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Abstract

The behaviour of a gas bubble tethered to a rigid plane boundary in an oscillatory pressure field is
investigated by means of image theory. The inversion method is utilised to obtain an exact solution. This
method is based on invariance of the Laplace equation to conformal transformations. The modified
Rayleigh equation for the volume pulsation has been derived. It follows directly from this equation that the
fundamental — the so-called ‘Minnaert’ frequency — for the tethered bubble depends on the contact angle
and this dependence is not monotonic.
© 2004 Elsevier Ltd. All rights reserved.

When a gas bubble in a liquid is insonified, it may undergo volume pulsation. The acoustic
output of such an oscillating bubble has been recorded in the sound of many phenomena. There
are a number of acoustical techniques for bubble sizing. The effectiveness of these techniques is
investigated in laboratory studies for simple controlled populations (stationary single tethered
bubble) [1,2]. However, the influence of the boundary: wire [1], glass rode [2], or glass plate [3] on
the bubble dynamics in an oscillating pressure field remains unclear.

On the other hand, many attempts have been made by numerous researchers to study the
interaction between a bubble and a rigid boundary [4-7]. The boundary integral method is a
suitable way to simulate the problem of interaction of a bubble with a boundary and provides
good agreement between the numerical prediction and the experimental data.
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In this study we present an analytical approach using image theory concerning the behaviour of
a gas bubble near a rigid plane boundary, that gives a better physical insight into the dynamics of
tethered bubbles.

Consider an air bubble of radius R, driven by an acoustical wave of amplitude P,, and angular
frequency w. As the radius of the bubble is often much smaller than the acoustic wavelength 4 (i.e.
R/A = Rw/cy < 1, where ¢, is the sound speed in the liquid), there is effectively an ‘inner’ region
around the bubble which may be regarded as incompressible. These ideas were exploited by
Prosperetti [8] and others in derivation of the weakly compressible spherical-bubble equation. The
extension this approach to nonspherical bubbles has been given by Blake et al. [7]. We neglect
viscous forces because the boundary layers are typically very thin around the bubble surface, so in
any event viscous forces are confined to the immediate proximity of the surface of the bubble.
Thus the bubble dynamics may be modelled by considering the fluid to be inviscid and
irrotational, leading to the velocity being expressed as the gradient of a potential ¢, i.e.

V= V(p’ Vz(p = 0 (1)

The geometry of the problem is illustrated in Fig. 1. The basic bubble equilibrium shapes show
a segment of spherical profile, and the contact angle 9. is the angle obtained when this shape is
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Fig. 1. The basic bubble equilibrium shapes show a segment of spherical profile, and the contact angle 3. is the angle
obtained when this shape is extrapolated to the solid surface. The diameter of the ring of contact is denoted by L. The
presence of the rigid boundary can be replaced by the mirror image of the bubble relative to the plane z = 0.
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extrapolated to the solid surface. The magnitude of 3. depends on wetting by the liquid of the
material of the boundary and on the surface tension of the bubble wall. The diameter of the ring
of contact is denoted by L. The relation between L and the equilibrium radius of the bubble Ry is
given by L = 2R, sin 3, and the volume of the spherical segment is

(1 = cos 9.)%(2 + cos %)
1 .

m=?@1—

The condition of no flow across the rigid boundary requires

0
% _gonz=0. )
0z
The pressure in the liquid P is governed by the Bernoulli equation
P, 1) + po [((x, 1) + (V) /2] = Poo + Py sin(0p1) + podpoo(2), 3)

where p, and P, are the equilibrium density and pressure, and P,, is the amplitude of the driving
wave. As the potential in the Bernoulli equation is defined within an arbitrary function of time,
the potential at large distances from the bubble wall ¢ (#) is commonly taken to be zero, but we
choose another normalisation of this variable.

The dynamic boundary condition is that the pressures on the two sides of the bubble wall differ
only because of surface tension, i.e. if P; and P, denote the pressure in the water and in the bubble
respectively, then

H=&—§WN,&=%WWW, (4)
0

where n is the unit vector normal to the bubble surface, o is the coefficient of surface tension. We
adopt a polytropic law for the gas in the bubble and V, V;, are the instantaneous and equilibrium
bubble volume, y is the polytropic exponent, Py is the equilibrium pressure in the bubble.

The kinematic boundary condition takes the form [9]

)
[a+owVﬂw—Rkﬂﬁw=Q s=1/x2 4%+ (z + Ry cos §.)’. (5)

The use of the image method to model the flow around a bubble near a rigid boundary has been
first proposed by Cole [10], but we shall follow the approach derived by Kobelev and Ostrovskii
[11]. As the pressure within the bubble is practically constant when R// <« 1 (homobaric bubble),
its surface is equipotential if one neglects surface tension and the nonlinear inertial term in
Bernoulli equation (3). We shall analyse only linear volume oscillations of relatively large bubbles
Ry > 1 um, therefore can use this analogy with electrostatics. The velocity field v in the liquid near
the bubble wall will correspond to the electric field strength E near the conducting body of the
same shape. The normal component of the velocity on the bubble wall will be an analog of the
surface charge density. The total charge Q will correspond to

dv
N
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The presence of the rigid boundary can be replaced by the mirror image of the bubble relative to
the plane z = 0 (see Fig. 1) and thus the boundary conditions (2) will by automatically satisfied.

We derive an exact solution by use the inversion method [11,12]. This method is based on
invariance of the Laplace equation to the definite class of transformation. Really the Laplace
equation in spherical coordinates has the form

10/ ,00 |
——|r—= —Vop =0,
r? or < or T Ve?
where V3 is an angular part of Laplacian. It is easy to verify that this equation conserve its form
under transformation
2
¥ = — (inversion), (6a)
r
if one transforms unknown function ¢ according to

r/

0="0 (6b)
here / is the radius of inversion. Thus if ¢(r) is a solution of Laplace equation, than
/ / l 12 /
@(r)Z—,(P(ﬁr) (7
ro\r

is also a solution.
Put the origin of the spherical system of coordinate in the point A (see Fig. 1) and
transform our problem with inversion radius equal to / = L = 2R sin 3.. The point B will be

Point source

Fig. 2. The inversion of the bubble tethered to the rigid wall problem. The bubble wall and the bubble wall mirror are
transferred into a wedge with an angle equal to 29.. Point at infinity will go to the origin of coordinates, the point B on
the contact curve is unchanged and the point A goes to point at infinity.
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unchanged, the point A will go to point at infinity, and point at infinity will go to the
origin of coordinates ' = (L*/r), the bubble wall and the bubble wall mirror will transfer
into a wedge with an angle equal to 29, (see Fig. 2). Choosing the normalisation of ¢ such a
way that its equipotential value vanishes on the bubble wall will lead to nonzero value of
potential ‘at infinity’ ¢.,. For the inverted potential it leads to the point source at the
origin that redistribute charge density on the ‘conducting’ planes of the wedge
where ¢’ = 0. The solution of this problem: point charge in conducting wedge is good known
[13,14].
The potential ¢'(#') is given by the formulae

. né . né
sinh (2—‘9) sinh ( > 96>

4 —_—

Q o
0 =2
29ev/2Lp /" cosh <2n§c) — cos <n(92;:9€)> cosh < 2n ;c) — cos <n(92:;96)>

d¢

) \/cosh&—coshy’ ®)

Here the cylindrical system of coordinates is used with the axis z’ along the line of corner points,
the angle 0 is counted off wedge plane (see Fig. 2), coshy = (L? + p* + 2/2)/ (2Lp).

The auxiliary solution (8) provide the solution of our problem. Performing inverse
transformation (6a,b), (7) we obtain for Cartesian coordinate system with the origin at
point C:

o)
2 1/4
2V/29, [(x2 +)2+2—L7f4) + Zsz]
§ /oo sinh <§—i>

n(x,.2) ey n[0(x, y,z) — 3]

COSh (2‘9(> COS{ 2‘9(?
) né

sinh (28)

- né m[0(x,y,z) + 3]
cosh (29) — cos{ 29, }
dé

X 5
y/cosh & — coshn(x, y, 2)

o(x,p,z,t) =

©)

where

X+ + 24+ (L))

cosh(x.7.2) = L
\/[xz +y2+2z2 — (L2/4)] + 2217
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and

X242 22— (L*/4)
[ 432 + 22 — (L2/4)]” + 21

0(x,y,z) = 3. + arccos

It is easy verify that at the bubble wall: x> + 3> 4 (z 4+ Rycos §.)* = R the phase 0 = 29, and
potential (9) vanishes.
Far from the bubble [x2 + 12 + z2]'/? >> L the potential is approached to

o0 _ 9@

[xz_,_yz_,_zz]_)oo L N 2R() sin 9(. ’

o(x,y,z,1)

thus ¢, contained in Bernoulli integral (3) is equal to

00

P = 3Ry sin 9, (10)

To find the displacement bubble wall we should substitute solution (9) into the kinematic
boundary condition (5). The normal derivation at the bubble wall has the simplest form in the
spherical coordinate system with the origin coincided with the centre of the bubble, when

O0p 0

= =V(k), s = \/x2 + 32 4 (z 4+ Ry cos §.)%, cos(k) = (z + Rycos 9.)/s.
on  0Os

S:RO
By use the fact that (p’S: R = 0, we obtain

00 m sin 8.
=R, R% 4«59? (cos 9. — cos x)3/2

¢
Os

(k) =

sinh < né)
X /00 d¢ 29 (11)

—1 [ 1—cos J¢ cos i —_ s '
ot (Lspteser) V“’Sh s L=cosBecoske o < ¢ )

coS J. — COSK 293,

This expression defines the way the normal displacement of bubble wall v depends on azimutal
angle x.

The volume of the bubble V" and its time derivation are easily expressed through the normal
displacement

m 2n R 3 n
V= / / wsm iediedo ~ Vo + 2nR3/ v() sin ke dre, (12a)
9. JO

9.

‘L—It/ = 27R; / V(r) sin « dk. (12b)
9
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Substituting the expression for normal displacement (11) into Eq. (12b) we obtain desirable result

dv 1 d*v
ar = 2 0= Ring.co.) A

72 /” sin 3, sin k dx
27282 Js

Cc@S,) =
(%) . (cos 3, — cos K)3/2

. né
/Oo de sinh (29)
X

—1 ((1=cos 8, — . T ‘
osh ™! (Lsgesses) \/coshé_Mcosm( 5)

cos 3, — COS K 28,

(13)

Evaluating Bernoulli integral at bubble wall we get an analog of Rayleigh equation for the volume
pulsation of tethered bubble

»
I

Poo + Py sin(wpt) + pg@os(t) = P(s = Ro, 1) = Po(Vo/ V)" = Po(1 — yAV V),

1 d’v 9P P, .
AV = —— 1). 14
2Ry sin 9.C(9) A2 T poVo 5, S @) (14)

It follows directly from this equation that the fundamental frequency of the tethered bubble has
the form

Qé (Ro.9.) = 2yRy sin 3.C(3.) Py _ 932 (Ro) sin SCC(,SC) , (15)
o Vo ol (1 —cosI:) (24 cosd.)
4

where Qf(Ro) = /37Po/poRy !'is the fundamental frequency of a free bubble.

The integral form of the derived expressions (9), (11), (13) makes it rather immense, therefore
we present solutions for a set of particular values of contact angle when integrals can be calculated
in a closed form:

1 1

- ) V= B
(2 +2 4+ R 2R;

or (Ro,g) = Q2*(Ry), (16)

3. =mn/2, L =2R,, @:%

9. =n/4, L=+/2Ry,

1 1
+
V2Ry 232 4 y2 4 22)'?

=0
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1 1
V24/x2 + 32+ (z = Ry/V2)F V2 x2+y2+(Z+Ro/\/§)2’

-3/2 -1/2
y=22 QZ{I—[S—%@COSK} } c:ﬁn[1+2—1/2(3+2fz) ]
Os =Ry \/ERO
) 12
1+2712(3+242) } (17)
@ (R, T) = (R [ ~ 0.686Q2*(Ro).
For the symmetric case
* 9. =3n/4, L=~2R,,
1 1
»=0 -
V2Ry  2(x2 + 2 +22)'2
1 . 1
V24/X2 4324 (2 = Ro/V2)?  V24/X2+ 32+ (24 Ry /V2)
) aq, Q { —3/2}
y=22 2 1 _[342V2c0sk ,
08 |—g, V2R3 { }
~1/2
C:ﬁn[—l+2_l/z(3—2\/§> ]
—1/2
92<R 3”) —QZ*(R)[_1+2_1/2(3_2ﬁ) ] ~ 6.09502%(R,) (13)
") T O (4 - 11v2/4) /4] TR0 AR
® 9, =n/6, L=R,,
1 1 1
p=0|5— -
R() 2(x2 +y2+22)1/2 \/x2+y2+(2— \/§R0/2)2

1 1
_l’_
\/x2+y2+(z—«/§Ro/2)2 ﬁ\/xz + 32 + (z — Ry/24/3)

1
+ )
V34/x2 432 4 (2 + Ry /2v/3)?
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. 0 0 1 1
=22 =Z1- +
= o R 32 32 (7
s=Ry 0 «/5[2 — /3 cos K| [7 - 4./3 cos K]
C=2n

1+ \@(2 + ﬁ)fl/z - 2% (7 + 4ﬁ)1/2] :

(1/2) [1 + \/%(24- ﬁ)_l/z _ﬁ(7+4«/§)_1/2}

~ 2k
[1— (2-4/3/8) /4] ~ 0.684Q7"(Ro).  (19)

9} (Ro.7) = 2 (Ro)

'90:57'6/6, L=R0,

1 1 1
RO 2(.X2 + y2 + 22)1/2 \/x2 4 y2 + (Z _ \/§R0/2)2
1 1
\/x2+y2+(z+\/§R0/2)2 V3y/X2 4324 (z — Ry /2V/3)°

=0

_l’_

1
+ )
V3y/X2 432 4 (24 Ro/2V/3)*

,_%
" Os

1 1
=% - 3/2"‘ 32 (°
=k Ko V2[2 4+ /3cosk] 7+ 4y/3 cos k]

C= 2n[1 _ %(2— «/5)_1/2 +i§(7 —4«/§)_1/2],

(1/2) [1 — \/%(2— \/3)—1/2_'_21%(7 —4«5)_1/2}
[1—(2—+/3/8)/4]
~ 18.657Q5*(Ry). 0

Sn
Q} (Ro,g> = QF*(Ro)

The limiting case 9. — 0 when the bubble wall is tangent to rigid boundary in one point has
been analysed earlier [11] where it was shown that the fundamental frequency there is

Q%(Ry,0) = In 2Q3*(Ry). (21)

Although we presented results for the contact angles equal even fraction of =, the similarly
expressions can be obtained and for odd fractions ones, but the corresponding formulae for the
potential and especially for the normal displacements at bubble wall have cumbersome form (see
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Fig. 3. Dependence of the natural frequency of the tethered bubble with fixed volume Qy(V, 3.) on the contact angle J..
The normalisation on the natural frequency Q(¥) of the free bubble with the same volume is used.

Appendix A for 3, =mn/3) and thus have a little preferences in comparison with integral
representation.

The derived expressions for the natural frequencies (17)—(21) are given for the fixed radius of
curvature R, of spherical segment, but it is more interesting to trace how does the natural
frequency of the bubble with the fixed volume V' = (47z / 3)R8 vary as it is tethered to the wall and
the contact angle is changed?
sin 9. C(9,)

(1 — cos 3.)*(2 + cos 9,) 13
4

(22)

QV,9) = Q)
201 -

Fig. 3 illustrates the dependence of Qy(V,3.)/Q;(V) on the contact angle 3., here Qi(V) is the
natural frequency of the free bubble. This nonmonotonic relation is surprising at first glance, but
can be explained the following way. As the oscillating gas bubble is approached to the rigid
boundary its inertial mass is increased. Really as has been mentioned above the presence of rigid
boundary is equivalent to the presence of the mirror bubble oscillating synchronous with the first
one. Now it is more difficult for the bubble to accelerate the fluid in the region between its mirror,
as the second (mirror) bubble acts with opposite force. As a result the inertial mass grows and the
fundamental frequency decreases as the bubble is approached to the boundary. When the bubble
touch the boundary ( 3. = 0), the area where the bubble and its mirror hinder each other to
accelerate the fluid begin to shrink and as a result the inertial mass will decrease, the natural
frequency begin to increase. This growth will continue till the limit of applicability our approach —
homobaricity within the bubble that is till the wavelength will be compared with base of the

spherical segment L = 2R sin 9, = 2(3V /4n) 13 sin 9.1 —(1 = cos 9.)%(2 + cos 9.)/4] 13
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It would be of interest to compare present findings with the ‘opposite’ case of the
bubble oscillating in the vicinity of a nearly plane free surface. This problem is however
more complicated due to the possible distortion of the free surface. Two limiting case has been
analysed by Prosperetti and his colleagues [15,16]. The dimensionless frequency of the volume
mode of a small bubble floating at the surface of a liquid before bursting depends on the
single dimensionless parameters (Lo/D) (here L, is the radius of a spherical bubble that
would contain the same amount of gas as the floating bubble at the same internal pressure, D is
the so-called capillary length) and this dependence is not monotonic [15]. The linear
oscillation frequency of a bubble in the vicinity of a distorted plane free surface has been
calculated by a perturbation method in Ref. [16]. The solution of the problem is greatly
facilitated by the use of approach initially derived by Strasberg [17]. The natural frequency
diverges logarithmically as the bubble approaches the plane free surface. However, the deviation
from 1 is significant only for depths of immersion of the bubble smaller than about three bubble
radii [16].

In conclusion one should point out that although the primary aim of this work was to analyse
volume oscillations of tethered bubbles in laboratory studies, the final results are equally applied
(with substitution of the compressibility of the gas in a single bubble by the compressibility of
bubble-liquid mixture) for the evaluation of fundamental frequencies of collective oscillations of
gas plumes — seepage of hydrocarbon deposits at ocean bottom [18,19].
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Appendix A

Potential for the contact angle 3, = n/3.

L=+3R,

_ Q) [—arccos(A) + arccos(—A)] 1 [arccos(B) — arccos (—B)]

[ ] QY =—
& V3Rq V3 [ +32+ (2= R)2)

1 [arccos (D) — arccos (—D)]
V3 \/x2 +32+ (24 Ro/2)
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L V(P -3R /4)2 +32R + (P — 3R /4)’ P
V(P =3R4) 432 R + (P + 3R3/4)
o V(P = 3R3/4) +32 R — (1/2)(F — 3R3/4) + (3/2)Rq
N E R R (PR
. V(P = 3R3/4) +32 R — (1/2)(F — 3R3/4) — (3/2)zRq

V(P = 3R3/4) 4321 + (P + 3R2/4)
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