re C1(0)<0
and

=G T <0, 1=

ReCi(0) [ >0, w=1/,
‘L'I.
Theorem 3.2. Suppose that 0<e<1 is satisfied. Then, for 0<j<m, the Hopf bifurcation at the

origin when t = T;r(rj_) is supercritical (subcritical), and the bifurcating periodic solutions are
orbitally asymptotically stable.

15 1 1
1 4 05 05 a
05 {1 0 0 .
|
0 m\ﬂ»—; 05| 05 -
05 14 1 _
19 20 100 %0 50 0022 0 2

Fig. 3. For Eq. (31), when t = 2 the equilibrium (0, 0) is asymptotically stable.

15 15 15
1 1 1 .
(A o 1 (
0.5 filfhAH 05 05t -
o i o ‘ ot -
05 | 05 05} 1
Al N At :
15 - 15 - 148 :
0 00 200 O 0 200 2 0 2

Fig. 4. For Eq. (31), when t; <t = 3<1; and is sufficiently near 7, the bifurcating periodic solution from (0, 0) occurs
and is asymptotically stable.
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15 15 15
1 1 1 L
05 05 ‘ 05+ 4
1] ‘ 0 h or R
' |
05 i 05 -0.5 .
1 -1 1 4
-1.5 4 -1.5 A -1.5 :
0 100 200 0 100 200 -2 0 2

Fig. 5. For Eq. (31), when 71 <t = 7<1; and is sufficiently near 7, the bifurcating periodic solution from (0, 0) occurs
and is asymptotically stable.

- 15
1 1 tr 1
05 1 il ]
DH’ or 1
05 1 1051 1
=] 1 -y |
12y o0 0 o o0 202 3 2

Fig. 6. For Eq. (31), when 1, <7 = 8§ <73 equilibrium (0, 0) is asymptotically stable.

4. Numerical examples

In this section, we shall carry out numerical simulation on system (6) at special values of ¢ and .
We consider the following system:

X(1) = y(1),
J(f) = —x(f) — 0.5(x*(1) = Dx(t — 7). (31)
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15 15 15

1 1 1

\

05 i 05 06}

1] I | 0 | or

!

05 05 | 05+

1 1 1
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0 100 200 0 100 200 -2 0 2

Fig. 7. For Eq. (31), when 73 <t = 9 and is sufficiently near 73 the bifurcating periodic solution from (0, 0) occurs and is
asymptotically stable.

By Theorem 2.8 and ¢ = 0.3, we know that m = [v/1 —¢/2V/1+e—+/1 —¢)]=1and 2m+1 =
3. Hence, we obtain 70 = 0, 11=2.75396, 1,=7.50604, 13=8.26189, 15=13.76981,
174=15.0127,... . Thus, the equilibrium (0,0) is asymptotically stable when t € (79, 7) U (12, 73),
and unstable when t € (1, 73) U (13, 00). This shows that the equilibrium (0,0) switches 2 times
from stability to instability and is unstable for all 7 >73. By the results in Section 3, it follows that
Re C1(0)<0 for any t;, and when t = 13, u,<0, and u, >0 for 7 = 1314;. Therefore, from
Theorems 2.8 and 3.2, we conclude that the Hopf bifurcation of system (31) occurs in
T>11, T>13, T<7and the bifurcating periodic solutions are orbitally asymptotically stable.
These numerical simulations mentioned above are shown in Figs. 3-7.
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