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Abstract

This article presents an integrated model for the computation of vehicle–track interaction and the ground
vibrations of passing trains. A combined finite element and boundary element method is used to calculate
the dynamic compliance of the track on realistic soil whereas multi-body models are used for the vehicle.
The dynamic stiffness of the vehicle and that of the track are combined to calculate the dynamic axle loads
due to the irregularities of the vehicle and the track as well as those due to sleeper passing excitation. These
loads serve as input for the calculation of ground vibration near railway lines in the time and frequency
domains.

The theoretical methods and results have been proven by experiments in several respects and at several
instances. First, on the occasion of the test and record runs of the Intercity Experimental, there was a very
good quality of the vehicle and of the newly built track so that the deterministic parts of the excitation—the
static load and the sleeper-passing component—could clearly be identified, the first being of minor
importance apart from the track. Second, simultaneous measurements of the vehicle, the track and the soil
at three different track situations were performed where we could verify the different parts of the stochastic

excitation and their importance for the ground vibrations. The irregularities of the vehicle are dominant at
high frequencies whereas the irregularities of the track are more important at lower frequencies. The
comparison of the theory and the measurements also points to the phenomena of the vehicle–track
resonance and the scattering of the quasi-static axle impulses by randomly varying soil.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

a half-width of the track
a� normalized half-width of the track
aA axle spacing
aC length of a carriage
d sleeper spacing
df a difference of frequencies
D damping ratio
E modulus of elasticity
EI flexural stiffness (of the rail)
f frequency
f S sleeper-passage frequency
FT flexibility of the track
G shear modulus (of the soil)
i index (summation, iteration)
j imaginary unit
kP pad stiffness
K dynamic stiffness of the vehicle and the

track (constant part)
KV dynamic stiffness of the vehicle
KT dynamic stiffness of the track
KT0 static stiffness of the track
K1 time-varying part of the dynamic stiff-

ness
mW mass of the wheel
p force
pV vehicle force
pT track force

p0 static axle load
p1 dynamic axle load due to sleeper passage
r radius, distance of observation point
r� normalised radius
rW radius of the wheel
s irregularities (of the vehicle sV or the

track sT )
t time (of excitation)
t’ arrival time
T delay time
u displacement
uV displacement of the vehicle
uT displacement of the track
u0 displacement due to the static load

(starting point of iteration)
u1 displacement due to sleeper passage
u10 displacement due to static sleeper pas-

sage
vS shear wave velocity of the soil
vT train speed
X spectrum of axle sequence
x distance from the track
y point of excitation measured along the

track
l wavelength of the irregularity
n the Poissons’ ratio
r mass density
rA mass per length of the rail
o circular frequency
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1. Introduction

Ground vibration near railway lines has been a research and consulting subject of the
Federal Institute for Materials Research and Testing (BAM) for more than two decades.
To this end, a number of measurements have been made (Fig. 1) and different theoretical
models have been developed. As pointed out by a number of authors [1–3] and shown in a
previous contribution [4], the amplitudes and frequencies of the ground vibration are strongly
influenced by the soil. The present contribution focuses on the excitation process of the railway
vibration.
Here, the excitation is expressed as the static and dynamic forces between the wheels

and the rail. The excitation can be of a deterministic nature, such as the static axle loads and
the sleeper-passing component, or of a stochastic nature, such as the irregularities of the track
and the irregularities of the vehicle (out-of-round wheels). The frequencies considered range
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from 0 to 150Hz while ground vibration near railway lines in the range of 4–100Hz are pri-
marily of interest. Often a clear distinction can be found between the low-frequency (fo30Hz)
and the high-frequency part of the vibration, and these parts may be partially correlated with
the stochastic excitation by the track (the low-frequency part) and the vehicle (the high-
frequency part).This contribution intends to cover all the types of excitation which are of
importance.
In the literature, another distinction is made between the quasi-static and the dynamic part of

the excitation according to the absence or presence of inertial effects of the vehicle [2]. In Refs.
[5,6] the quasi-static method is used to analyse the effects of the moving static load over a track
with sleepers. The strongest effect in these studies is the (quasi-static) sleeper-passage effect.
However, the sleeper passage results in an important dynamic load due to the variation of the
track stiffness on and between the sleepers [7,8], which should be included in the analysis, too. In
Ref. [9], the quasi-static method was compared with high-speed measurements similar to those in
Ref. [10], indicating only a moderate agreement.
Another type of excitation, which is also due to the passage of static loads, was first presented in

Ref. [11], namely, the scattering of the axle-impulses by a randomly varying soil. Both
measurements presented here give further evidence of this. In addition, it is clearly shown that the
deterministic static part is negligible, as it rapidly diminishes with distance from the railway line.
To analyse the stochastic dynamic part of the ground vibration, it is necessary to obtain some

experimental information about the irregularities of the vehicle and the track by measurements on
the vehicle [12] or on the track [2], and it is necessary to solve the vehicle–track interaction
problem.
Recently, a number of methods have been developed to calculate the moving load effects

on the track and on the soil [13–16]. For the special case of a ‘‘critical train speed’’—that is,
a train speed close to the wave speed of the soil—an amplification is predicted regarding
especially the displacements of the track. The special effects of moving loads may be
even more pronounced in combination with a layered soil with its resonance and cut-off
frequencies [3,13]. For the situation discussed in this contribution and for most real situations,
this effect is not of interest. More literature about railway vibration and about layered soil is given
in Ref. [4].
This contribution consists of three main parts: (i) the theoretical solution, (ii) the experimental

results of the ICE test runs on the new track (Fig. 1) and (iii) the simultaneous measurements of
vehicle, track and surrounding soil. First, the theoretical models of each subsystem—vehicle, track
and soil—are presented and then the solution of their interaction is discussed.
Fig. 1. The test situation at the German high-speed line near Würzburg: Intercity Experimental on ballasted track,

measurement of ground vibration at 2.5–100m from the track.
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In Section 2.2., the vehicle–track resonance and the irregularities of vehicle and track are
studied. The effects of the sleeper passage are derived in Sections 2.3, and in Section 2.4 the effects
of moving static (and dynamic) loads are presented. For each type of excitation there are
corresponding experimental results: the deterministic loads are proved in Section 3 (high-speed
measurements) and the stochastic components—the irregularities of the vehicle and the track—
are analysed in Section 4 (simultaneous measurements). In addition in Sections 3 and 4, a
stochastic component due to the soil is discussed in context with the measured mid-frequency
ground vibration.
2. Theory on the interaction of vehicle, track and soil

2.1. Methods and parameters of the sub-systems

For each sub-system—vehicle, track and soil—an appropriate method of calculation is used
(Fig. 2). Starting with the base, the soil is described by dynamic point-load solutions which are
calculated by a frequency–wavenumber approach [4]. The point-load solutions of a homogeneous
or layered soil are used to calculate the wavefield caused by a passing train or—in other words—
the ground vibrations near railway lines. But the same point-load solutions are also used to
calculate the track behaviour. They are introduced in a boundary element algorithm to yield a
stiffness-matrix of the soil, which is coupled with a finite element matrix of the track or any other
structure. In this way, the interaction of the soil with ballasted and slab tracks as well as buildings
with the soil can all be calculated [17].
The track–soil system of Fig. 3 is investigated for a harmonic wheelset load or, in other words,

for a pair of harmonic wheel loads. The compliance of the track under this wheelset load is
calculated as a function of frequency. A ballasted track with a UIC60 rail, stiff rail pads
(kP ¼ 300kN=mm) and concrete sleepers according to the detailed list of parameters given in
Appendix A is analysed. In Fig. 4, the amplitude and the phase of the compliance or flexibility
function FT ðf Þ are presented for four different homogeneous soils. The flexibility of the ballasted
track is strongly influenced by the stiffness of the soil, especially at low frequencies. In addition,
the ballasted track on homogeneous soil has a strong damping due to the radiation into the
interior of the soil, which can be identified by the high phase of the flexibility function. In Fig. 5,
some additional results of a slab track are presented, which are used for the discussion of the
simultaneous measurements in Section 4. Compared to the ballasted track, the damping of a slab
track is reduced considerably by the elastic rail pads (kP ¼ 80 kN=mm). More details on different
tracks on different homogeneous or layered soils are given in Refs. [18,19].
The mixed boundary-element finite-element models of the track–soil systems consist of 2� 40

rail elements, 11� 12 sleeper elements, 44� 12� 2 volume elements of the ballast and a fully
coupled soil element of 45� 13� 3 degrees of freedom. For the calculation of vehicle–track
interaction, these complex track–soil models are represented only by their results—their dynamic
track compliances FT ðf Þ: This may be called a sort of substructure method.
Various models can be used for the railway vehicle, for example, the four-mass model consisting

of two wheels, bogie and half of a car-body used in Ref. [7]. We require the dynamic stiffness
KV ðf Þ as a function of frequency. In general, this is a matrix which returns the dynamic wheel
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Fig. 2. The interaction of the vehicle, the track and the soil—coupling of different methods for each sub-system.

Fig. 3. The dimensions of the track in theory and experiment.
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loads pV caused by the displacements uV of the wheels. The dynamic stiffness of the vehicle
represents the inertial effects and the eigenfrequencies of the vehicle such as the vertical
eigenfrequency of the carriage and the vertical and the rotational eigenfrequencies of the bogie.
Instead of restricting the model to rigid masses, vehicles with elastic components can also be
included, as in Ref. [12] for example. However, the effects of elasticity are not particularly strong,
and taking rigid masses seems to be a conservative approach. For specific purposes and at
sufficiently high frequencies, it was found that the simplest model of a rigid wheelset of mass mW

would give reasonable results, too. In this case, we have the dynamic vehicle stiffness

KV ¼ �o2mW ; (1)

which can be introduced most easily in the vehicle–track interaction presented in the next section.
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Fig. 4. The dynamic compliance of a ballasted track on different homogeneous soils with vS=100m/s &, 150m/s J,

200m/s W, 300m/s +.
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2.2. Dynamic axle loads due to irregularities of the vehicle and the track

The sub-systems for vehicle and for track–soil must be coupled to calculate the dynamic axle
loads. A description is used in which only the forces pV and pT and the displacements uV and uT of
the contact points of the vehicle and the track are used. The vehicle is described by its dynamic
stiffness KV

pV ¼ KV uV ; (2)

where pV and uV are spectra and KV is a transfer function.
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Fig. 5. The dynamic compliance of a slab track with different rail pads kP=80kN/mm &, 150 kN/mm J and 300

kN/mm W.
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The track is described by its compliance FT

uT ¼ FT pT : (3)

Although, we need the track compliance for a moving load, we use the compliance for a fixed load
as presented in the preceding section. This is acceptable because the difference between moving
and fixed load is small, if the speed of the train is smaller than the wave speed of the soil

vTovS (4)

(see for example Refs. [11,13–16]). Instead of the compliance FT ; the stiffness KT ¼ F�1
T is used

pT ¼ KT uT : (5)
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To combine the vehicle and the track, the following two equations are used: The force pT acting
on the track and the force pV acting on the vehicle (the wheelset) are the same except for the sign
(see Fig. 2)

�pT ¼ pV : (6)

The displacement uV of the wheelset differs from the displacement uT of the track by the amount
of the irregularity s

uV ¼ uT þ s; (7)

where s can be any irregularity of the track, of the surface of the rail or the out-of-round of the
wheel. By eliminating the track displacement uT and the vehicle force pV in Eqs. (2),(5)–(7), we get
the system equation

KV þ KTð ÞuV ¼ KT s; (8)

which yields the vehicle response uV due to the irregularities s

uV ¼ KV þ KTð Þ
�1KT s; (9)

and the corresponding interaction force (by using Eqs. (5) and (6))

pT ¼ �pV ¼ �KV uV ¼ �KV KV þ KTð Þ
�1KT s: (10)

The train speed vT is introduced into the calculation by determining the frequency

f ¼ vT=l (11)

together with the wavelength l of a harmonic irregularity.
Fig. 6 shows the transfer function uV=s of Eq. (9) for the ballasted track considered in

Section 2.1 with the rigid wheelset of mass mW ¼ 1500kg: The transfer function starts at the value
1, increases to a maximum at the vehicle–track eigenfrequency and decreases for high frequencies.
The vehicle–track eigenfrequency depends strongly on the stiffness of the soil, varying from 50 to
100Hz. The vehicle–track resonance is considerably stronger for a slab track with soft rail pads
(Fig. 7). For a slab track, the stiffness of the rail pads is the most important parameter in
determining the vehicle–track eigenfrequency.

2.3. Dynamic axle loads due to sleeper passage

2.3.1. A general method for a system with time-varying stiffness
In the case of a discretely supported rail, the track stiffness KT depends on the position of the

load between or on the sleepers. For a train running with speed vT ; this means a periodical
variation of the track stiffness with the sleeper-passage frequency

f S ¼ vT=d; (12)

where d is the sleeper distance. The system equation (8) is

KV þ KT þ K1ðtÞ½ 	uV ¼ p (13)

with the time-varying part K1ðtÞ of the track stiffness and a load p where the most important
load—the static load—is considered in the next section. KT and KV are read as operators which
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act on time functions uV and p. An approximate solution of the system equation (13) is given in a
general form in this section. A special solution for practical railway problems is given in the next
section and a simpler derivation of this special version is presented in Appendix B.
We start at the general system equation

K þ K1 tð Þ½ 	u ¼ p: (130)

If K1ðtÞ is small compared to the stiffness K ; we have the following iterative method for the time-
varying system. At first, we calculate the solution

u0 ¼ K�1p (14)
Fig. 6. The transfer function of vehicle–track interaction for the ballasted tracks on different homogeneous soils with

vS=100m/s &, 150 m/s J, 200m/s W, 300m/s +.
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Fig. 7. The transfer function of vehicle–track interaction for a slab track with different rail pads kP=40kN/mm +,

80 kN/mm &, 150 kN/mm J, 300 kN/mm W.
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as if there is no time-varying stiffness. When u0 is introduced in the complete system equation
(130), we get an error

K þ K1ðtÞ½ 	u0 ¼ p þ K1ðtÞu0: (15)

The error K1ðtÞ u0 is taken as a new excitation and again the solution u1 of the time-independent
problem is calculated

u1 ¼ �K�1K1ðtÞu0 ¼ �K�1K1ðtÞK
�1p: (16)
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Again we get a small error when u1 is introduced in the complete system equation. We can
continue this procedure and we get a series of equations

ui ¼ �K�1K1ðtÞui�1: (17)

By summing these equations for i ¼ 0; . . . ; n; we get the approximate solution

u ¼
Xn

i¼0

ui ¼ K�1 p � K1ðtÞ
Xn�1

i¼0

ui

 !
; (18)

which fulfils the system equation (130) with a small error (by rearrangement of Eq. (18))

K þ K1ðtÞ½ 	
Xn

i¼0

ui ¼ p þ K1ðtÞun: (19)

If only the first two Eqs. (14) and (16) of the procedure are used, we can write

u1 ¼ �K�1K1ðtÞu0 ¼ �K�1K1ðtÞK
�1p (20)

for the additional displacement u1 due to the variation K1 of the stiffness, and for the additional
dynamic axle-load p1 we have (using Eqs. (5) and (6))

p1 ¼ �KV u1 ¼ KV K�1K1ðtÞK
�1p: (21)

These approximate solutions (20) and (21) are further reduced by specifying the variation of the
stiffness due to the sleeper passage.

2.3.2. The passage of static loads over a track with equally spaced sleepers
In particular, with the dominating static load p0 of the train instead of p; we get a solution in the

frequency domain. The stiffness variation K1ðtÞ is a periodic variation with the sleeper-passage
frequency f S (12). Moreover, it is almost exclusively a harmonic variation as the higher harmonics
are negligible [8,20]. Therefore, we can rewrite Eq. (20) as

u1 ¼ �K�1ðf SÞK1ð0ÞK
�1ð0Þp0 (22)

and Eq. (21) as

p1 ¼ KV ðf SÞK
�1ðf SÞK1ð0ÞK

�1ð0Þp0 (23)

by using the appropriate values of the transfer functions K ; K1 and KV : Eqs. (22) and (23) are
read from right to left as follows: as p0 is static, we use K�1ðf ¼ 0Þ: As K�1ð0Þp0 is static too, we
use K1ðf ¼ 0Þ: K1ð0Þ K�1ð0Þ p0 is harmonic with frequency f S; therefore, we use K�1ðf SÞ: K�1ðf SÞ

K1ð0Þ K�1ð0Þ p0 in turn is harmonic and KV ðf SÞ is used. Eq. (23) of the sleeper-distance load
consists of a frequency-dependent factor KV ðf SÞ K�1ðf SÞ (transfer function) and a constant factor
K1ð0Þ K�1ð0Þ p0 which can be regarded as an excitation.
We can compare the sleeper-passage solution (23) with the loads due to irregularities (10) of

Section 2.2. For train speed vT ! 0; we get the quasi-static solution of (22)

u10 ¼ �K�1ð0ÞK1ð0ÞK
�1ð0Þp0; (24)
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and therefore we can replace the constant excitation factor by

�K1ð0ÞK
�1ð0Þp0 ¼ Kð0Þu10 ¼ KT0u10: (25)

The sleeper-distance load (23) can therefore be written as

p1 ¼ �KV K�1KT0u10; (26)

which includes nearly the same transfer function as the load (10) due to irregularities s

pT ¼ �KV K�1KT s;

where only the frequency-dependent track stiffness KT must be replaced by the static value KT0:
Results for the measuring situation described in Section 3 and Appendix A will be presented

here. For a ballasted track with a rail UIC60 and sleeper distance d ¼ 0:6m; the additional (peak-
to-peak) displacement of the wheel between two sleepers is 2u10 ¼ 0:016mm (for p0 ¼ 100kN) for
a stiff track, and it decreases to 2u10 ¼ 0:01mm for a soft track, almost independent of whether
the soil or the rail pad is soft. Results for a stiff soil with a shear wave speed of vS=270 m/s and a
wheelset with mW=1700kg are given in Fig. 8 as a function of train speed. The dynamic loads due
to the sleeper-passage excitation increase strongly with frequency or with speed respectively. The
maximum force of p1=15 kN is reached at the vehicle–track eigenfrequency for vT=200km/h. At
higher speeds or frequencies, the force decreases, tending to the constant asymptote of about
10 kN. This is regarded as an important conservative effect for high-speed railway traffic.

2.4. Simulation of moving loads on the ground

The propagation of waves due to the passage of a train are calculated on the basis of point-load
solutions of a homogeneous or layered half-space. There are methods that work in the frequency
domain where the frequency-dependent behaviour of layered soils can be clearly demonstrated [4].
Some of the results achieved in the frequency domain can be used in the approximate simulation
in the time domain presented in this section. The moving loads of the train are assumed to be time
harmonic loads including the static load with zero frequency.
The simplest solution for the displacements uðr; f Þ at a distance r from a harmonic point-load p

of frequency f is that of a homogeneous half-space which can be approximated by [4]

uðr; f Þ ¼
pð1� nÞ
2pGr

e�Drn
1 for rnp2; 5;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rn=2; 5
p

for rn42; 5;

�
(27)

where the parameters are the shear modulus G ð¼ 1:3� 108 N=m2
Þ; the Poissons’ ratio n ð¼ 0:3Þ;

the material damping D ð¼ 5%Þ; the shear-wave speed vS ð¼ 270m=sÞ; and

rn ¼ or=vS (28)

is a dimensionless distance or frequency. The values in brackets are the parameters of the
measuring site near Würzburg.
The forces acting on the track—for example those calculated in the preceding section—are

distributed along and across the track. The simulation uses a point-load p0 for each axle of the
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Fig. 8. The dynamic axle-load due to sleeper-passing excitation with stiffness variation K1=K ¼ 5%:

L. Auersch / Journal of Sound and Vibration 284 (2005) 103–132 115
train, which is the actual axle-load p modified according to the effect of the load distribution on
the vibrations of the soil. This can be expressed by a frequency-dependent factor

p0

p
¼

sin an

an
for anp

p
2
;

1

an
for an4

p
2
;

8>><
>>: (29)

where

an ¼ oa=vS (30)

is a frequency parameter including the half-width a of the track. This is derived by assuming a
uniformly distributed load across the track width 2a. The response of the soil to these load
components has contributions with different phases and their superposition leads to a reduction
of amplitudes compared to a concentrated load

p0

p
¼

ua

u0
¼

Rþa

�a
ejox=vSdx

2a
¼

sinoa=vS

oa=vS

: (31)

The practical prediction formula (29) uses the envelope of this theoretical result (31).
The calculated axle loads are applied to the soil for each axle of the complete train while the

point of excitation moves forward with the speed of the train. For each harmonic load of each
axle, a wave is propagated according to the corresponding point-load solution u=pðr; f iÞ of the soil

uðt0Þ ¼
u

p
r; f i

� 

p0ðtÞ; (32)



ARTICLE IN PRESS

L. Auersch / Journal of Sound and Vibration 284 (2005) 103–132116
where the distance r depends on the point of excitation yiðtÞ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

i ðtÞ

q
: (33)

The displacement is the response at arrival time t0

t0 ¼ t þ r=vS; (34)

whereas t is the loading time. Adding all components together and differentiating with respect to
time leads to the particle velocity of the observation point.
There are several works [13–16] in which the effects of moving loads are studied in more detail.

It has been found that there are additional effects to those presented here if the speed of the train
reaches the wave speed of the soil. This situation is very seldom found in practice because the soil
usually has wave speeds higher than 100m/s. One of these rare situations was measured and
presented in Ref. [4]. The soil was very soft and the observed high amplitudes are mainly due to
the soft soil rather than wave speed effects. In addition, the published effects of uniform soils are
certainly stronger than under realistic non-uniform soil conditions.
Figs. 9 and 10 present the results for a train consisting of two carriages and a locomotive

travelling at vT=200km/h. In Fig. 9, only the static loads are applied. The calculated soil
vibrations at 2.5, 5, 10 and 20m are quite different. Close to the track every bogie is identifiable as
a pulse, whereas further away from the track the whole train is present only as a single up and
downward wave. As can be seen by the scales of the vertical axes, the corresponding amplitudes
decrease very rapidly with distance.
In Fig. 10, the dynamic loads are included as (i) the sleeper passing load p1 according to the

preceding section and (ii) an additional harmonic load p2 ¼ 0; 05p0 at f ¼ 25Hz: As the results
are very similar to the measured ones, both are discussed together in the next section.
3. Measurements with the ICE-train

Three series of measurements were performed during the test runs of the ICE on the newly built
track near Würzburg (see Fig. 1). There we have a ballasted track, as described in Section 2, on a
surface line over stiff soil. The different configurations of the train are shown at the top of Fig. 14
and the train speed was varied between 100 and 300 km/h (for more details about the parameters
of the measurements see Appendix A). Fig. 11 shows a result from the first measurements where
the experimental train consists of a locomotive and two carriages. The components of vibration
are very similar to those from the theory (Fig. 10):
A very low-frequency component is only observable close to the track, and with increasing

distance this quasi-static component vanishes. There is a mid-frequency component (10–40Hz)
which is most dominant at the far-field. This is a characteristic behaviour of the soil and is
attributed to the higher damping of high-frequency components. The high-frequency component
(80–120Hz) is due to the sleeper-passage excitation. The single frequency of sleeper passage is
spread into a broad band when the load moves towards to and away from the observation point,
as expected from the Doppler effect.
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Fig. 9. Simulation of the ground vibration due to the passage of the static loads with vT=200km/h. Time histories (left)

and Fourier spectra (right) of the particle velocities at different distances from the railway line, r=2.5, 5, 10, 20m (from

top to bottom).
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The measurements as well as the calculations were performed with different train speeds. The
amplitudes of the high-frequency component (the rms-value at distances of 10–15m) are given in
Fig. 12. As calculated for the sleeper passing excitation, the maximum amplitudes are found at
vT=200km/h. At this train speed, the sleeper passing frequency meets the vehicle–track
eigenfrequency. For higher speeds or higher frequencies, the dynamic load no longer increases and
the soil vibration even decreases due to the material damping of the soil.
Corresponding results for the mid-frequency range are shown in Fig. 13. The characteristic of

this frequency range changed during the three series of measurements. During the first and third
measurements a clear increase of the corresponding amplitudes was observed with increasing train
speed whereas they scattered around a constant value for the second measurement. The measuring
conditions changed during the three measurements. The track used and the measuring line
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Fig. 10. Simulation of the ground vibration due to the passage of the static and dynamic loads with vT=200km/h. Time

histories (left) and Fourier spectra (right) of the particle velocities at different distances from the railway line, r=2.5, 5,

10, 20m (from top to bottom).
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changed from east to west, and the configuration of the test train changed, too (top of Fig. 14).
The mid-frequency spectra are analysed in detail by comparing them with the axle-sequence
spectra of the passing train (bottom of Fig. 14). For the second measurement, a clear shift of
frequencies can be seen in accordance with the speed of the train, and the shapes of the Fourier
spectra agree well with that of the passing axle-loads (Fig. 15). More details on axle-sequence
spectra are given in Appendix C and in Ref. [18].
The good correlation between the theoretical axle-passage spectrum and the spectra of the

ground vibration leads to the conclusion that static loads are the cause of these mid-frequency
vibrations. All other kinds of excitation would give a different spectrum, especially due to
different phase relations between the different axles (see the arguments in Ref. [18]). As the
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Fig. 11. Measured ground vibration due to the passage of the Intercity Experimental with vT=200 km/h. Time histories

(left) and Fourier spectra (right) of the particle velocities at different distances from the railway line, r=2.5, 5, 10, 20m

(from top to bottom).
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deterministic ground vibration due to the static loads is very small, it is concluded that the
measured amplitudes can only be the stochastic reaction to the static loads. This idea was first
presented by Huber [11] who gave a first experimental indication and showed the considerable
numerical effects of a slightly varying wave speed of the soil.
The soil reaction to each impulse of a passing axle is the same for each point, if the soil is

regular, but it varies if the soil has slightly differing properties at different points. Thus in a
uniform soil, the impulses at different points of excitation yield a quasi-static reaction of the soil
when superposed. The superposition of the differing soil reactions in a non-uniform soil yields the
mean quasi-static response but there are also irregular contributions to the soil reaction. This
scattering of the axle impulses is considered as a main part of the measured train-induced ground
vibrations in that case.



ARTICLE IN PRESS

Fig. 12. The sleeper passing part of the ground vibration at a distance of 10–15m, theory and measurement.
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4. Simultaneous measurements of vehicle, track and soil

At the same place some years later, more complex measurements were performed [12].
Vibrations were measured for three different track situations—surface line, bridge and tunnel—
and vibrations were measured on the vehicle (15 points, [22]), on the track (8–10 points each) and
on the soil (15 points each). The simultaneous measurements of the vehicle gave a better insight
into the excitation processes of the ground vibrations near railway lines.
Certainly, no static axle loads can be observed on the vehicle by dynamic measurements. There

is a mid-frequency range which is found to be almost identical for all four wheels measured, and
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Fig. 13. The mid-frequency part around f ¼ vT=2:8m of the ground vibration measured during the three test series: 1.

3-unit ICE &, 2. 5-unit ICE J, 3. 4-unit ICE W.
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also identical for all measured speeds of the train, if the frequencies are properly shifted.
Therefore, it can be said that these accelerations are due to the track irregularities. The track
irregularities at this measuring site are approximated by a power law with an exponent higher
than 2 (Fig. 16).
The irregularities of the vehicle can be found in the Fourier spectra of the accelerations which

are given in Fig. 17 for the complete run on the 3 km test section. The unevenness of the wheel is
represented by a number of horizontal lines which repeat at the spacing

df ¼ vT=2prW ; (35)

which is the rotational frequency of the wheel. The amplitudes of these irregularities are between
0.005 and 0.02mm up to the tenth order f 10 ¼ 10 df :
Now with the excitation known, the calculation as described in Section 2.2 can be performed.

The different transfer functions of the ballasted track (Fig. 6) and the slab track (Fig. 7 and Ref.
[21]) are multiplied by the irregularities of the track and of the vehicle. The resulting predicted
accelerations of the wheelset are given in Fig. 18 together with the ones measured. The correlation
between theory and measurement is very good. Both show a clear vehicle–track resonance for the
slab track, while for the ballasted track the vehicle–track resonance is at a higher frequency and
not so strong as for the slab track with softer pads and lower damping. The differences at lower
frequencies are due to the fact that the slab track has a considerably better track quality than a
ballasted track [21].
The calculation not only gives the vehicle accelerations but also the dynamic loads on the track,

which are almost proportional to the acceleration of the wheel. The response of the surrounding
soil can then be calculated in the frequency domain [4]. The spread in frequency due to the
Doppler effect is considered approximately. Fig. 19a shows the ground vibration due to the
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Fig. 14. The different axle sequences of the three test series and the corresponding spectra for vT=200 km/h.
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irregularities of the track, the irregularities of the vehicle and the sleeper-passage excitation. The
agreement with the measured ground vibration in Fig. 19b is acceptable, the dependence on the
train speed being less pronounced in experiment than in theory. The mid- and the high-frequency
part of the vibrations are clearly distinguishable and their amplitudes are nearly the same in
theory and experiment. But not all measured amplitudes at around 15Hz can be represented by
the theory. Therefore, a second calculation is presented in Fig. 19c where a scattered part of the
axle impulses is added in an approximate manner, giving a better explanation of the mid-
frequency amplitudes. From these simultaneous measurements one may conclude again that the
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Fig. 15. Spectra of the ground vibration at r=2.5, 5, 10 and 20m (bottom) compared to the spectrum of the axle

sequence (top), three passages of a 5-unit ICE with speeds of 200, 250 and 300 km/h.

L. Auersch / Journal of Sound and Vibration 284 (2005) 103–132 123
scattering of axle impulses is one of the causes of the mid-frequency component of the ground
vibrations near railway lines.
5. Conclusion

The passage of the static axle loads is important for the track and the close surroundings of the
track. However, the corresponding amplitudes decrease very rapidly with distance so that these
loads are not important for ground vibrations. This was clearly demonstrated with the ICE test-
runs.
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Fig. 17. Fourier spectra of the wheelset accelerations along the complete test section (including ballasted track and slab

track, left), indicating the wheel irregularities.
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Fig. 18. One-third octave band spectra of the wheelset accelerations at different train speeds vT=160 km/h &, 125

km/h J, 100 km/h W, 80 km/h +, 63 km/h � . Theory (top) and measurement (bottom) of ballasted track (left) and

slab track (right).
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The effect of sleeper passage is well described by the results of parametric excitation presented
here. The main effect is a harmonic force which increases with speed but remains constant when
the sleeper-passage frequency is higher than the vehicle–track resonance. This was proved by the
measurements of the ICE.
The vehicle–track eigenfrequency can become more dominant if softer rail pads reduce the

radiation damping of the soil as was observed for the slab track measured during the simultaneous
measurement.

Irregularities of the vehicle, such as out-of-round wheels, are an important part of the high-
frequency excitation as measured under normal conditions. Under test conditions of ICE, this
component of excitation was negligible.

Track irregularities can explain the medium-frequency ground vibrations to a certain extent.
This was achieved by the simultaneous measurement of the track, the vehicle and the surrounding
soil.
From one of the ICE measuring series, the axle-passage impulses were clearly identified in the

ground vibrations. This could be explained best by the scattering of the axle impulses by a non-
uniform soil. Such a stochastic contribution of the passage of static axle-loads would also explain
the mid-frequency observations of the simultaneous measurements.
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Fig. 19. One-third octave band spectra of the ground vibration at r=20m and for different train speeds vT=160 km/h

&, 125 km/h J, 100 km/h W, 80 km/h +, 63 km/h � . Theory (a), measurement (b) and modified theory (c, with

scattering included).
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Appendix A. Details of the measured and calculated situations: vehicle, track and soil

Three series with different ICE-trains were performed (Fig. 14):

1. locomotive+2 carriages, vT=100–260 km/h,
2. locomotive+3 carriages+locomotive, vT=180–300 km/h,
3. locomotive+2 carriages+locomotive, vT=100–280 km/h,

and the simultaneous measurements were performed with
4. locomotive+5 carriages+locomotive, vT=16, 25, 40, 63, 80, 100, 125, 140, 160 km/h.

The static axle loads were
–ICE locomotive and two different carriages, p0=195, 130 and 120 kN,
–measuring car (simultaneous measurements), p0=100 kN.

The track (Fig. 3) consists of a UIC 60 rail with
flexural stiffness EI ¼ 6:4� 106 NM2;
mass per length rA ¼ 60 kg=m;

and stiff rail pads,
concrete sleepers of 2:6m� 0:26m� 0:2m with d ¼ 0:6m sleeper spacing and

E ¼ 3� 1010 N=m2 modulus elasticity,
y ¼ 0:15 the Poisson’s ratio,
r ¼ 2:5� 103 kg=m3 density,

and, in case of the slab track (simultaneous measurements), an additional concrete plate of
2.6m� 0.2m and medium soft rail pads.
The soil (as well as the ballast) is represented by the parameters
r ¼ 2� 103 kg=m3 mass density,
n ¼ 0:33 Poisson’s ratio,
G ¼ 1:5� 108 N=m2 shear modulus or
vS ¼ 270m=s shear-wave speed,
D ¼ 5% material damping.



ARTICLE IN PRESS

L. Auersch / Journal of Sound and Vibration 284 (2005) 103–132 127
Appendix B. The sleeper passage component—a simple approximate solution
Supposing we have a one-dimensional system equation

K þ k1 sinoStð Þu ¼ p0;

where u is the time history of the displacement of the wheel, p0 the static axle load and K is a
dynamic stiffness operator which calculates the time history of the force corresponding to the
displacement history u: The simplest example would be

Ku ¼ m €u þ c _u þ ku;

with mass m; damping c and stiffness k: We have a corresponding transfer function KðoÞ in
frequency domain or for time harmonic forces and displacements. In case of the simple example,
the transfer function would be

KðoÞ ¼ �mo2 þ cioþ k:

We have a harmonic variation k1 of the static stiffness with circular frequency oS: The amplitude
of the stiffness variation is small compared to the dynamic stiffness

k1

KðoÞ

����
����o� � 1:

The motivation for these special assumptions is given at the end of this appendix. It is shown that
we get the approximate solution of the real situation in railway dynamics.
We find the solution of the time varying problem by two steps. First, we calculate the mean

static solution

u0 ¼
p0

Kð0Þ
;

which fulfils the system equation

K þ k1 sin oStð Þu0 ¼ p0 þ k1 sin oStu0

with a small error k1 sinoStu0: In a second step, an additional solution

u1 ¼
k1 sin oSt � jð Þu0

K oSð Þ
�� ��

is calculated which compensates for this error

Ku1 ¼ �k1 sinoSt u0:

The approximate solution

u ¼ u0 þ u1

fulfils the time-dependent system equation with a second-order error

K þ k1 sinoStð Þ u0 þ u1ð Þ ¼ Ku0 þ Ku1 þ k1 sinoSt u0 þ k1sin oSt u1

¼ p0 � k1 sinoSt u0 þ k1sin oSt u0 þ O �2
� 


¼ p0 þ O �2
� 


:
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The amplitude of the additional displacement due to the variation of the stiffness is

u1 oSð Þ ¼ �
k1p0

K oSð ÞK 0ð Þ
:

and the amplitude of the additional dynamic axle load is

p1 oSð Þ ¼ �
KV k1p0

K oSð ÞK 0ð Þ
:

The simple method presented in this appendix can be extended to more general variations, for
example, to time-dependent mass m1 and damping c1; or to higher harmonics of the sleeper
passing frequency. But these variations are not of practical importance [20,8].
If we regard a more general load, for example, a harmonic load with frequency f, the response

on a track for which the stiffness varies harmonically with frequency f S becomes

Ku1 ¼ �k1 sinoStu0 ¼ �k1 sinoStu0sin ot ¼ k1u0 cos oS þ oð Þt þ cos oS � oð Þt½ 	=2

so that u1 would also include contributions with frequencies

f i ¼ f 
 f S:

But all other load components are small compared to the static load, so that only the static load
needs to be included in the time-dependent analysis.
It should be pointed out that it is not necessary to know the system equation explicitly, as only

the transfer functions of the vehicle and the track are used and we only need the static value k1:
The latter is a consequence of the general analysis in Section 2.3.1 if restricted to the static load
and to the first step of the solution.
Appendix C. The characteristics of spectra due to the passage of a number of axles

First it must be repeated that the spectra due to the passage of static axle-loads are relevant only
for the track and its close neighbourhood while for the ground vibration, it is only a possible
additional component in case of a non-uniform soil. For these situations, the rules of the very
characteristic spectra are stated below.
The passage of a train consists of a number of similar events with certain delay times

u tð Þ ¼
Xn

i¼1

u0 t � Tið Þ: (C.1)

When this equation is transformed to frequency domain we get for the spectrum of uðtÞ with the
rule for a delay time

U fð Þ ¼ U0 fð Þ
Xn

i¼1

e�j2pfTi ¼: U0 fð ÞX fð Þ (C.2)

a product of the spectrum U0ðf Þ of the single axle and of a spectrum X ðf Þ which characterises the
sequence of the axles.
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If we look at only two axles (for example of a bogie), the amplitude spectrum is

X fð Þ ¼ 1þ e�j2pfT ! X fð Þ
�� �� ¼ 2 cos pfT

�� ��: (C.3)

This spectrum has maxima at

f ¼ 1=T ; 2=T ; . . . ; n=T ; (C.4)

which means that the succession of the axles does not prefer a certain frequency region nor are
there significant peaks in the spectrum. More characteristically the zeros of the spectrum are at

f ¼ 1=2T ; 3=2T ; . . . ; 2n þ 1ð Þ=2T : (C.5)

The zero frequencies remain constant if we have products of sequence spectra, for example a pair
of axles, a pair of bogies, a pair of carriages yields

X fð Þ ¼ X A fð ÞX B fð ÞX C fð Þ: (C.6)

These rules are illustrated by the following figures which are based on the impulse of an axle
measured as the particle velocity of the track. The maximum of the spectrum is already
determined by the characteristic of the impulse (Fig. 20a). Fig. 20b shows the characteristic zeros
and the additional relative maxima. With two bogies (Fig. 20c), we get a number of additional
cuts (zeros). For the sequence of a number of carriages in Fig. 21, we get more cuts and with a
Fig. 20. The axle-sequence spectra of an axle (a), a bogie (b) and a carriage (c), vT=200 km/h.
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Fig. 21. The axle-sequence spectra of one carriage (top), two, four and eight carriages (bottom), vT=200km/h.
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high number of similar carriages the maxima get sharper. The spectrum turns into the discrete
spectrum of a periodic signal, with a small df ¼ vT=aC which is ruled by the length aC of the
carriage.
When we look finally at the spectra of the different ICE trains measured (Fig. 14), we find the

characteristic cuts at about 10 and 30Hz and characteristic maxima at 13.5, 15.5, 20, and 23Hz.
The frequencies related to the axle-distance aA are f ¼ vT=aA ¼ 18:5Hz (locomotive) or 19:8Hz
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(carriage) close to the observed maxima which is due to the fact that the original impulse has its
maximum at about 20Hz. A sharper or a softer impulse would give higher or lower maximum
frequencies.
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[12] L. Auersch, S. Said, W. Rücker, Das Fahrzeug–Fahrweg-Verhalten und die Umgebungserschütterungen bei

Eisenbahnen, BAM-Forschungsbericht 243, Berlin, 2001.

[13] X. Sheng, C.J.C. Jones, M. Petyt, Ground vibration generated by a load acting along a railway track, Journal of

Sound and Vibration 228 (1999) 129–156.

[14] C. Bode, R. Hirschauer, S. Savidis, Three-dimensional time domain analysis of moving loads on railway tracks on

layered soils, in: N. Chouw, G. Schmid (Eds.), Proceedings of WAVE 2000, A.A. Balkema, Rotterdam, 2000, pp.

3–12.

[15] J. Dinkel, Ein semi-analytisches Verfahren zur dynamischen Berechnung des gekoppelten Systems Fahrzeug–

Fahrweg–Untergrund für das Oberbausystem Feste Fahrbahn, Dissertation, TU München, 2000.

[16] G. Pflanz, Numerische Untersuchung der elastischen Wellenausbreitung infolge bewegter Lasten mittels der

Randelementmethode im Zeitbereich, Dissertation, Universität Bochum, 2001.

[17] L. Auersch, G. Schmid, A simple boundary element formulation and its application to wavefield excited

soil–structure interaction, Earthquake Engineering and Structural Dynamics 19 (1990) 931–947.

[18] L. Auersch, Fundamentschwingungen und Wellenausbreitung bei inhomogenen Böden—Beiträge zur Dynamik
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