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Abstract

A deterministic averaging method for quasi-integrable Hamiltonian systems is proposed to predict
the approximate response of many degree-of-freedom autonomous or non-autonomous strongly non-
linear systems. The form and dimension of the averaged equations depend on the number of degree-of-
freedom and the number of resonant relations of the associated Hamiltonian systems. In non-resonant
case, the averaged equations for n action variables or n independent integrals of motion are derived.
In resonant case, the averaged equations for n action variables and o combinations of angle variables
are derived. Two examples are given to illustrate the application of the proposed method. It is shown
that the analytical results agree well with those from numerical solution even for systems with very
strong nonlinearity.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Many techniques have been developed to predict the approximate response of single-degree-
of- freedom (sdof) or multi-degree-of-freedom (mdof) quasi-linear systems [1]. The most
well-known ones are the perturbation method [2], the method of multiple scales [3] and the
averaging method [4,5]. The standard Krylov—Bogoliubov averaging method has been extensively
used to predict the response and determine the stability and bifurcation of quasi-linear
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systems with or without internal and/or external resonances. Yuste and Bejarano [6] proposed
an improved K—B averaging method using Jacobi elliptic functions to predict the approxi-
mate response of strongly nonlinear autonomous Duffing oscillator. Xu and Cheung [7,8]
developed an averaging method for strongly nonlinear oscillators using generalized harmonic
functions. Huang et al. [9,10] extended this method to predict stochastic jump and bifur-
cation of sdof strongly nonlinear Duffing oscillators under combined harmonic and white
noises excitations and under bounded noise excitation, respectively. Cveticanin [11] obtained
the approximate solution of two coupled pure cubic nonlinear oscillators using Jacobi
elliptic functions.

On the other hand, a stochastic averaging method for quasi-integrable Hamiltonian systems has
been developed [12-14] and successfully applied to predict the response and to determine the
stochastic stability [15]. The Hamiltonian formulation of mdof strongly nonlinear systems
provides better understanding of the interaction among various degrees of freedom (dof) of the
system [16].

In the present paper, a deterministic averaging method for quasi-integrable Hamiltonian
systems is developed. It is shown that the form and dimension of averaged equations depend on
the number of dof and the number of internal and/or external resonant relations. Two examples
are worked out to illustrate the proposed method.

2. Quasi-integrable Hamiltonian systems

Consider a mdof strongly nonlinear non-autonomous system. The equations of motion of the
system are of the form

. 0H
7= op; ’
. oH oH
Pi = — =+ &c;j(q,p) =— + ehir(q, p) cos(Qkt + 1),
0g; 0p;
ij=1,....n, k=12,....m, (1)

where q =[q(,¢---,4q,]%, p=[p1sP»---,p,)0 and ¢, p, are generalized displacements and
momenta, respectively; H = H(q, p) is Hamiltonian; ¢; are coefficients of quasi-linear dampings;
hix are amplitudes of harmonic excitations; ¢ is a small positive parameter; €, and y, are the
frequencies and initial phase angles of excitations.

Suppose that the Hamiltonian system associated system (1) with ¢ = 0 is completely integrable,

1.e., there exists a set of canonical transformations

I; =I(q,p),
0; = 0i(q, p),
i=1,...,n (2)
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(the specific form of the transformations depends on the structure of the Hamiltonian) such that
the new Hamilton equations are of the following form:

dH(I)

=D
1 601 b
. o0H ()
9i == = Wi | 5
i=1,...,n, (3)
where Il =[Iy,15,...,1 n]T; I; and w; are action variables and frequencies, respectively; 0; are the

angle variable conjugated to /;; and H(I) is the transformed Hamiltonian independent of 0,. I; can
be regarded as n independent integrals of motion which are in involution. The completely
integrable Hamiltonian system associated system (1) with ¢ =0 is resonant if there exist
o (l1<a<n— 1) resonant relations

Kloj=0, u=1,...,0, a<n-—1, 4)

where kj are integers and not all zero for a fixed u, and « is the number of resonant relations.

The system governed by Eqs. (1) with ¢#0 is called quasi-integrable Hamiltonian system.
Introducing canonical transformation (2), the differential equations for action and angle variables
are of the form

0H oI,
I, = F(Cy(q, P) 5+ (g, p)cos I’ k) . (5a)

i

00,
9 = CUr(l) +¢& (cll(q, p) + hlk(q: )COS Fk) ap )

] i

rij=1,...,n, k=1,...,m, (5b)

where I'y = Qt + ;. The number and form of the averaged equations of system (5) depend upon
whether the associated Hamiltonian system is resonant or not. Three cases are considered in the
following section.

3. Averaged equations
3.1. Non-resonant case

At first, consider the case where there is no internal and external resonance in systems (5). In
this case, the terms containing cos I’y in Egs. (5a,b) can be neglected in the first approximation. It
can be seen from Egs. (5a,b) that the action variables ; vary slowly while the angle variables 0;
vary rapidly. Eq. (5a) can be rewritten as follows:

dl,

dt_3U(11,...,1,,,91,...,0,,), r=1,...,n, (6)
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where

0H oI,

cij(q’ p) A _]

U, =
Op; Op;

(7)

q=q(1,0)
p=p(L0)

Note that since non-resonant integrable Hamiltonian system of n dof is ergodic on n-
dimensional torus, the time averaging is equivalent to space averaging over the n-dimen-
sional torus. Thus, the averaged equations can be derived by the averaging with respect
to 0,, i.e.,

d7, -
d[ = gU,-(I],---,In)’

r=1,...,n, 3)

where

_ 1 2 2
U,<11,...,1n)=(27)n/0 /0 UL, D00, .., 0,) 0, - - - O, 9)

3.2. Internal resonant case

Then consider the case where there are «(1<a<n — 1) internal resonances and no external
resonance in systems (5). In this case the terms containing cos ', in Eq. (5) can also be neglected
in the first approximation. Suppose that the integrable Hamiltonian system governed by Egs. (1)
with ¢ = 0 is nearly resonant, i.e., there are o (1 <a<n — 1) weak resonant relations

ko, = ey

u=1,...,00 r=1,...,n, (10)
where o, are detuning parameters. Introduce o combinations @, of angle variables

@, = k0,

u=1,...,00 r=1,...,n. (11)

The first o« angle variables 0; are replaced by « combinations @,. The differential equations
for Iy,...,1,,®1,...,9,,0,.1,...,0, are obtained from Eq. (5) by using Eqgs. (10) and (11)
as follows:

di,
E = EUV(Ia (I): 60(4-1’ sevy 0!’!)5
do,

dt = &0y + 8Vu(Ia (Da HCH-I) R} 0}’!)9
do,

TR + W, (L®,0,1,...,0,),

r=1,....n, u=1,...,0, v=o+1,...,n, (12)
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where )
OH ol
U, = |cij(q,p) a—a—r ,
pj Di q=q(L®,0y | ,...0n)
- p=p(L®.0,,, | .....0n)
[ OH 00
Vu= |kici(q,p) 6—6_1 ,
pj Pi q=q(L®,0, , |...0n)
o p=p(L®.0,,, |.....0n)
O0H 00,
We= |ej(ap) 5= ;
pj Di q=q(L®,0y | .0n)

p=p(L®,0; | .....00n)

O ={D,..., 0,7 (13)

It is seen from Eqgs. (12) that n action variables /, and « combinations @, of angle variables vary
slowly while the angle variables 0, 1,..., 0, vary rapidly. The averaged equations for /,, @, can be
obtained from Eq. (12) using space averaging with respect to 0,,1,...,0, as follows:

dl, _

., = Ur I: (D s
do, _
= ¢oy + eV (I, @),

seea i, u=1,...,0a, (14)

where

2 2n
00 = e [ [ U000 040, -0,
(2m) 0 0
_ 1 2 2
PL®) = / / VL, ®, 0,1, 0p) O,y - - -0, (15)
(2m) 0 0

3.3. Both internal and external resonant case

Finally, consider the case where there are o(1<a<nm — 1) internal resonant relations and f
external resonant relations (1 <f<m) in system (5). i.e.,

kl'w, = ¢oy,, (16a)
Liw, + M}Q = &by, (16b)

u=1,...,0, v=1,...,8, r=1,....n, k=1,...,m,

where k', L!, M} are integers and a,, d, are detuning parameters. Introduce o combinations @, of
angle variables and § combinations ¥, of angle variables and phase angles of excitations.

®, = k'0,, (17a)
¥, = L0, + MiI}, (17b)

u=1,...,0, v=1,....,68, r=1,....,n, k=1,...,m,
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01,....,0,,Ik,..., I, are replaced by @y,...,P,, Oyp1,...,0, ¥i,...,¥s, I'pt1,.... 1 The

differential equations for Iy,...,1,, ®1,..., Py, ¥1,..., Y4, 0,11,...,0, are of the form

df,

dt =8U,,(I,(D,‘P,0a+1,...,0,,,F/j+],...,rm),

do,

d[ :SUM+SVM(I,(I),‘P,HO(+1,...,Qn,rﬁ_H,...,Fm),

dy,

dt :851/‘+8WU(13(I)3‘I’,90(+1,""Gnarﬂ-‘rla""rm)a

do;

E:CUS+8XS(I,(I),‘P,91+],...,Bn,Fﬁ+1,...,Fm),

r=1""’n’ u=1,...,0{, U=15~"3ﬁ5 S=OC+15...,”, (18)
where

OH I,
Ur=ci(@.p) 5~ k(q,p) L cosr,
l] a a 2 pl

" @9 "
Vi =kcq, p) a_ a_+k hi(q, p) 7cost,

0H 00,

+ hi(q, P) " cos Fk)
pz

H 00,
= ¢;(q, P) 3, o, * + hu(q, P) . *cos I,

={¥,..., qf,;}T. (19)

It can be seen from Eq. (18) that n action variables /,, « combinations &, of angle variables and
f combinations ¥, of angle variables and phase angles of excitations vary slowly while angle
variables 0,41,...,0, and phase angles of excitations I'gy1,...,I, vary rapidly. The averaged
equations for Iy,...,1,, ®1,...,9,, ¥i,...,¥p can be obtained from Eq. (18) using the space
averaging with respect to O,11,...,0,, I'py1,..., I, as follows:

I
dt = UL ®, V),

dj _
t" =¢eo, + eV, (L D,Y),
d v T
p = 85v + SWU(L (D’ ‘P),
ery-..,n; uzl)"'aan Uzl""’ﬂ’ (20)

where

1 2n 2n
U, = W/O /0 Ur(I,(D,‘P,ch+ls---:9n:

F/}+1,...,Fm)d9a+1"‘ d0;1dFﬂ+1"'dFm
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_ 1 2n 2n
Vu=4 Vulaq)a‘llaeoﬂ a~'~50n:
(2n)n+m—a—[ﬁ’/0 /0 ( +1

Fﬁ-ﬁ-la-l--:rm)dzgnoc-&-l "'%Qndrﬁ-i-l -dly,

o= Gy, ), W (L®,¥,0,.1,...,0,,

Tpetse D) d0, - -d6,dT gy - - dT,,. Q1)

3.4. Some remarks

In the practical application of the proposed averaging method, it is more convenient to replace
n action variables /1,...,[, with n independent integrals of motion, Hy,..., H,, in involution
because it is difficult to obtain the action variables /; in most cases. The differential equations for
Hy,...,H,and0y,...,0, can be obtained from Egs. (8), (14) and (20) by replacing I, with H,. For
example, in the case of « internal resonances and f external resonances the averaged equations of
the system can be obtained as follows:

dH, -

dr =8U,~(H1,...,Hn,(p1,...@a,lP],...,'P/g),

do, .

a7 =SGM+8VM(H1,...,H,,,€D1,...¢1,!Pl,...,'f/ﬁ),

dv, .

T :850—i-SWD(H],...,Hn,@l,...@O{,l]’],...,'{"[g),
r=1,....n, u=1,...,0, v=1,...,0, (22)

where

N 1 2n 2n
U, = —_— e
(27I)n+m—¢—[ﬁ’/0 /O

OHOH, . oH,
ija—=a— t+hix =—cosI il - d0,dlpey - -dl,
) [cf o, op T gy O k] 0y -+ d0,dl g ---d

1

- 1 2n 2n
.
(27_C)n+m—oc—,3 0 0

0H 00 00
e r “p, r I i1 - -d0,dl gy -+ -dD,,
X [k, Cjj o, api+krhk ap.cos k] d0,q1---d0,dIMpy---d

5 1 2n 2n
W,= —— ce
(Zn)n-‘rm—a—ﬁ/o /0

H r ) r
x |Lie; OH 00, | Lhy O os T, 6,1+ -d6,dT gy - dT,,. (23)
Op; Op; Opi

1
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Obviously, the dimension of the averaged equations is usually less than that of the original
equations. Besides, only slowly varying quantities are involved in the averaged equations while
both slowly and rapidly varying quantities are involved in the original equations, If the original
system is non-autonomous, the averaged system is autonomous. Thus, the averaged equations are
simplified and easier to solve than the original equations. Since the internal and/or external
resonances are considered in the derivation of the averaged equations, the essential characteristics
of the original system are retained in the averaged equations. The functions of the proposed
averaging method are illustrated in the following section.

4. Examples
4.1. Example 1

Consider a Duffing oscillator with hardening spring subject to additive harmonic excitation.
The equation of motion is of the form

¥4 wfx + ox® = —px + E cos Q1, (24)

where g is the frequency of degenerated linear oscillator; « is the intensity of nonlinearity;
B is the coefficient of linear damping; E is the amplitude of harmonic excitation. f and E are of
order of ¢. This example has been studied by many authors [7—11]. The Hamiltonian associated
with system (24) is

2 2
P~ Wy oo Xy
H=—+—" - 25
st g4 (25)
where ¢ = x and p = x. The expressions for action variable, instantaneous frequency and angle

variable of the system are [17,18

]
2 a
I(H) = —/ \/ZH—wéqz —gq“dq
T 0 2

_ 2a)(3) 4 4o H 4o H
_%\/l+w—g[(\/l+w—g+l>K(r)—2E(r) , (26a)
_dI nJa R+
“TAHT2a KO (260
r F(o,r), (26¢)

a dq
6:(1)/ =
q \/2H —0jq® —%q* 2K(r)

where K(r) and E(r) are the complete elliptic integrals of the first and second kind, respectively;
F(p,r) is the elliptic integral of the first kind. ¢ = arccos(q/a), r=a/\Va*+b>, b* =

(w%/oc)(x/l ¥ (daH b + 1), @ = (w%/a)(«/l ¥ (daH o) — 1).
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Eq. (26¢) can be rewritten as

2K(r)

q= aCn[ 0] =a ) _ C,cos(2n— 1)0, (27)
n=1

where Cn is cosine-amplitude and

2 e—(n—%)K(M)/K(r)

C,= . 28
rK(r) | 4 o~ @n=DK(V1=12)/K(r) @8)
Substituting Eq. (27) into Eq. (25), one obtains
_ 20 _* 4
p_\/2H—a)0q 54
/ 2K(r)0 2K(r)0
— 2 29 1 =728 2
a\/wy + aa n<n>\/ rn(n
o0
=a ) P,sin2n— 1), (29)
n=1

where Sn is sine-amplitude and P, are coefficients of Fourier expansion. The first three coeffi-
cients of Fourier expansion in Egs. (27) and (29) are shown in Figs. 1(a) and (b), respectively. It is
seen from Fig. 1 that only the first two or three terms need to be retained in the Fourier
expansions.

Based on the averaging procedure described in Section 3, the differential equations for H and 0
are of the form

H = p(—pp + E cos Q1),

_ T (O, OEAr g T gy 3K
= 2K \op ? T or dH 2K 7 ar dm
1 da r 7>\ dr nplE(p,r)K(r) — F(,r)E(r)] dr
=0—Rog|-—F+——|1—-—5 || — —
adH 1-r? a*) dH 2K%(r)r(1 — 12) dH
x(—=Pp + E cos Qt), (30)

where E(¢,r) is the elliptic integral of the second kind. Suppose that we are interested in primary
resonance of the system, i.e.,

Q
—=14¢9, (31)
w

where 0 is a detuning parameter. Introduce new variable

W =Qr—0. (32)
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(b)
Fig. 1. Fourier coefficients of generalized displacement and momenta verse Hamiltonian H. wy =1, =0.1,a = 1.0:
(a) generalized displacement; (b) generalized momentum.

The differential equations for H and ¥ are of the form

H = — pp*+ Epcos(¥ + 0),

2
ool e a(0-) 5]
nplE(p, r)K(r) — F(p,r)E(r)] dr )
2K - @}(_ﬁp + Ecos(¥ +0)). (33)
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It can be seen that variables H(¢) and Y(¢) in Eq. (33) vary slowly while 0(¢) in Eq. (30) varies
rapidly. Following the procedure in Section 3.3, one obtains the following averaged equations for
H and ¥:

2
Y=Q—w+EScos?, (34)

: 2 & EaP
H:—%ZP%— alsin'f/,
n=1

where

1 [ 1 da r 7\ dr
- N (5 IO S
S 27 Jo {wq[adH-i_l—rZ( a2>dH]

_ wplE(p,NK() — F(p,NE(M)] dr
2K*(r)yr(1 — 1?) dH

} cos0do (35)

The steady-state response of the averaged system (34) can be obtained by letting H = ¥ = 0 as
follows:

00

2
Pn
=1

2 2
b + [Q = ”] _ P (36)

n

The approximate steady-state amplitude response curves of Duffing oscillator with
hardening spring under additive harmonic excitation obtained by using the proposed
averaging method are shown in Fig. 2 using solid and dash lines. They agree well with
those (denoted by eA) from numerical solution of original system (24). It is noted that
a=1, 2 in Fig. 2 represent very strong nonlinearity of the system. Further investiga-
tion has shown that the proposed averaging method can be successfully applied to predict
the amplitude response of system (24) with o up to 100 if the first five terms of Fourier expan-
sions in Eqgs. (27) and (29) are retained. To the authors’ knowledge, no such method exits
so far.

4.2. Example 2

Consider the nonlinearly coupled Duffing—van der Pol oscillators governed by the equations of
motion

F1 + ofpx1 +oux] = —%1(By + BroxT + Bi3x3),
(37)
%2 + 032 + 02x3 = —%2(Bay + BooXT + Ba3X3),
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L / , a=2
g 0.8 _ % 77
= - ’
i : / / //
g 0.6 .. 7
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- : \
TP .

'Y
0.2 L

f o ———
I.l..mi

Fig. 2. Amplitude response curves of Duffing oscillator under additive harmonic excitation, (24).
wy =1, =0.1, E = 0.2:—by using the proposed averaging method; eA from numerical solution of original system.

where wio and wyy are the frequencies of two degenerated linear oscillators; «; and o, are the
intensities of nonlinearity of the two oscillators; 8;; are coefficients of linear or nonlinear dampings
of order of & System (37) has been studied by many authors [19-22]. Only the case of
pi1<0,,>0,B;3>0(i = 1,2) is considered in the present paper.

The expressions for Hamiltonian, action variable, instantaneous frequency, angle variable,
generalized displacement and generalized momenta of system (37) without damping are of the
form [17,18]

2 2
D; w* o
Hi ==+ + 4is

2 [ 2 2 %y
Ii:; A 2Hi—wi0qi_5qidqi

2 3 4 ,'Hl' 4 l'H,'
e S 22 1) K () — 2E(ry)
3no; W5 3,

L dl nym @b
CdH T 2y2 K@)

b

0 /“" dg; T
i= Wi =
4 \/ 2H,; - i —%qt K0

F(QDl', ri)a
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2K(ry) -
=a;C 0;) = a; E Cin 2n — 1)0;
q,=a n( - ) a 2 cos(2n — 1)

o
pi= \/2Hi — wiq? —5 qt

o (522 o )

= aq Z P, sin(2n — 1)0;,
n=1

o0
pigi =a Z ein sin(2n)0;,

n=1

bf:w—’% 1+4aifli+1 , a%:co_%o 1+40€ifli_1 ’
o Wi %i Wi
r,-:ai/\/af—l-bf,

— arccos qi C _ 2n e_(n_l/z)K(\/ l_r%)/K(ri)
Pi= ai’ " riK(r) | 4 e—@r-DKG/TR)/K)

i=1,2,

where K(r;) and E(r;) are the complete elliptic integrals of the first and second kinds,
respectively, for the ith oscillator; F(¢,,r;) and E(¢,,r;) are the elliptic integrals of the
first and second kinds, respectively, for the ith oscillator. The differential equations for H; and
0; are of the form

H; = —p; (B + Bndi + Bisdd)- (39a)
. 1 da; T ¢\ dr;
e
2
;i [E(p;, ri)K(ri) — F(;, r)E(ri)]  dr ) )
2Kyl — 1) X aH, (Bir + Badi + Bindr)

The form and dimension of averaged equations of the system depend on whether the system is in
resonance or not. Two special cases are considered in the following.
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Case 1: Non-resonant case. In this case only two independent first integrals H, and H, are

slowly varying quantities. Following the proposed method described in Section 3.3, the averaged
equations for H| and H, are the form

H = _% Buai ) P+ Bl Z “in ﬁl? a %(Z i ) (Z C§n>
L n=1 n=l -

=m(H, H>),

: 1 0
Hy= -3 NG Z P3, + Brsdts Z 62}1+@a% %(Z P ) (Z C1n>
L n=1
= my(H\, H»). (40)

The steady-state solutions of the averaged equation (40) can be obtained by letting H, = H, = 0.
Four possible steady-state solutions (ai,a2)=(0,0), (af,a3),(0,a3),(a?,0) can be obtained.
Solution (0, 0) is always unstable. Solution (0,49) is stable if ;3> B3.. Solution (a!,0) is stable
if By, > Pry.. Solution (af,a3) is stable if B3 <f3. and f,, <p,,.. Critical values f3., B, can be
determined by using the linearized equation of system (40) in the vicinity of the steady-state
solutions.

The approximate steady-state amplitude response of system (37) without resonance obtained by
using the proposed averaging method is shown in Fig. 3(a) using solid lines. ;5 and f3,, are taken
their critical values 5. & 0.0516 and f,,. = 0.0526, respectively. It can be seen form Fig. 3(a) that
the analytical results agree well with those (denoted by eA) from numerical solution of original
system (37).

Case 2: Internal resonant case. Suppose that there exists primary internal resonant relation

W] — Wy = &0, 41)
where ¢ is a detuning parameter. Introduce combination of angle variables
& =0, —0,. (42)
The differential equation for @ is of the form
® = w1 — 0+ ¢1(q, p) — 92(q, p). (43)

The averaged equation of H, H, and & can be obtained from Eqs. (39a) and (43) by averaging
with respect to fast varying variable 0, as follows:

o0
Hy =m(H,, Hy) + Z oin(H1, Hy)cos 2nd,

n=1

o0
H, = m2(H1>H2)+Z o(H 1, Hy)cos 2nd,

n=1

b =w)—wy+ Y o3,(Hi, Hy)sin2nd, (44)

n=1
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Fig. 3. Amplitude responses of nonlinearly coupled Duffing-van der Pol oscillators (37). wo =1,
op =0y =1, Bi; =Py = —0.05, B, = =0.1: (a) non-resonant case, wpx = 1.5, f = ;3 = f»,; (b) resonant case,
wor =1, f = P13 = Pri—Dby using the proposed averaging method; eA from numerical solution of original system.

where m;(H,, H;) are defined in Eq. (40); ¢,,(H, H,) are obtained from Eqs. (39a) and (43),
respectively, by averaging with respect to 6.

The steady-state solution of averaged system (44) is obtained by letting H, = H, = ¢ = 0.
There are four possible solutions (ay, a, @) = (0,0, n), (a*, at*, 1), (a3, 0, 7), (0,a)°, ©) when f;, =
f23>0,8 = P13 = P2 >0,w10 = w9, = o. Solution (0,0,7) is always unstable. Solutions
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(@¥,0,7) and (0,a%, ) are stable if f>pf, while solution (a}*,at*,m) is stable if f<p, The
approximate steady-state amplitude response of system (37) in resonant case obtained by
using the proposed averaging method is shown in Fig. 3(b) with solid lines. The critical values
of B,; and f3,, for this special case are ;5. = . = f. =~ 0.0526. It can be seen form Fig. 3(b)
that the analytical results agree well with those from numerical solution of original system (37)
denoted by e.

5. Concluding remarks

A deterministic averaging method for quasi-integrable Hamiltonian systems has been developed
in the present paper. The method can be applied to predict the approximate response of mdof
autonomous or non-autonomous strongly nonlinear systems. The form and dimension of the
averaged equation depend on the number of dof and the number of resonant relations of the
systems. The averaged equations of the systems have been constructed for both non-resonant and
resonant cases. The proposed procedure has been applied to predict the approximate steady-state
amplitude response of a Duffing oscillator with hardening spring under additive harmonic
excitation. The analytical results agree well with those from the numerical solution of the original
equation and good results can be obtained even for much larger nonlinearity intensity. The
proposed averaging method has also been successfully applied to predict the approximate steady-
state responses of nonlinearly coupled Duffing—van der Pol oscillators with or without resonance.
It has been shown using these examples that the proposed averaging method works well for the
systems with very strong nonlinearity.
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