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Abstract

A non-linear time-varying dynamic model of a typical multi-mesh gear train is proposed in this study.
The physical system includes three rigid shafts coupled by two gear pairs. The lumped parameter dynamic
model includes the gear backlash in the form of clearance-type displacement functions and parametric
variation of gear mesh stiffness values dictated by the gear contact ratios. The system is reduced to a two-
degree-of-freedom definite model by using the relative gear mesh displacements as the coordinates.
Dimensionless equations of motion are solved for the steady-state period-1 response by using a multi-term
Harmonic Balance Method (HBM) in conjunction with discrete Fourier Transforms and a Parametric
Continuation scheme. The accuracy of the HBM solutions is demonstrated by comparing them to direct
numerical integration solutions. Floquet theory is applied to determine the stability of the steady-state
harmonic balance solutions. An example gear train is used to investigate the influence of key system
parameters including alternating mesh stiffness amplitudes, gear mesh damping, static torque transmitted,
and the gear mesh frequency ratio.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Under loaded dynamic conditions, gear systems often exhibit dynamic gear mesh forces that
can be much larger than static forces transmitted. These dynamic forces that consist of high-
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

b half of clearance (backlash)
c damping coefficient
e gear motion transmission error
f external force
g discontinuous displacement function
HBM Harmonic Balance Method
I polar mass moment of inertia
J Jacobian matrix
k gear mesh stiffness
M Monodromy matrix
m mass
n mesh frequency ratio (n ¼ Z2=Z3)
NI numerical integration
p relative gear mesh displacement
Q number of discrete time points
q discrete time interval
R number of harmonic components

considered in the solution
r radius
S matrix form of non-linear algebraic

equation set
T torque
t time
u displacement harmonic amplitude

U displacement vector
v describing function
Z number of gear teeth
d Kronecker delta
L dimensionless frequency
k dimensionless mesh stiffness
l̂ control parameter
y rotational displacement
o characteristic frequency
O nominal rigid-body angular velocity
z damping ratio

Subscripts

a alternating component
c characteristic quantity
eq equivalent
i gear index
m mean component
ni ith natural mode

Superscripts

‘ gear mesh index (‘ ¼ 1; 2)
rms root-mean-square value
T matrix transpose
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frequency gear mesh harmonic orders must be balanced at the bearing supports and are eventually
transmitted to the housing to act as the main excitations for gear related noise. In addition, cyclic
dynamic loading experienced by the gear teeth impacts the fatigue life of the gear systems directly.
Therefore, a better understanding of the gear system dynamics is viewed as crucial to designing
products at acceptable noise levels and fatigue lives. One such common gear system, a multi-mesh
gear train that is formed by three shafts and two gear pairs whose dynamic model is shown in
Fig. 1, is considered in this study. The shaft in the middle holds two separate gears, each forming a
mesh with another gear held by another shaft. This system finds its applications in automotive,
aerospace, marine and industrial products. For instance, in automotive applications, this gear set
arrangement is used commonly as the final drive unit of transverse, front-wheel-drive automatic
transmissions, manual transmissions, and continuously-variable transmission final drive units.
The main focus of this study is on the nonlinear dynamic behavior of such gear systems.

1.1. Literature review

A large number of gear dynamic studies were performed in the past for various purposes.
As a review paper by Ozguven and Houser [1] and detailed literature survey of Blankenship
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and Singh [2] indicate, gear dynamics models vary in many aspects ranging from the confi-
guration analyzed, effects and degrees of freedom included, types of excitations considered
and the solution methodologies employed. In Refs. [3,4], it was stated and shown experi-
mentally that a spur gear pair exhibits a nonlinear, time-varying behavior due to the gear
backlash nonlinearity (piecewise-linear) and the periodically time-varying gear mesh stiffness.
The single pair models published to date can be classified in four groups based on their
ability in incorporating these two key attributes, i.e. gear backlash nonlinearity and time-
varying mesh stiffness: (1) linear, time-invariant (LTI) models that neglected both tooth
separations caused by gear backlash and variations in gear mesh stiffness, (2) linear, time-varying
(LTV) models that included only a time-varying mesh stiffness, (3) nonlinear time-invariant
(NTI) models that considered gear backlash, but not time-varying parameters, and (4) nonlinear
time-varying (NTV) models having both effects included. Published experimental data [4,5]
states that the resultant dynamic behavior of a spur gear pair can only be described by
a NTV model.
In view of the same classification, published dynamic models for the multi-mesh

system considered in this study (Fig. 1) fall mostly under LTI [6–14] or LTV [15–18]
models. As the LTI models employed a standard eigen value solution combined with the
modal summation technique yields both free and forced vibration characteristics of the gear
system, a large number of degrees of freedom were allowed in these models. Therefore,
they were able to include several effects that existed in the actual system such as coupled-
transverse-torsional-axial motions of the helical gear systems, and detailed shaft and
bearing formulations. For instance, Iida et al. [9] neglected the meshing stiffness fluctuations
and tooth separations, while allowing the counter shaft in the middle to have both flexural and
torsional motions. The solutions for the natural frequencies and the mode shapes were found
using modal analysis, the effect of the angle between power transmission lines was investigated. In
a later work, Iida et al. [10] performed a similar torsional-lateral analysis of the same system. This
time, the counter shaft was considered rigid with elastic support bearings, and the analytical
solutions for this limiting case were compared to experiments. Lim and Li [8] developed a multi-
mesh counter-shaft geared rotor model with six-degree-of-freedom (sdof) motion for each rigid
gear wheel. The linearized equations of motion applied to double mesh geared rotors. The
damping coefficients were defined in terms of the modal coefficients. The effects of the angles
between the power transmission lines on the overall dynamic response were shown. A general
shaft finite element formulation was applied to the same system to study coupled shaft, bearing
and gear vibrations [14].
The linear, time-varying investigations of the physical system of Fig. 1 focused primarily on the

stability of the parametrically excited system. As one of the earlier LTV gear system models,
Benton and Seireg [16] used the phase plane method to solve for a time-varying gear mesh
coupling. Sinusoidal and rectangular functions were considered as extreme cases of mesh stiffness
variations. It was predicted that gear systems could exhibit primary and sub-harmonic resonances
resulting in regions of unstable motions. The stability and solution was analyzed for extreme cases
of mesh excitations mentioned earlier. Mollers [17] presented stability maps that define the ranges
of unstable motions as a function of gear mesh damping and mesh stiffness amplitudes. Most
recently, Lin and Parker [18] proposed solution based on the Method of Multiple Scales to obtain
the response of the system. Their stability analysis suggested that parametric instabilities are
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Fig. 1. Dynamic model of the physical system.
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possible near the primary and fundamental resonance frequencies as well as at the combination
frequencies.

1.2. Scope and objectives

As the LTV models can effectively point out the regions of large vibrations, their predictions
regarding unstable motions are somewhat misleading. Experimental studies demonstrate that, as
vibration amplitudes increase significantly, the tooth separations (loss of contact) occur resulting
in a softening type behavior with bounded stable motions instead of unstable ones [4,5,13,19]. In
addition, many other experimentally observed nonlinear phenomena exhibited by this type of
systems [13,20] are yet to be fully described. Accordingly, the main objective of this study is to
develop a multi-degree-of-freedom NTV model of the physical systems as shown in Fig. 1 to
investigate the influence of nonlinear and time-varying parameters on the dynamic response. The
analytical solutions for the steady-state response of the system will be obtained by using a multi-
term HBM formulation. Harmonic balance solutions will be verified by comparing them to those
of numerical simulation. Detailed parametric studies will be performed to investigate the
sensitivity of the nonlinear dynamic behavior to each key system parameter including alternating



ARTICLE IN PRESS

A. Al-shyyab, A. Kahraman / Journal of Sound and Vibration 284 (2005) 151–172 155
mesh stiffness amplitude, mesh damping, mean load transmitted, and the ratio of mesh
frequencies.
Since the focus is on the nonlinear behavior, a minimum number of degrees of freedom will be

utilized in the model in the form of torsional displacements. Accordingly, shaft and bearing
flexibilities will be ignored. Also only period-1 motions will be considered in this study while the
sub-harmonic motions are investigated in a companion paper [21]. The stability of the steady-state
period-1 solutions will be determined by using the Floquet theory.
2. Dynamic model formulation

2.1. The physical system and the dynamic model

Behavior of the dynamic model of the physical system shown in Fig. 1 is the main focus of this
study. The system consists of two separate gear meshes. Four gears mounted on three shafts form
this gear train. It consists of two gear pairs mounted on rigid bearings and shafts. The following
assumptions are employed in this model: (1) The shafts are assumed to be rigid such that no
deflection in any direction is possible. (2) Gears are connected to the shafts rigidly. (3) Gear
blanks (rims) are assumed to be rigid, only gear flexibility is possible at the gear mesh via
representative mesh stiffness. (4) Bearings are considered to be rigid so that, together with
the rigid shafts, shaft–gear interfaces and gear blanks, they allow the gears to rotate only in
torsional direction about their axes of rotation. (5) Gear mesh damping values are assumed
to be constant (time-invariant) and not subject to gear backlash non-linearity. (6) Gears are
assumed to be precise with no tooth-to-tooth variations and gear blank errors so that the
motion transmission error excitation can be described by the gear mesh (tooth pass) frequency
and its higher harmonics. This assumption also ensures that the gear backlash magnitudes
remain constant.
In Fig. 1, each gear of polar mass moment of inertia Ii and base radius ri is allowed to vibrate in

torsional direction by ȳi; (i ¼ 124). Here, ȳi represents the vibrations of gear i about its
nominal rigid-body rotation Oi t̄; where Oi is the rotational speed in radians per second and t̄ is
real time in seconds. An over bar denotes that this parameter is dimensional. Gear mesh
stiffnesses k1ðt̄Þ and k2ðt̄Þ represent gear mesh flexibilities of the first and second gear meshes. The
gear mesh damping values are denoted by c1 and c2. These stiffness and damping elements were
applied at respective gear meshes in the direction of the gear mesh line of action and displacement
excitations e1ðt̄Þ and e2ðt̄Þ are connected in series to the stiffness and damping elements as shown in
Fig. 1. Similar to the sdof model presented earlier, gear backlash non-linearities are introduced
here as piecewise linear ‘‘dead-zone’’ type clearance functions ḡ1 and ḡ2 of amounts 2b̄1 and 2b̄2;
respectively.

2.2. Equations of motion and non-dimensionalization

Since the shafts are assumed rigid both torsionally and in bending, the rotational displacements
of gears 2 and 3 are equal, ȳ2ðt̄Þ ¼ ȳ3ðt̄Þ: Accordingly, the model shown in Fig. 1 can be
represented by three degrees of freedom with coordinates ȳ1ðt̄Þ; ȳ2ðt̄Þ and ȳ3ðt̄Þ; and the polar mass
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moment of inertia associated with ȳ2ðt̄Þ becomes I23 ¼ I2 þ I3: Equations of motion of this system
can be obtained as

I1
€̄y1ðt̄Þ þ r1c1 r1

_̄y1ðt̄Þ þ r2
_̄y2ðt̄Þ þ _̄e1ðt̄Þ

h i
þ r1k1ðt̄Þg1ðt̄Þ ¼ T1ðt̄Þ; (1a)

I23
€̄y2ðt̄Þ þ r2c1 r1

_̄y1ðt̄Þ þ r2
_̄y2ðt̄Þ þ _̄e1ðt̄Þ

h i
þ r2k1ðt̄Þḡ1ðt̄Þ þ r3c2 r3

_̄y2ðt̄Þ þ r4
_̄y4ðt̄Þ þ _̄e2ðt̄Þ

h i
þ r3k2ðt̄Þḡ2ðt̄Þ ¼ 0; ð1bÞ

I4
€̄y4ðt̄Þ þ r4c2 r3

_̄y2ðt̄Þ þ r4
_̄y4ðt̄Þ þ _̄e2ðt̄Þ

h i
þ r4k2ðt̄Þḡ2ðt̄Þ ¼ T4ðt̄Þ; (1c)

where ḡ1 and ḡ2 are non-linear type clearance functions defined mathematically as

ḡ1 ¼

½r1ȳ1ðt̄Þ þ r2ȳ2ðt̄Þ þ ē1ðt̄Þ� � b̄1; ½r1ȳ1ðt̄Þ þ r2ȳ2ðt̄Þ þ ē1ðt̄Þ�4b̄1;

0; r1ȳ1ðt̄Þ þ r2ȳ2ðt̄Þ þ ē1ðt̄Þ
�� ��pb̄1;

½r1ȳ1ðt̄Þ þ r2ȳ2ðt̄Þ þ ē1ðt̄Þ� þ b̄1; ½r1ȳ1ðt̄Þ þ r2ȳ2ðt̄Þ þ ē1ðt̄Þ�o� b̄1;

8><
>: (2a)

ḡ2 ¼

½r3ȳ2ðt̄Þ þ r4ȳ4ðt̄Þ þ ē2ðt̄Þ� � b̄2; ½r3ȳ2ðt̄Þ þ r4ȳ4ðt̄Þ þ ē2ðt̄Þ�4b̄2;

0; r3ȳ2ðt̄Þ þ r4ȳ4ðt̄Þ þ ē2ðt̄Þ
�� ��pb̄2;

½r3ȳ2ðt̄Þ þ r4ȳ4ðt̄Þ þ ē2ðt̄Þ� þ b̄2; ½r3ȳ2ðt̄Þ þ r4ȳ4ðt̄Þ þ ē2ðt̄Þ�o� b̄2:

8><
>: (2b)

Since the system is semi-definite with a rigid-body mode at zero natural frequency, the number
of equations of motion can be reduced to two by defining the following two new coordinates:

p̄1ðt̄Þ ¼ r1ȳ1ðt̄Þ þ r2ȳ2ðt̄Þ þ ē1ðt̄Þ; p̄2ðt̄Þ ¼ r3ȳ2ðt̄Þ þ r4ȳ4ðt̄Þ þ ē2ðt̄Þ: (3a,b)

These new coordinates have physical significance since they represent the relative gear mesh
displacements. Eqs. (1)–(3) are used to write

€̄p1ðt̄Þ þ c1
r21
I1

þ
r22
I23

� 	
_̄p1ðt̄Þ þ c2

r2r3

I23

� 	
_̄p2ðt̄Þ þ k1ðt̄Þ

r21
I1

þ
r22
I23

� 	
ḡ1ðt̄Þ þ k2ðt̄Þ

r2r3

I23

� 	
ḡ2ðt̄Þ

¼
r1

I1
T̄1ðt̄Þ þ €̄e1ðt̄Þ; ð4aÞ

€̄p2ðt̄Þ þ c1
r2r3

I23

� 	
_̄p1ðt̄Þ þ c2

r23
I23

þ
r24
I4

� 	
_̄p2ðt̄Þ þ

r2r3

I23

� 	
k1ðt̄Þḡ1ðt̄Þ þ k2ðt̄Þ

r23
I23

þ
r24
I4

� 	
ḡ2ðt̄Þ

¼
r4

I4
T̄4ðt̄Þ þ €̄e2ðt̄Þ: ð4bÞ

Define the following parameters:

m1 ¼
I1I23

r21I23 þ I1r
2
2

; m2 ¼
I23

r2r3
; m3 ¼

I4I23

r24I23 þ I4r
2
3

; (5a2c)

k1ðt̄Þ ¼
k1ðt̄Þ

k1m

; k2ðt̄Þ ¼
k2ðt̄Þ

k2m

; (5a,b)
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ō2
11 ¼

k1m

m1
; ō2

12 ¼
k2m

m2
; ō2

21 ¼
k1m

m2
; ō2

22 ¼
k2m

m3
; (5c2f)

z11 ¼
c1

2m1ō11
; z12 ¼

c2

2m2ō12
; z21 ¼

c1

2m2ō21
; z22 ¼

c2

2m3ō22
; (5g2j)

where k1m and k2m are the mean components of k1(t) and k2(t), respectively, ōij (i; j ¼ 1; 2) are
characteristic frequencies, and zij (i; j ¼ 1; 2) define the damping of the system. Further, a
dimensionless time parameter is obtained by setting t ¼ t̄oc; where oc is the characteristic
frequency. Also employing a characteristic length bc, dimensionless displacements are defined as
piðt̄Þ ¼ p̄iðt̄Þ=bc; eiðt̄Þ ¼ ēiðt̄Þ=bc; and bi ¼ b̄i



bc (i ¼ 1; 2). Using these dimensionless parameters

and letting oij ¼ ōij



oc (i; j ¼ 1; 2), the following dimensionless equations of motion are

obtained:

€p1ðtÞ

€p2ðtÞ

� �
þ 2

z11o11 z12o12

z21o21 z22o22

� 	
_p1ðtÞ

_p2ðtÞ

� �
þ

o2
11k1ðtÞ o2

12k2ðtÞ

o2
21k1ðtÞ o2

22k2ðtÞ

" #
g1ðtÞ

g2ðtÞ

� �
¼

f 1ðtÞ

f 2ðtÞ

� �
; (6a)

where

giðtÞ ¼

piðtÞ � bi; piðtÞ4bi;

0; piðtÞ
�� ��pbi

piðtÞ þ bi; piðtÞo� bi;

; i ¼ 1; 2

8><
>: ; (6b)

and the forces caused by external sources at the gear mesh interface are written as

f 1ðtÞ ¼
r1T̄1ðtÞ

I1o2
cbc

þ €e1ðtÞ; f 2ðtÞ ¼
r4T̄4ðtÞ

I4o2
cbc

þ €e2ðtÞ: (6c)
3. Multi-term harmonic balance solution for period-1 motions

The multi-term HBM is based on the assumption that both external excitations and the time-
varying coefficients are periodic. If functions kiðtÞ and f iðtÞ in Eq. (6a) are both periodic in time,
then the steady-state solutions piðtÞ must also be periodic. This also implies that giðtÞ can also be
described periodically. Following a multi-term harmonic balance procedure that was applied to
sdof nonlinear time-varying systems successfully [4,5,22], one writes kiðtÞ and f iðtÞ in Fourier series
form as

k1ðtÞ ¼ 1þ
XK

h¼1

kð1Þ2h cosðhLtÞ þ kð1Þ2hþ1 sinðhLtÞ
h i

; (7a)

k2ðtÞ ¼ 1þ
XK

h¼1

kð2Þ2h cosðhnLtÞ þ kð2Þ2hþ1 sinðhnLtÞ
h i

; (7b)
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f 1ðtÞ ¼ f
ð1Þ
1 þ

XL

‘¼1

f
ð1Þ
2‘ cosð‘LtÞ þ f

ð1Þ
2‘þ1 sinð‘LtÞ

h i
; (8a)

f 2ðtÞ ¼ f
ð2Þ
1 þ

XL

‘¼1

f
ð2Þ
2‘ cosð‘LtÞ þ f

ð2Þ
2‘þ1 sinð‘LtÞ

h i
: (8b)

Here, L1 ¼ L and L2 ¼ nL are the fundamental frequencies of the stiffness of the first and second
gear meshes, respectively, where L ¼ O1=oc is the dimensionless gear mesh frequency, and the
multiplier n can be any real number as it defines the ratio of the number of teeth of gears 2 and 3
in Fig. 1, n ¼ Z2=Z3:
Given the periodic excitations of Eqs. (7) and (8), the harmonic balance procedure requires that

the steady-state response be periodic as well. Accordingly, one can describe p1ðtÞ and p2ðtÞ in
Fourier series form as

p1ðtÞ ¼ u
ð1Þ
1 þ

XR

r¼1

u
ð1Þ
2r cosðrLtÞ þ u

ð1Þ
2rþ1 sinðrLtÞ

h i
; (9a)

p2ðtÞ ¼ u
ð2Þ
1 þ

XR

r¼1

u
ð2Þ
2r cosðrnLtÞ þ u

ð2Þ
2rþ1 sinðrnLtÞ

h i
; (9b)

where u
ð1Þ
1 ; uð1Þ2r ; u

ð1Þ
2rþ1; u

ð2Þ
1 ; uð2Þ

2r ; u
ð2Þ
2rþ1 (r ¼ 12R) are unknown coefficients of the assumed solution [22].

In order to preserve the harmonic balance in Eq. (6a), the non-linear functions g1ðtÞ and g2ðtÞ defined
in Eq. (6b) must be assumed to be periodic as well at the same harmonic orders as the excitations:

g1ðtÞ ¼ v
ð1Þ
1 þ

XR

r¼1

v
ð1Þ
2r cosðrLtÞ þ v

ð1Þ
2rþ1 sinðrLtÞ

h i
; (10a)

g2ðtÞ ¼ v
ð2Þ
1 þ

XR

r¼1

v
ð2Þ
2r cosðrnLtÞ þ v

ð2Þ
2rþ1 sinðrnLtÞ

h i
: (10b)

Here v
ðiÞ
1 ; v

ðiÞ
2r and v

ðiÞ
2rþ1 (r ¼ 12R and i ¼ 1; 2) are the so-called describing functions [4,22] that must

be determined before the unknown response parameters can be found. Before substituting Eqs.
(7–10) into Eq. (6a), the last mathematical transformation is introduced in the form y ¼ Lt where

dp1
dt

¼
XR

r¼1

�Lru
ð1Þ
2r sinðryÞ þ Lru

ð1Þ
2rþ1 cosðryÞ

h i
; (11a)

d2p1
dt2

¼
XR

r¼1

�ðLrÞ2u
ð1Þ
2r cosðryÞ � ðLrÞ2u

ð1Þ
2rþ1 sinðryÞ

h i
; (11b)

dp2
dt

¼
XR

r¼1

�Lrnu
ð2Þ
2r sinðrnyÞ þ Lrnu

ð2Þ
2rþ1 cosðrnyÞ

h i
; (11c)

d2p2
dt2

¼
XR

r¼1

�ðLrnÞ2u
ð2Þ
2r cosðrnyÞ � ðLrnÞ2u

ð2Þ
2rþ1 sinðrnyÞ

h i
: (11d)
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With this, products kiðtÞgiðtÞ in Eq. (6a) can be evaluated as

k1ðtÞg1ðtÞ ¼ v
ð1Þ
1 þ v

ð1Þ
1

XH

h¼1

kð1Þ2h cosðhyÞ þ kð1Þ2hþ1 sinðhyÞ
h i

þ
XR

r¼1

v
ð1Þ
2r cosðryÞ þ v

ð1Þ
2rþ1 sinðryÞ

h i
þ
1

2

XR

r¼1

XH

h¼1

kð1Þ2h v
ð1Þ
2r

n
½cosðr � hÞyþ cosðr þ hÞy�

þ kð1Þ2hþ1v
ð1Þ
2rþ1½cosðr � hÞy� cosðr þ hÞy� þ kð1Þ2h v

ð1Þ
2rþ1½sinðr � hÞyþ sinðr þ hÞy�

þkð1Þ2hþ1v
ð1Þ
2r ½� sinðr � hÞyþ sinðr þ hÞy�

o
; ð12aÞ

k2ðtÞg2ðtÞ ¼ v
ð2Þ
1 þ v

ð2Þ
1

XH

h¼1

kð2Þ2h cosðhnyÞ þ kð2Þ2hþ1 sinðhnyÞ
h i

þ
XR

r¼1

v
ð2Þ
2r cosðrnyÞ þ v

ð2Þ
2rþ1 sinðrnyÞ

h i
þ
1

2

XR

r¼1

XH

h¼1

kð2Þ2h v
ð2Þ
2r

n
½cos nðr � hÞyþ cos nðr þ hÞy�

þ kð2Þ2hþ1v
ð2Þ
2rþ1½cos nðr � hÞy� cos nðr þ hÞy� þ kð2Þ2hþ1v

ð2Þ
2rþ1½cos nðr � hÞy� cos nðr þ hÞy�

þkð2Þ2hþ1v
ð2Þ
2r ½� sin nðr � hÞyþ sin nðr þ hÞy�

o
: ð12bÞ

Substituting Eqs. (8), (9) (11) and (12) into Eq. (6a), neglecting higher-order terms and equating
the coefficients of like harmonic terms, a set of (4R þ 2) non-linear algebraic equations are obtained,
which can be written in vector form as

Sðu; v;LÞ ¼ 0; (13)

where vectors u, v and S have dimension (4Rþ 2) and the elements of S are given as (r 2 ½1;R�)

S
ð1Þ
1 ¼ o2

11 v
ð1Þ
1 þ 1

2

XR

i¼1

ðv
ð1Þ
2i k

ð1Þ
2i þ v

ð1Þ
2iþ1k

ð1Þ
2iþ1Þ

( )

þ o2
12 v

ð2Þ
1 þ 1

2

XR

i¼1

ðv
ð2Þ
2i k

ð2Þ
2i þ v

ð2Þ
2iþ1k

ð2Þ
2iþ1Þ

( )
� f

ð1Þ
1 ; ð14aÞ

S
ð1Þ
2r ¼ � ðLrÞ2u

ð1Þ
2r þ 2z11o11Lru

ð1Þ
2rþ1 þ 2z12o12Lru

ð2Þ
2ðr=nÞþ1

þ o2
11 v

ð1Þ
2r þ v

ð1Þ
1 kð1Þ2r

� �
þ 1

2

XR

i¼1

kð1Þ2iþ1c
ð1Þ
1 þ kð1Þ2i c

ð1Þ
2

� �( )

þ o2
12 v

ð2Þ
2r=n

þ v
ð2Þ
1 kð2Þ

2r=n

� �
þ 1

2

XR

i¼1

kð2Þ2iþ1c
ð2Þ
1 þ cð2Þ

2 kð2Þ2i

� �( )
� f

ð1Þ
2r ; ð14bÞ
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S
ð1Þ
2rþ1 ¼ � ðLrÞ2u

ð1Þ
2rþ1 � 2z11o11Lr u

ð1Þ
2r � 2z12o12Lr u

ð2Þ
2r=n

þ o2
11 v

ð1Þ
2rþ1 þ v

ð1Þ
1 kð1Þ2rþ1

� �
þ 1

2

XR

i¼1

kð1Þ2i c
ð1Þ
3 þ kð1Þ2iþ1c

ð1Þ
4

� �( )

þ o2
12 v

ð2Þ
2ðr=nÞþ1

þ v
ð2Þ
1 kð2Þ

ð2r=nÞþ1

� �
þ 1

2

XR

i¼1

kð2Þ2i c
ð2Þ
3 þ kð2Þ2iþ1c

ð2Þ
4

� �( )
� f

ð1Þ
2rþ1; ð14cÞ

S
ð2Þ
1 ¼ o2

21 v
ð1Þ
1 þ 1

2

XR

i¼1

v
ð1Þ
2i k

ð1Þ
2i þ v

ð1Þ
2iþ1k

ð1Þ
2iþ1

� �( )

þ o2
22 v

ð2Þ
1 þ 1

2

XR

i¼1

v
ð2Þ
2i k

ð2Þ
2i þ v

ð2Þ
2iþ1k

ð2Þ
2iþ1

� �( )
� f

ð2Þ
1 ; ð14dÞ

S
ð2Þ
2r ¼ � ðLrÞ2u

ð2Þ
2r=n

þ 2z21o21Lr u
ð1Þ
2rþ1 þ 2z22o22Lr u

ð2Þ
2ðr=nÞþ1

þ o2
21 v

ð1Þ
2r þ v

ð1Þ
1 kð1Þ2r

� �
þ
1

2

XR

i¼1

kð1Þ2i c
ð1Þ
2 þ kð1Þ2iþ1c

ð1Þ
1

� �( )

þ o2
22 v

ð2Þ
2r=n

þ v
ð2Þ
1 kð2Þ2r=n

� �
þ 1

2

XR

i¼1

kð2Þ2iþ1c
ð2Þ
1 þ kð2Þ2i c

ð2Þ
2

� �( )
� f

ð2Þ
2r ; ð14eÞ

S
ð2Þ
2rþ1 ¼ � ðLrÞ2u

ð2Þ
ð2r=nÞþ1

� 2z21o21Lr u
ð1Þ
2r � 2z22o22Lr u

ð2Þ
2r=n

þ o2
21 v

ð1Þ
1 kð1Þ2rþ1 þ v

ð1Þ
2rþ1

� �
þ 1

2

XR

i¼1

kð1Þ2i c
ð1Þ
3 þ kð1Þ2iþ1c

ð1Þ
4

� �( )

þ o2
22 v

ð2Þ
1 kð2Þ2ðr=nÞþ1 þ v

ð2Þ
2ðr=nÞþ1

� �
þ 1

2

XR

r¼1

kð2Þ2i c
ð2Þ
3 þ kð2Þ2iþ1c

ð2Þ
4

� �( )
� f

ð2Þ
2rþ1; ð14fÞ

where

cð1Þ
1 ¼ v

ð1Þ
2ði�rÞþ1 þ v

ð1Þ
2ðiþrÞþ1 � v

ð1Þ
2ðr�iÞþ1; (14g)

cð1Þ
2 ¼ v

ð1Þ
2ði�rÞ þ v

ð1Þ
2ðiþrÞ þ v

ð1Þ
2ðr�iÞ; (14h)

cð1Þ
3 ¼ �v

ð1Þ
2ði�rÞþ1 þ v

ð1Þ
2ðiþrÞþ1 þ v

ð1Þ
2ðr�iÞþ1; (14i)

cð1Þ
4 ¼ v

ð1Þ
2ði�rÞ � v

ð1Þ
2ðiþrÞ þ v

ð1Þ
2ðr�iÞ; (14j)

cð2Þ
1 ¼ v

ð2Þ
2ði�r=nÞþ1

þ v
ð2Þ
2ðiþr=nÞþ1

� v
ð2Þ
2ðr=n�iÞþ1

(14k)

cð2Þ
2 ¼ v

ð2Þ
2ði�r=nÞ

þ v
ð2Þ
2ðiþr=nÞ

þ v
ð2Þ
2ðr=n�iÞ

; (14l)

cð2Þ
3 ¼ �v

ð2Þ
2ði�r=nÞþ1 þ v

ð2Þ
2ðiþr=nÞþ1 þ kð2Þ2ðr=n�iÞþ1; (14m)

cð2Þ
4 ¼ v

ð2Þ
2ði�r=nÞ

� v
ð2Þ
2ðiþr=nÞ

þ v
ð2Þ
2ðr=n�iÞ

: (14n)

In later steps, the selection of L as a control parameter to solve for the elements of u using the
Newton–Raphson iteration method poses difficulties. As the solution approaches (singular)
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bifurcation points, the determinant of the Jacobian matrix also approaches zero. This can be avoided
by switching to another unknown as the control parameter, leaving the dimensionless frequency L
and the other elements of the solution vector u as unknowns to be determined. In order to implement
this, u is expanded to U ¼ ½uT; u4Rþ3�

T where u4Rþ3 ¼ L: Accordingly, the following dummy
equation is added to Eq. (14a–f):

S4Rþ3 ¼ u
ð‘Þ
j � un; (14o)

where the values of the indices j 2 ½1; 2R þ 1� and ‘ ¼ 1 or 2 define which element other than the
frequency ratio L is chosen as a control parameter, and un is a numerical value assigned to the
control parameter, u

ð‘Þ
j ¼ u:	

Before the above equations can be solved for the unknown response coefficients u
ðjÞ
i

(j ¼ 1; 2; i ¼ 1 to 2R þ 1) and u4Rþ3; the coefficients of the nonlinear displacement functions v
ðjÞ
i

must be represented in terms of u
ðjÞ
i : This is done by making use of the discrete Fourier transforms

[4,22]. The values of the piðtÞ and giðtÞ at the discrete time t ¼ qr (where q 2 ½0;Q � 1�) are

p1q ¼ u
ð1Þ
1 þ

XR

r¼1

u
ð1Þ
2r cos

2prq

Q

� �
þ u

ð1Þ
2rþ1 sin

2prq

Q

� �� 	
; (15a)

p2q ¼ u
ð2Þ
1 þ

XR

r¼1

u
ð2Þ
2r cos

2prnq

Q

� �
þ u

ð2Þ
2rþ1 sin

2prnq

Q

� �� 	
; (15b)

and

giq ¼

piqðtÞ � bi; piqðtÞ4bi;

0; piqðtÞ
�� ��pbi;

piqðtÞ þ bi; piqðtÞo� bi;

8><
>: i ¼ 1; 2: (15c)

Here r ¼ 2p=ðQLÞ where Q is the total number of the discrete points and QX2R in order to
prevent any aliasing errors [23].
Given above discretization, the coefficients of g1ðtÞ and g2ðtÞ can be determined by using the

Inverse Fourier transforms such that (r 2 ½1;R�)

v
ð1Þ
1 ¼

1

Q

XQ�1

q¼0

g1q; v
ð2Þ
1 ¼

1

Q

XQ�1

q¼0

g2q; (16a,b)

v
ð1Þ
2r ¼

2

Q

XQ�1

q¼0

g1q cos
2prq

Q

� �
; v

ð2Þ
2r ¼

2

Q

XQ�1

q¼0

g2qcos
2prnq

Q

� �
; (16c,d)

v
ð1Þ
2rþ1 ¼

2

Q

XQ�1

q¼0

g1q sin
2prq

Q

� �
; v

ð2Þ
2rþ1 ¼

2

Q

XQ�1

q¼0

g2q sin
2prnq

Q

� �
: (16e,f)
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The above values of v
ðjÞ
i are substituted into Eqs. (14a–f, 14o) to obtain (4R þ 3) non-linear

algebraic equations with the same number of unknowns given by the vector

U ¼ u
ð1Þ
1 ; u

ð1Þ
2 ; . . . ; u

ð1Þ
2R; u

ð1Þ
2Rþ1; u

ð2Þ
1 ; u

ð2Þ
2 ; . . . ; u

ð2Þ
2R; u

ð2Þ
2Rþ1; u4Rþ3

h iT
:

The last step in the solution methodology becomes the application of a Newton–Raphson
iteration procedure. The recurrence formula for this iteration procedure can be written as

UðmÞ ¼ Uðm�1Þ � J�1
� �ðm�1Þ

Sðm�1Þ; (17)

where U
(m�1) and U

(m) are the previous and the current iteration values of the vector U

respectively, and J�1
� �ðm�1Þ

is the inverse of the Jacobian matrix of the vector S estimated at the
previous point (m � 1). The solution procedure starts with an initial solution guess U

(0) to
evaluate U

(1). The value of the control parameter is set to u�. The vector U(1) in turn is used as an
initial guess for the next iteration until the steady state solution U

(m) converges within a certain
predefined error limit. The control parameter is set to the next value of interest by increasing or
decreasing u� until a bifurcation point impedes continuation. Then another unknown is adapted
as the new control parameter. The individual elements of the Jacobian matrix are determined
by evaluating partial derivatives qS

ð‘Þ
i =qu

ð‘Þ
j and qS4Rþ3=qL; where L ¼ u4Rþ3; i 2 ½1;R�; j 2

½1; 2R þ 1� and ‘ ¼ 1; 2 [4,5].
The stability of period-1 steady state solutions is determined by using the Floquet theory [24].

For this purpose, the governing equations of motion are written in state space form _PðtÞ ¼
FðPðtÞ; l̂Þ; where PðtÞ ¼ Pðt þ jTÞ ¼ ½p1ðtÞ; p2ðtÞ; _p1ðtÞ; _p2ðtÞ; �

T (j ¼ 1; 2; . . .) is a periodic solution
of fundamental period T and l̂ is a control parameter, which is actually one of the system
parameters (zij ; oij; kij ; bi). Application of Floquet theory yields an homogeneous matrix
equation _Z ¼ WZ given initial condition Zð0Þ ¼ I4; where I4 is an identity matrix of dimension
4. Solution of this equation gives the Monodromy matrix M ¼ ZðTÞ whose eigenvalues determine
the stability of the entire solution. Whenever the modulus of any of the four eigenvalues li is
greater than unity j li j 41; the solution is unstable. Contrary, if all j li j o1; the steady-state
solution found by the HBM is stable.
4. Results and discussion

An example gear pair is considered here to determine the accuracy of the harmonic balance
solutions by comparing to direct numerical integration results and to quantify the sensitivity of
period-1 response to key system parameters including gear mesh stiffness amplitudes, gear mesh
damping and static force (torque) transmitted. The dimensionless system parameters of this
example gear train are also calculated by using the dimensional parameters listed in Table 1 and
the relationships given in Section 3. In order to limit the parameter set, only the fundamental
harmonics of the mesh stiffness functions k1ðtÞ and k2ðtÞ are considered in most cases. In other
words, in Eq. (7), K ¼ 1 and the mesh stiffness functions are harmonic. Similarly, external forcing
functions are considered to be constant with no disturbances in the form of torque pulsations
and kinematic gear transmission errors ðT̄1ðt̄Þ ¼ constant; T̄4ðt̄Þ ¼ constant; e1ðt̄Þ ¼ e2ðt̄Þ ¼ 0Þ;
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Table 1

Dimensional parameters of the baseline example gear pair

Parameter Gear 1 Gear 2 Gear 3 Gear 4

Base circle radius, m 0.10 0.05 0.10 0.05

Mass, kg 14.81 3.7 7.4 1.85

Inertia, kgm2 0.074 0.0046 0.0375 0.0023

Mean mesh stiffness, N/m 5(10)8 2.5(10)8

Mesh damping coefficient, N s/m 2721 1360
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resulting in constant f 1ðtÞ and f 2ðtÞ in Eq. (10). Initially, it is assumed that gears 2 and 3 have the
same number of teeth, n ¼ Z2=Z3 ¼ 1:

4.1. Comparison to numerical integration results

Fig. 2 compares the period-1 harmonic balance (HBM) solution to the direct numerical
integration (NI) results. Here, the analytical solutions were obtained by assuming a three-term

solution (R ¼ 3 in Eq. (9)). Dimensionless system parameters are z ¼ 0:05 where z ¼
c1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1mm12

p
¼ c2=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2mm34

p
; m12 ¼ I1I2=ðr21I2 þ r22I1Þ; m34 ¼ I3I4=ðr23I4 þ r24I3Þ; kð1Þ2 ¼ kð2Þ2 ¼

0:3 corresponding to a gear involute contact ratio value of 1.7 [25], and f
ð2Þ
1 ¼ 4f

ð1Þ
1 ¼ 0:184

corresponding to an input torque value of T1 ¼ 100Nm: A characteristic length of bc ¼ 30mm is
considered with b1 ¼ b2 ¼ 1; which means that each gear mesh has 60mm total backlash. The
dimensional characteristic frequency oc ¼ 9874 rad=s corresponds to the ō11 for the system
parameters of Table 1. With this, the undamped natural frequencies of the corresponding linear
system are on1 ¼ 0:96 and on2 ¼ 1:86: In Fig. 2, the vertical axes represent the root-mean-square

(rms) values defined as p
ðrmsÞ
j ¼ f

P3
r¼1½A

ðjÞ
r �2g1=2: Here AðjÞ

r is the amplitude of the rth harmonic of

pjðtÞ that is defined as AðjÞ
r ¼ f½u

ðjÞ
2r �

2 þ ½u
ðjÞ
2rþ1�

2g1=2: In Fig. 2(a), p
ðrmsÞ
1 is plotted as a function of L:

The thick solid lines represent stable HBM solutions, while thin lines are the unstable HBM
solutions and square symbols represent the NI solutions. A very good agreement is observed
between the two solution methods, as stable HBM solutions are almost identical to NI motions.

The same is true for p
ðrmsÞ
2 as well, as shown in Fig. 2(b).

Focusing on Fig. 2, p
ðrmsÞ
1 and p

ðrmsÞ
2 forced response curves exhibits softening-type nonlinear

behavior near primary resonance frequencies at L � on1 ¼ 0:96 and L � on2 ¼ 1:86: In case of
p
ðrmsÞ
1 ; a sudden increase (jump up) in the rms amplitude is observed at L ¼ 0:836 as L is increased.
Similarly, a jump down at L ¼ 0:57 occurs as L is reduced defining a band of L in which two
stable solutions and one unstable solution coexist. This is in line with the dynamic behavior of a
single spur gear pair reported earlier [4,5,19]. The p

ðrmsÞ
1 curve has another jump discontinuity

near L � on2 ¼ 1:86 as well, while the jumps are not very drastic, suggesting that the first natural
mode involves larger relative motions of the first gear mesh. On the other hand, p

ðrmsÞ
2 response in

Fig. 2(b) exhibits a large jump discontinuity near the primary resonance of L � on2 ¼ 1:86 with
jump-up and jump-down frequencies at L ¼ 1:53 and 1.24, respectively. Meanwhile, the
discontinuity near L � on1 ¼ 0:96 is not that significant suggesting that the second mode is
associated with larger relative motions of the second gear mesh.
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Fig. 2. Comparison of rms value of period-1 motions predicted by HBM and NI, for R ¼ 3; z ¼ 0:05; K ¼ 1; kð1Þ2 ¼

kð2Þ2 ¼ 0:3; on2 � 2on1 ¼ 1:86; f
ð2Þ
1 ¼ 4f

ð1Þ
1 ¼ 0:185; b1 ¼ b2 ¼ 1:0 and bc ¼ 30mm (—) Stable and (–––) unstable HBM

solution, and (&) NI solutions. (a) p
ðrmsÞ
1 ; (b) p

ðrmsÞ
2 :
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One other observation from Fig. 2 is that, while not very significant, super-harmonic resonance
peaks also exist near L � 1

2
on1 ¼ 0:48 and L � 1

2
on1 ¼ 0:93: The first one is evident in Fig. 2(a)

while the other one is identifiable in Fig. 2(b). These super-harmonic resonances appear when R is
larger, and are not possible to detect if only a one-term harmonic solution (R ¼ 1) is sought. It is
also clear that double-sided impacts (DSI) are not observed here while the nonlinear motions are
associated with the single-sided impacts (SSI). In physical terms, near the primary resonances,
teeth on both gear meshes lose contact, yet since the vibration amplitudes are small compared to
total backlash values, contacts at the backside of the teeth do not occur.
It is also clear in Fig. 2 that the period-1 motion looses its stability between L ¼ 1:71 and2:05:

Within this region, there is no stable period-1 solution. This region of instability corresponds to
the fundamental parametric resonance at L � 2on1: A similar unstable region can be expected
near L � 2on2 as well. This is in agreement with the experimental data [2,5,19] on single gear pairs
and LTV model predictions [16–18]. However, there are other stable period-n sub-harmonic
motions dictating these ranges, preventing the gear train from exhibiting excessive vibration
amplitudes. The prediction of such motions is beyond the scope of this study and is studied in
another companion paper by these authors [21].
In Fig. 3(a) and (b), the mean amplitudes of p1ðtÞ and p2ðtÞ are plotted against L for the same

case of Fig. 2. Obviously, if there were no tooth separations, the system would behave in a linear
fashion and the values of u

ð1Þ
1 and u

ð2Þ
1 would remain constant as L varied. This is not the case in

Fig. 3. The mean values remain constant for Lo0:5 as tooth separations are yet to occur. For
L40:5; u

ð1Þ
1 and u

ð2Þ
1 vary significantly due to nonlinear behavior. It is also evident from Fig. 6 that

HBM and NI solutions are again in very good agreement.
In Figs. 4 and 5, the harmonic amplitudes of p1ðtÞ and p2ðtÞ are shown for the same case of

Fig. 2. Only the first three harmonic amplitudes AðjÞ
r ; r ¼ 1; 2; 3 and j ¼ 1; 2 are considered in these

figures. It is noted in Fig. 4(a) and 5(a) that A
ðjÞ
1 represent most of the motion especially near the

primary resonance regions. This would indeed represent the total response if only a one-term
HBM solution were sought, i.e. R ¼ 1: Considering R ¼ 3 results in the motion described in Fig. 2
with second and third harmonics A

ðjÞ
2 and A

ðjÞ
3 given in Figs. 4(b,c) and 5(b,c). It is noted in

Figs. 4(b) and 5(c) that the super-harmonic resonances observed in Fig. 2 are caused by the higher
harmonics of the response.
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Fig. 4. The first three harmonic amplitudes of p1ðtÞ for R ¼ 3; z ¼ 0:05; K ¼ 1; kð1Þ2 ¼ kð2Þ2 ¼ 0:3; f
ð2Þ
1 ¼ 4f

ð1Þ
1 ¼ 0:185;

b1 ¼ b2 ¼ 1:0 and bc ¼ 30mm: (—) Stable and (–––) unstable HBM solutions. (a) A
ð1Þ
1 ; (b) A

ð1Þ
2 ; and (c) A

ð1Þ
3 :
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4.2. Parameter sensitivity studies

Influence of the mean force transmitted by the gear train on the steady-state period-1
response is shown in Fig. 6. Here the same system as Fig. 2 considered under torque values of
T ¼ 50; 100 and 150Nm: In agreement with previous observations on single gear pairs [4,5,19],
increasing the mean force does not prevent tooth separations from occurring. With increasing
mean force values f

ð1Þ
1 and f

ð2Þ
1 ; the shapes of the p

ðrmsÞ
1 and p

ðrmsÞ
2 curves remain the same, but the
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Fig. 5. The first three harmonic amplitudes of p2ðtÞ for R ¼ 3; z ¼ 0:05; K ¼ 1; kð1Þ2 ¼ kð2Þ2 ¼ 0:3; f
ð2Þ
1 ¼ 4f
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1 ¼ 0:185;

b1 ¼ b2 ¼ 1:0 and bc ¼ 30mm: (—) Stable and (–––) unstable HBM solutions. (a) A
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1 ; (b) A

ð2Þ
2 ; and (c) A

ð2Þ
3 :
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Fig. 6. Influence of the mean load on p
ðrmsÞ
j for R ¼ 3; z ¼ 0:05; K ¼ 1; kð1Þ2 ¼ kð2Þ2 ¼ 0:3; on2 � 2on1 ¼ 1:86; f

ð2Þ
1 ¼ 4f

ð1Þ
1 ;

b1 ¼ b2 ¼ 1 and bc ¼ 30mm: (—) Stable and (–––) unstable HBM solutions. (a) p
ðrmsÞ
1 ; (b) p

ðrmsÞ
2 :
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overall amplitudes are increased as shown in Fig. 6. The region of unstable period-1 motions also
is not influenced by the values of f

ð1Þ
1 and f

ð2Þ
1 :

In Fig. 7, the influence of the damping ratio on the rms response parameters are shown. Here,
the backlash values are reduced to b1 ¼ b2 ¼

1
3
in order to increase the chance of obtaining DSI

motions, especially when the system is very lightly damped. Three levels of damping, z ¼
0:1; 0:05 and 0:02; are considered in Fig. 7 to demonstrate that damping has a very significant
influence on the dynamic response. When the system is damped heavily (z ¼ 0:1), the nonlinear
behavior is almost negligible as the jump discontinuities and overall response amplitudes become
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very small. When the damping is very low (z ¼ 0:02), on the other hand, vibration amplitudes
reach levels comparable to the total backlash values to initiate backside collisions (DSI). This
causes a hardening type bend at the tips of both primary resonance peaks. This is again in
qualitative agreement with a number of single gear pair studies. Also noticed in Fig. 7 is that
reducing damping widens the region of instability, confirming the previous LTV model
predictions [18].
The influence of the amplitude of harmonic stiffness functions is illustrated in Fig. 8. Four

different harmonic stiffness amplitudes were considered, kð1Þ2 ¼ kð2Þ2 ¼ 0:42; 0:3; 0:2 and 0:1: These
values represent the fundamental harmonic amplitudes of the gear mesh stiffness function for gear
pairs having an involute contact ratio of 1.5, 1.7, 1.8 and 1.9, respectively. Both p

ðrmsÞ
1 and p

ðrmsÞ
2

amplitudes increase significantly when kð1Þ2 ¼ kð2Þ2 values are increased. For kð1Þ2 ¼ kð2Þ2 ¼ 0:1; the
system is at the threshold of the nonlinear behavior. A very small jump discontinuity is observed
near L � on1 ¼ 0:96 while the system acts linearly near L � on2: In Fig. 8, z ¼ 0:05 for both
meshes, and at least kð1Þ2 ¼ kð2Þ2 ¼ 0:1 is required to initiate tooth separations. This agrees with
Kahraman and Blankenship [5] who stated that tooth separations in a single gear pair are possible
when 2zok2: Jump discontinuities become more drastic as values of k

ð1Þ
2 ¼ kð2Þ2 are increased. For
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instance, for kð1Þ2 ¼ kð2Þ2 ¼ 0:3; two stable solutions (a SSI and a no-impact motion) coexist within
the ranges 0:55oLo0:8 and 1:25oLo1:5: While the separation between the jump-up and jump-
down frequencies is the widest when kð1Þ2 ¼ kð2Þ2 ¼ 0:42; it is also observed that the upper branch
(SSI) motions become unstable at lower amplitudes. Numerical integration results for this case
indicated that the system goes through period-doubling bifurcations as L is reduced on the upper
branch. Such period-n sub-harmonic motions of the same physical system are investigated in a
companion paper [21].
It is also evident from Fig. 8 that the instability region near L � on1 due to a parametric

resonance widens as the value of kð1Þ2 ¼ kð2Þ2 is increased. While there is no unstable period-1
motion at L � on1 for a harmonic stiffness amplitude of 0.1, the period-1 motions are unstable
within 1:65oLo2:1 for kð1Þ2 ¼ kð2Þ2 ¼ 0:42: This is in qualitative agreement with the previous LTV
model predictions [18].
In Figs. 5 to 11, the parametric excitations k1ðtÞ and k2ðtÞ were assumed to be in mesh and have

the same fundamental frequency. The same case of Fig. 2 is considered with different phase angles
G between k1ðtÞ and k2ðtÞ; where G ¼ 0; p=2 and p were considered. In Fig. 9, it is shown that G is
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another parameter influencing vibration amplitudes. The p
ðrmsÞ
1 and p

ðrmsÞ
2 amplitudes are the

largest when k1ðtÞ and k2ðtÞ are in phase (G ¼ 0). Similarly when the fundamental frequencies of
k1ðtÞ and k2ðtÞ are different (n ¼ Z2=Z3a1), the response is changed considerably. As an example
of such a case, Fig. 10 illustrates the response corresponding to the system of Fig. 2 except now
n ¼ 2: In this case, the gear mesh frequencies are f mesh1 ¼ L and f mesh2 ¼ nL ¼ 2L: In Fig. 10, two
primary resonance peaks corresponding to f mesh1 ¼ on1 and f mesh2 ¼ on2 are located at nearly the
same frequency since on2 � 2on1 in this particular example. As a result two resonance peaks are
combined near L ¼ on1 ¼ 0:93 to form the total response. Meanwhile, near L ¼ on2 ¼ 1:86;
the other primary resonance corresponding to f mesh1 ¼ on2 coincides nearly with the parametric
resonance corresponding to f mesh1 ¼ 2on1; again causing one resonance peak to lay on top of
the other.
Finally, Fig. 11 shows the p

ðrmsÞ
1 and p

ðrmsÞ
2 response spectra corresponding to periodic k1ðtÞ and

k2ðtÞ: In this case, k
ð‘Þ
2 ¼ 0:3; kð‘Þ4 ¼ �0:18; kð‘Þ6 ¼ 0:04 in Eq. (9) with K ¼ 3: This corresponds to a

gear pair having an involute contact ratio of 1.7 [25] meaning that on average 1.7 tooth pairs
remain in contact. Since on2 � 2on1 in this case, inclusion of the higher harmonics of the mesh
stiffness excitations pose additional complications. The primary resonance due to the
fundamental harmonic at L ¼ on2 also corresponds to the parametric resonance due to the
fundamental harmonic at L ¼ 2on1 and the parametric resonance due to the first harmonic at
L ¼ 2ð1

2
on2Þ ¼ on2: Similarly, primary resonance due to the first-harmonic amplitude of mesh

stiffnesses at L ¼ 1
2
on2 coincides with the primary resonance frequency due to the fundamental

harmonic at L ¼ on1 In addition, some of these frequencies represent super-harmonic resonances
as well. Therefore, the response amplitudes and the severity of the jump discontinuities near
L ¼ on1 and L ¼ on2 are increased significantly. Also noted in these figures is that the period-1
motions lose stability quite erratically on the upper branches of the primary jumps. Bifurcation
diagrams obtained numerically for these upper branch motions, as shown in Fig. 12, reveal many
sub-harmonic and chaotic motions, period-doubling cascades and other nonlinear phenomena.
For instance, complete period-doubling and period-halving bifurcations of period-2m

motions (m: integer) surround a chaotic frequency band as shown in Fig. 12(a). Similarly, other
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period-3 � 2m (3T, 6T, 12T, etc.) and period-5 � 2m (5T, 10T, etc.) period-doubling routes to chaos
are also evident from Fig. 12(a) and (b). Such motions are investigated in a companion paper [21].
One observation from the results presented up to this point is that the coupling between the two

gear meshes is rather weak. A non-linearity applied at one mesh appears to impact only one of the
primary resonance peaks significantly, while the other peak influenced more by the non-linearities
applied to the second gear mesh. This issue of modal coupling must be investigated further to
determine whether this observation is a general one that is valid for all typical multi-mesh gear
systems. For this purpose, the model must be modified to include torsional flexibilities of the
shafts as well. Our ongoing investigations focuses on this, as well as on time-varying systems
having piecewise nonlinear displacement functions.
5. Conclusion

A non-linear time-varying dynamic model of a drive train consisting of three shafts and two
gear pairs was proposed in this study. The lumped parameter dynamic model included the gear
backlash non-linearities and parametrically varying gear mesh stiffnesses dictated by the gear
contact ratios. Dimensionless equations of motion were solved for the steady-state period-1
response by using a multi-term Harmonic Balance Method (HBM) in conjunction with discrete
Fourier Transforms. The HBM solutions were shown to be accurate by comparing them to direct
numerical integration solutions. Floquet theory was applied to determine the stability of the
steady state HBM solutions. An example gear train was modeled to show the sensitivity of the
response to alternating mesh stiffness amplitudes, gear mesh damping, static torque transmitted,
and the gear mesh frequency ratio. Based on the results of the parametric study presented in the
previous section, several general conclusions can be made including the following:
�
 The multi-mesh gear system studied exhibits a variety of nonlinear behavior. The period-1
motions follow the softening type of jump discontinuities at the primary and parametric
resonance frequencies of the corresponding LTV system. This is mainly due to loss of contact of
mating teeth resulting in instants of zero gear mesh stiffness.
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�
 Given typical ranges of system parameters, no back collisions (double-sided impacts) were
observed.
�
 It was shown that neglecting gear backlash non-linearity by forcing the teeth to stay in contact,
as it is done by previous LTV models, would result in inaccurate predictions near these
resonance frequencies while the behavior away from primary, super-harmonic and sub-
harmonic (parametric) resonance frequencies is still linear-time-varying.
�
 No combination resonance and a very limited super-harmonic resonance were observed again
within the typical ranges of parameters.
�
 A weak modal coupling between the two gear meshes was noted. Any backlash introduced in
one mesh influences only one of the primary resonance peaks of the system greatly while the
non-linearity in the vicinity of the other primary resonance peak may be attributable to the non-
linearities introduced in the other mesh. This, at least within the parameter ranges studied,
allows considering one non-linearity at a time while predicting the response near the
corresponding primary resonance peak.
�
 This study also demonstrates that the period-n sub-harmonic motions should be expected to
play a significant role in the areas of parametric resonance frequencies, especially when the
system is lightly damped and the mesh stiffness amplitudes are significant.
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