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Abstract

The inverse problem of assigning natural frequencies and antiresonances by a modification to the
stiffness, mass and damping of a structure is addressed. Very simple modifications such as the addition of
masses and grounded springs can be easily accommodated and require the measurement of translational
receptances at the connection coordinates. Realistic modifications of practical usefulness, such as a
modification by an added beam, require the measurement of rotational as well as translational receptances.
Such data are difficult to obtain because of the practical problems of applying a pure moment. One method,
the so-called ‘T-block’ approach, has received considerable attention in the literature, but the
accompanying problem of ill-conditioning has not been fully addressed until now. The T-block is attached
to the structure at the modification point, so that a force applied to the T-block generates a moment
together with a force at the connection point between the T-block and the parent structure. Forces and
linear displacements measured on the T-block, together with a mass and stiffness model of the T-block
itself, allow the problem to be cast as a special case of excitation by multiple inputs. The resulting equations
are generally ill-conditioned, but can be regularized by using a small number of independent measurements.
The methodology and signal processing techniques required to estimate the rotational receptances are
described. An experimental example is used to demonstrate the practical application of the method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Receptances obtained by the processing of data from translational sensors have been readily
available for more than two decades and modern modal tests are regularly carried out using
see front matter r 2004 Elsevier Ltd. All rights reserved.
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hundreds of data channels. Throughout the 1980s and 1990s the need for rotational receptances
intensified for a variety of reasons including the development of procedures for the correlation
and updating of finite element models, but most importantly for structural modification and
substructure coupling. A typical case of structural modification is where the dynamic behaviour of
a system modified by an added mass or a grounded spring is determined from measurements on
the system in its unmodified condition. Simple modifications such as these are entirely described in
translational coordinates and require the measurement of translational receptance data only. If a
modification is to include a rotational inertia or a rotational stiffness then measured rotational
receptances are needed from the unmodified system.

The problem of determining rotational receptances can of course be separated into the two sub-
problems of (i) measuring rotational motion and (ii) exciting the structure with a moment and
measuring it. The first subproblem is the easiest and many papers on rotational measurements
concentrate on this aspect. Attempts have been made to apply pure moment excitation, but this is
very difficult to achieve in practice. The alternative is to apply a force, which simultaneously
imparts a moment, but this is problematic too. Both aspects of rotational receptance estimation
are beset with ill-conditioning problems as will be explained in what follows.

Smith [1] used two electromagnetic shakers in a configuration capable of applying a couple by
two equal and opposite forces applied to a specially designed fixture. Requirements were
described to control the amplification of random experimental errors. Sanderson and Fredo [2]
and Sanderson [3] considered bias errors caused by the fixture. These arise from errors in the
moment applied to the structure and unwanted excitation of the rotational motion. The former
can be corrected by rotational inertia cancellation and the latter depends not only on the design of
the moment-excitation fixture but also on the structure itself. Sanderson and Fredo [2] and
Sanderson [3] considered fixtures in the form of a T-block and an I-block. Petersson [4] used two
giant magnetostrictive alloy rods, excited out of phase with each other to produce a couple on a
small T-block, assumed to be a pure moment. Gibbs and Petersson [5] adapted the principle of
magnetorestrictive rods to produce a smaller moment actuator to demonstrate the importance of
rotational vibrations to structure-born sound. The methodology, together with the necessary
equations, required to estimate the moment mobility using the magnetorestrictive actuator are
given in detail in Ref. [6]. Su and Gibbs [7] used two-shaker configurations and the
magnetostrictive actuator. They concluded that the main drawback of the former stems from
the mismatching of forces from the two shakers. A lightweight electromagnetic moment shaker is
described in a research report [8] on work carried out under EU contract BRPR-CT97-540.
Trethewey and Sommer [9] presented a different way of generating a pure moment by utilizing the
couple created by the centrifugal forces of eccentric masses attached to two symmetrically
connected rotating wheels. In order to cancel an undesirable moment in an orthogonal direction
they added a second identical counter-rotating system of masses on top of the previous one.
Bokelberg et al. [10,11] and Stanbridge and Ewins [12] described the measurement of rotational
responses by laser sensors and their implementation.

The method described by Ewins and Sainsbury [13], Ewins and Gleeson [14], and Ewins and
Silva [15] is amongst the earliest attempts at the measurement of rotational receptances. Using a
rigid attachment, such as the T-block, they showed that the full matrix of receptances could be
expressed in terms of the measured translational receptances, a coordinate transformation matrix
and the mass matrix of the attachment. Cheng and Qu [16] and Qu et al. [17] used a similar
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approach, but based upon the use of a rigid ‘L’-shaped attachment. Silva et al. [18] proposed a
method for the recovery of the rotation-moment receptance from a single column of the
receptance matrix corresponding to an applied force. The mass and inertia of the T-block were
eliminated by using a substructure coupling technique. Yasuda et al. [19] and Kanda et al. [20]
also used a rigid attachment but their studies were concentrated on the measurement of rotational
displacements and did not extend to the determination of rotational receptances. Duarte and
Ewins [21] considered the transformation matrices for closely spaced accelerometers. Yoshimura
and Hosoya [22] determined the rotational receptances by solving an overdetermined least-
squares problem using measured time-domain data from a rigid T-block. All methods using rigid
fixtures lead to poorly conditioned equations for two reasons: (1) Rotational motion is given by
the small difference between translations from accelerometers on the rigid fixture. (2) The
excitation points on the rigid fixture are close in comparison to the wavelengths of the modes
excited in the structure and therefore the receptances excited from close points on the attachment
are very similar. Dong and McConnel [23] relaxed the requirement of a rigid fixture. They
determined the full inertance matrix by using a finite element inertance matrix of the T-block
together with inertances measured by an instrument cluster (including rotational accelerometers)
on the T-block itself.

Ewins [24] showed that the complete matrix of receptances could be determined from
measurements of a single row or column, which seems to suggest that the most difficult rotational
point receptances are recoverable from other measurements. However Ewins went on to point out
the impracticability of his result, since in most cases the measured frequencies are restricted to a
range less than the range of natural frequencies of the system and in that case the residuals due to
the out-of-range (higher) modes must be included. O’Callahan et al. [25,26] and Avitabile et al.
[27,28] used a finite element model to expand the set of measured translational degrees-of-freedom
thereby producing an estimate of the unmeasured rotations.

In this paper a multiple-input, multiple-output H1 estimator is described for rotational
receptances using an elastic T-block. The T-block may be quite large since its mass and elasticity
properties are included in a finite element model, which allows the displacements and forces (and
moments) at the connection point with the main structure to be determined from measurements at
accessible points on the T-block where accelerometers and force sensors are located. The resulting
estimates are the receptances of the structure under test without any mass, inertia or stiffness
effects of the T-block, which are conveniently removed by the T-block finite element model. The
use of a large T-block helps with the conditioning of the resulting equations. In addition, the
equations may be regularized using independent measurements taken with the T-block removed.
The measured data are rich in the natural frequencies of the system with the T-block attached and
a further benefit of the regularization is that it tends to counteract this effect. The final result is a
multiple-input, multiple-output regularized H1 estimator, which may be used to determine the full
frequency response function matrix at the connection point.
2. Theory

The T-block is connected to the parent structure as shown in Fig. 1 and receptances, including
rotational receptances, are required at the connection point 0. The analysis is presented for the
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case of vibration in a plane so that the point and transfer receptances at 0 form a 3� 3 matrix.
The generalization to vibration in three dimensions is a straightforward extension to the theory
presented but the equations become more complicated. In that case, a T2-block is used having
perpendicular arms in the form of a cross and the matrix of point and transfer receptances is
6� 6: In Fig. 1 the T-block excitation points are shown by arrows and the measured translational
responses by black squares.

The equation of motion of the structure may be written so that the dynamic stiffness of the
T-block appears on the right-hand side as a forcing term [29],

B11ðoÞ B10ðoÞ

B01ðoÞ B00ðoÞ

0

264
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x0

x2

0B@
1CA ¼
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The matrix

B11ðoÞ B10ðoÞ

B01ðoÞ B00ðoÞ

" #
is the dynamic stiffness of the parent structure. Subscripts 0 and 1 denote the common coordinates
with the T-block at the connection point and the other parent-structure coordinates, respectively.
The displacements at the connection point are therefore contained in the vector x0 and the
displacements at the other coordinates are given by the elements of x1: The matrixeB00ðoÞ eB02ðoÞeB20ðoÞ eB22ðoÞ

" #
is the dynamic stiffness of the T-block. Subscript 2 represents the other T-block coordinates not at
the connection point 0. The vectors f0 and f2 contain externally applied forces at the connection
z

y�

O
x

Fig. 1. The T-block attachment.
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point and elsewhere on the T-block, respectively. The response vector x0 may be determined from
the last row of Eq. (1), eB20ðoÞx0 þ eB22ðoÞx2 ¼ f2. (2)

Then, assuming dimðx0Þpdimðx2Þ;

x0 ¼ ðeB�T

20 ðoÞeB20ðoÞÞ
�1eB�T

20 ðoÞðf2 � eB22ðoÞx2Þ. (3)

Now we write the first two rows of Eq. (1) as

B11ðoÞ B10ðoÞ

B01ðoÞ B00ðoÞ

" #
x1

x0

 !
¼

0

f0 � ðeB00ðoÞx0 þ eB02ðoÞx2Þ

 !
, (4)

so that upon premultiplying by the receptance matrix of the parent structure,

x1

x0

 !
¼

H11ðoÞ H10ðoÞ

H01ðoÞ H00ðoÞ

" #
0

f0 � ðeB00ðoÞx0 þ eB02ðoÞx2Þ

 !
(5)

and by extracting the last row of Eq. (5), an equation in the required H00; the matrix of
receptances at the connection point, is obtained,

x0 ¼ H00ðoÞðf0 � ðeB00ðoÞx0 þ eB02ðoÞx2ÞÞ. (6)

Since H00 is the frequency response function matrix at the connection point 0, it can be deduced
that the expression ðf0 � ðeB00ðoÞx0 þ eB02ðoÞx2ÞÞ on the right-hand side of Eq. (6) represents the
total system of forces applied to the structure directly and via the T-block. By combining Eqs. (3)
and (6) the complete matrix receptance equation for the T-block in terms of measured forces and
linear displacement responses may be written as

ðeB�T

20 ðoÞeB20ðoÞÞ
�1eB�T

20 ðoÞðf2 � eB22ðoÞx2Þ

¼ H00ðoÞðf0 � ðeB00ðoÞðeB�T

20 ðoÞeB20ðoÞÞ
�1eB�T

20 ðoÞ

� ðf2 � eB22ðoÞx2Þ þ eB02ðoÞx2ÞÞ ð7Þ

or in simplified form as

RðoÞf2ðoÞ þ SðoÞx2ðoÞ ¼ H00ðoÞðf0ðoÞ þ TðoÞf2ðoÞ þUðoÞx2ðoÞÞ, (8)

where

RðoÞ ¼ ðeB�T

20 ðoÞeB20ðoÞÞ
�1eB�T

20 ðoÞ, (9)

SðoÞ ¼ �ðeB�T
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20 ðoÞeB22ðoÞ, (10)
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20 ðoÞeB20ðoÞÞ
�1eB�T

20 ðoÞÞ, (11)

UðoÞ ¼ eB00ðoÞðeB�T

20 ðoÞeB20ðoÞÞ
�1eB�T

20 ðoÞeB22ðoÞ � eB02ðoÞ. (12)



ARTICLE IN PRESS

J.E. Mottershead et al. / Journal of Sound and Vibration 284 (2005) 249–265254
Then, by re-writing Eq. (8) in matrix–vector form for the case of n measurements

½RðoÞ SðoÞ 	
f2ðoÞ

x2ðoÞ

 !
i

¼ H00ðoÞ½ I TðoÞ UðoÞ 	
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i

; i ¼ 1; 2; . . . ; n, (13)

and by combining the n equations above
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" #
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F0ðoÞ

F2ðoÞ

X2ðoÞ
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375, (14)

where

F0ðoÞ ¼ ½ f01ðoÞ f02ðoÞ . . . f0nðoÞ 	, (15)

F2ðoÞ ¼ ½ f21ðoÞ f22ðoÞ . . . f2nðoÞ 	, (16)

X2ðoÞ ¼ ½x21ðoÞ x22ðoÞ . . . x2nðoÞ 	. (17)

Post-multiplying both sides of Eq. (14) by
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and the matrices Gf 0f 0
ðoÞ; Gf 0f 2

ðoÞ; . . . contain spectral densities as indicated by the subscripts.
At this point it should be recalled that there are four separate loading conditions as shown in

Fig. 1. Consequently, four equations of the form of Eq. (18) may be written and adding these
together a multiple-input, multiple-output MIMO H1 estimator [30] for the receptances at the T-
block point of attachment is expressed as

H00ðoÞ ¼
X4
k¼1

BkðoÞ

 ! X4
k¼1

AkðoÞ

 !�1

. (21)
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The usual requirement for multiple-input, multiple-output frequency response estimation, that
the inputs are uncorrelated, may be relaxed in this case. The only requirement being thatP4

k¼1AkðoÞ
� �

is full rank.
3. Finite element model of the T-block

The T-block is a simple structure which we assume can be accurately modelled using finite
elements and is represented in Eq. (1) by the dynamic stiffness matrixeB00ðoÞ eB02ðoÞeB20ðoÞ eB22ðoÞ

" #
.

Subscripts 0 and 2 represent the coordinates of the connection point and the accelerometer
measurement coordinates respectively. The finite element model should include nodes at these
coordinates. Finite element nodes at coordinates not included in x0 and x2 are unmeasured and
therefore need to be eliminated by a model reduction technique.

The finite element model used to produce the results presented in this article consisted of three
inextensible Euler–Bernoulli beam elements, and since vibrations only in the plane of the T-block
are considered, the particular implementation having two degrees of freedom (one transverse
linear and one rotation) at each node is used. Each element has two nodes and hence four degrees
of freedom. The assembled T-block model consists of nine degree of freedom as shown in Fig. 2.
The unmeasured degrees of freedom y7; y8 and y9 are eliminated using Guyan reduction [31],
which causes small rotational inertia effects to be neglected but has the advantage of being
independent of frequency.

Care should be taken to ensure the accuracy of the finite element model. The stem of the T-
block does not join the top beam at its neutral axis and therefore it is necessary to use an offset
y6

y1

�2

z5�9 �8

z3 z4

�7

�

Fig. 2. Complete finite element model of the T-block.
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node at the end of the stem. The length of the offset should be half the top-beam depth as
indicated by a in Fig. 2. Stiffness and mass matrices for a beam element with such an offset node
are given in Ref. [32]. To maintain the mass properties of the element the mass of the top beam
should be added to degree-of-freedom y6 and the mass of the stem to degree of freedom z3:
Accelerometer and force sensor masses should be included. Confirmation of the accuracy of this
mass distribution can be obtained from

m ¼ cT
rb1Mcrb1, (22)

m ¼ cT
rb2Mcrb2, (23)

IG ¼ cT
rb3Mcrb3, (24)

where m and IG represent the total mass of the T-block (and instrumentation) and its moment of
inertia about its centre of gravity. crb1; crb2 and crb3 are the principal rigid-body modes in
directions y, z and pure rotation about the centre of gravity and M is the mass matrix of the T-
block.
4. Experimental arrangement

The experimental rig shown in Fig. 3 takes the form of a portal frame with one leg missing. In
the companion paper [33] the sectional properties of the missing leg are determined by an inverse
method in order to assign the natural frequencies of the complete system. The initially missing leg
is represented by a single Euler–Bernoulli beam element and added to the measured receptances
(taken with the leg missing) in order to predict the receptances of the complete portal frame. The
predicted receptances are finally confirmed experimentally after the leg has been added to make
the portal frame complete. Of course, the Euler–Bernoulli beam has rotational degrees-of-freedom
and it is therefore necessary to measure rotational receptances at the connection point with the
500

10
00

Fig. 3. Experimental set-up.
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top beam of the portal frame. The T-block is therefore placed at the free end of the top beam as
shown in Fig. 3. The legs and top beam are constructed from 100mm�50mm rectangular hollow
steel section with a wall thickness of 4mm and connections are made by flanges beneath the top
beam and at the tops of the legs. The T-bar was connected to the under-top-beam flange using a
single M10 set screw. It was anticipated that rotational measurements would be needed with the
removable leg in place and for this reason the T-block was fitted from above, requiring a hole to
be made in the top beam as shown in Fig. 4. The receptances are therefore estimated at the flange
and not at the neutral axis of the top beam.

The T-block has a top beam of length 160mm, breadth 20mm and depth 12mm. The stem is
100mm long and has a square cross section of 20mm�20mm. Loads were applied to the T-block
by an electromagnetic exciter connected in turn to each of the four points shown in Fig. 1. Forces
applied to the ends of the T-block arms are entered in the vector f2 whereas the force at the centre
of the top beam is entered into vector f0 in Eq. (7).
5. Regularization

Most previous researchers assume the T-block to be rigid in the frequency range of interest,
which means that it must be very much smaller than the test structure. Then the problem of
estimating rotational frequency responses is ill-conditioned for two reasons. Firstly, the rotation is
Fig. 4. T-block attachment to the flange.
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generally obtained from the small difference of two much larger translational displacements
measured at the ends of the T-block arms. Secondly, the receptances at the two arm-ends will be
very similar in the range of the lower modes of the test structure. Including the stiffness of the T-
block in the formulation allows the use of a larger T-block, which helps with the conditioning.
Unfortunately in the particular test described here, one arm-end was unexpectedly found to be
close to a vibration node of the second mode in the ‘y’ direction, which exacerbated the ill-
conditioning problem. Tikhonov regularization [34] was applied using the following relationships:

hyzðoÞ � hzyðoÞ ¼ 0,

hyyx
ðoÞ � hyxyðoÞ ¼ 0,

hzyx
ðoÞ � hyxzðoÞ ¼ 0 ð25Þ

and

hyyðoÞ � hm
yyðoÞ ¼ 0. (26)
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These constraints together with Eq. (14) lead to an objective function of the form

min
X4
k¼1

½RðoÞ SðoÞ 	
F2ðoÞ

X2ðoÞ

" #
k

�H00ðoÞ½ I TðoÞ UðoÞ 	
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F2ðoÞ
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3775

k

��������
��������
2

F

26664
þ ZððhyzðoÞ � hzyðoÞÞ

2
þ ðhyyx

ðoÞ � hyxyðoÞÞ
2
þ ðhzyx

ðoÞ � hyxzðoÞÞ
2
Þ

þ ZðhyyðoÞ � hm
yyðoÞÞ

2

3775, ð27Þ

where k � kF denotes the Frobenius norm.
A linearity check should be carried out before application of the constraint in Eq. (25). The

frequency response hm
yyðoÞ is an independent measurement (without the T-block). Regularization
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causes constraints to be applied in estimating the required receptances the strengths of which are
determined by the magnitude of a regularization parameter Z: Of course, different values of Z may
be applied to the two constraint equations (25) and (26) and other regularizing terms might be
added. The measurements are generally very rich in the natural frequencies of the system with the
T-block attached and a further advantage of applying a constraint of the form of Eq. (26) is that
spurious peaks close to those natural frequencies may be suppressed. Care should be taken in
applying regularization since the quality of the estimates and their ability to describe the
behaviour of the system may be jeopardized if the value of the regularization parameter is too
great.
6. Results

Figs. 5–10 show the estimated receptances obtained by excitation separately at each of the four
points shown in Fig. 1. Twenty sequences of time dimain data (n ¼ 20) were used at each shaker
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location. In Figs. 5–7 a set of receptances measured independently using linear accelerometers at
the connection point 0, without the T-block, are overlaid on the estimated receptance curves. It
can be seen from Figs. 5 to 7 that the estimated results for the purely translational receptances hyy;
hzz and hyz; denoted by the solid line, are in good agreement with the corresponding measured
ones, denoted by the dashed line. The cross frequency response functions that include the
rotational coordinate were measured using a commercially available rotational accelerometer.
These results are compared with the corresponding estimated ones in Figs. 8 and 9. It can be seen
that at lower amplitudes of response the results obtained using the rotational accelerometer are
noisy and of lower quality than the estimated ones. Fig. 10 shows the sought after rotational
frequency response function hyxyx

at the connection point 0. This shows a small spurious
peak slightly to the left of the second natural frequency of the portal frame. It is possible that
the spurious peak can be removed by increasing the weight on the regularization term given
by Eq. (26). However if natural frequencies are to be assigned away from the spurious peak
in a subsequent structural modification then the presence of the peak in the data is of no
importance.
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7. Conclusions

The full 3�3 matrix of receptances for in-plane motion of a beam structure has been determined
by a method that uses an elastic T-block. The method requires linear displacement and force
measurements at a number of points on the T-block together with a finite element model of the T-
block itself. In theory there is no restriction on the size of the T-block and this assists with
conditioning of the resulting equations. However the data are rich in the natural frequencies
of the system including the T-block, which can itself lead to erroneous results. Generally, it is
found to be beneficial to apply regularization using data obtained independently from the
structure without the T-block. The primary purpose of the regularization is to alleviate the ill-
conditioning but it also has the bonus of removing any bias effects close to the natural frequencies
of the system with the T-block present. The resulting over-determined least-squares problem leads
to solutions which are applied to the problem of structural modification by an added beam in the
companion paper [33].
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