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Abstract

This communication introduces a novel scheme for the treatment of free edge supports in the analysis of
beams by using the discrete singular convolution (DSC) algorithm. Accommodating free edges has been a
challenging issue in the DSC analysis of beams, plates, and shells. An iteratively matched boundary (IMB)
method is proposed to overcome the difficulty. Numerical experiments are carried out to demonstrate that
the proposed IMB method works very well in dealing with arbitrary combinations of beam edge supports.
r 2004 Elsevier Ltd. All rights reserved.
Recently, the discrete singular convolution (DSC) algorithm has emerged as a wavelet
collocation scheme for the computer realization of singular convolutions [1,2]. The underlying
mathematical structure of the DSC algorithm is the theory of distributions [3] and wavelet
analysis. The DSC algorithm has the global methods’ accuracy and the local methods’ flexibility
for handling complex geometry and boundary conditions in the analysis of fluid dynamics [4] and
electrodynamics problems [5]. It is a simple and robust approach for structural analysis, and has
found its success in structural analysis, including the vibration and buckling of beams [6], plate
vibration under various edge and internal supports [7–14]. The DSC algorithm was extensively
see front matter r 2004 Elsevier Ltd. All rights reserved.
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validated by analytical and exact solutions and carefully compared with other existing methods,
including the series expansion [15], integral equation approach [16,17], finite strip and finite
element methods [18–20], Galerkin methods [21], differential quadrature methods [22–24], and
Rayleigh–Ritz variational methods [25–27]. The most distinguish feature of the DSC algorithm is
its high level of accuracy and reliability. At present, it is the only available method that is able to
accurately predict thousands of vibration modes of plates and beams without encountering
numerical instability [11,12]. The DSC treatment of structures relies on the use of fictitious points
(FPs) outside the computational domain. As such, it handles well the simply supported, clamped
and transversely supported edges and their arbitrary combinations. However, the DSC method
loses its high order of accuracy at the boundary when dealing with the free edge support.
Consequently, difficulty of accommodating free edges has been a pressing issue in the DSC
analysis of structures.

More recently, another fictitious grid scheme, called local adaptive differential quadrature
methods (LaDQMs), was proposed for treating multiple boundary conditions raised in high-order
differential equations [28]. The LaDQM admits the same number of FPs as the boundary
conditions at an edge. It is capable of dealing with various boundary conditions, including free
edges. However, the LaDQM loses the main feature of the original DSC, and can only be
regarded as a differential quadrature method. In this communication, we propose a novel
boundary approach, the iteratively matched boundary (IMB) method, to overcome the
aforementioned difficulty in the DSC algorithm. The IMB method repeatedly utilizes the given
boundary conditions to generate a sufficiently large number of FPs so that a translation invariant
DSC kernel can be correctly implemented near the free edges. The present IMB method is
reformulated from a recently developed interface scheme, the iteratively matched interface (IMI)
[29], originally proposed for simulating electromagnetic wave scattering and propagation in
inhomogeneous media. For simplicity, we utilize the Euler–Bernoulli beam as an example to
illustrate the IMB method, albeit the proposed IMB can be easily extended to the DSC analysis of
plates and shells with free edge supports.

For an Euler–Bernoulli beam of length L; the governing equation for free vibration is

d4W̄

dX 4
¼

rAo2

EI
W̄ ; (1)

where W̄ is the transverse displacement of the beam, X is the Cartesian coordinate in the
middle axis of the beam, r is the mass density of the beam, A is the cross-section area of the
beam, o is the angular frequency of the beam, E is Young’s modulus and I is the second
moment area about the neutral axis. For generality, the dimensionless governing equation is
used,

d4W

dx4
¼ O2W ; (2)

where W is the dimensionless displacement (W ¼ W̄=L), O is the dimensionless frequency
parameter (O ¼ oðrA=EIÞ1=2Þ; and x is the dimensionless coordinate along the X -direction
(x ¼ X=LÞ: We choose the domain ½0; p�:

In this communication, three types of boundary conditions are considered in terms of the
dimensionless parameters and coordinates.
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�
 Simply-supported edge (S):

W ¼ 0;
d2W

dx2
¼ 0: (3)
�
 Clamped edge (C):

W ¼ 0;
dW

dx
¼ 0: (4)
�
 Free edge (F):

d2W

dx2
¼ 0;

d3W

dx3
¼ 0: (5)

Only three combinations of these three edge supports, i.e., SF, CF, and FF, are considered in
numerical experiments, as all other combinations pose no difficulty for the original DSC analysis.

In the DSC algorithm, a function and its nth order derivative are usually approximated via a
discretized convolution

W ðnÞðxÞ �
XM

k¼�M

dðnÞa;sðx � xkÞW ðxkÞ; n ¼ 0; 1; 2; . . . ; (6)

where 2M þ 1 is the computational bandwidth and da;sðx � xkÞ is a collective symbol for the
(regularized) DSC kernels. The higher order derivative terms dðnÞa;sðx � xkÞ in Eq. (6) are given by

dðnÞa;sðx � xkÞ ¼
d

dx

� �n

da;sðx � xkÞ: (7)

Here, the differentiation can be carried out analytically. Numerical solution of differential
equations can be easily implemented by a collocation scheme using Eq. (6).

Although many other DSC kernels can be similarly employed, the regularized Shannon’s kernel
(RSK) [1] is employed in the present study,

dh;sðx � xkÞ ¼
sinðp=hÞðx � xkÞ

ðp=hÞðx � xkÞ
e�ðx�xkÞ

2=2s2

; (8)

where h ¼ p=ðN � 1Þ is the grid spacing and N is the number of grid points. Here the parameter s
determines the width of the Gaussian envelop and often varies in association with the grid
spacing, i.e., s ¼ rh; where r is a parameter chosen in computation. It has been proved that the
truncation error of the DSC algorithm using the RSK decays exponentially with respect to the
increase in sampling points [30].

As the DSC kernel is symmetric, the DSC computation requires a total of M FPs outside each
edge. More precisely, it requires function values on these FPs so that the derivative approximation
(6) near the boundary can be carried out. For the simply supported edge, Eq. (3) and the clamped
edge, Eq. (4), antisymmetric extension and symmetric extension are conducted, respectively, to
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obtain the function values on FPs from those inside the boundary. It has been shown [13,14] that
Eqs. (3) and (4) are satisfied by these treatments.

For the free edge, function values on M FPs are to be determined from two boundary
conditions in Eq. (5). This appears impossible as Mb2: Hereby, we introduce an iterative
procedure to overcome this difficulty.

The IMB modeling introduces a fictitious domain outside the boundary (see Fig. 1), and
matches boundary conditions across the boundary. At the first step, since only two boundary
conditions are available, one can only determine two FPs. In order to achieve higher order
accuracy for the boundary condition, one-sided finite difference (FD) approximations are
considered, which involve L grid points on the inner side of the boundary; see Fig. 1. Thus,
boundary conditions (5) are approximated by using an L þ 3 points FD scheme,

w
ðkÞ
1 f 2 þ w

ðkÞ
2 f 1 þ

XLþ3

i¼3

w
ðkÞ
i gi�2 ¼ 0; ð9Þ

where f 1 and f 2 are unknown FP function values and gi for i ¼ 1; . . . ;L þ 1 are the known
function values on the right-hand side of the boundary. Here w

ðkÞ
i for i ¼ 1; . . . ;L þ 3; and k ¼ 2; 3

are one-sided FD weights [29], with its differentiation at point 3. The superscript ðkÞ represents the
second- or third-order derivative approximation, and i is the grid index. The two FP values can be
solved from Eq. (9). For free boundary conditions, LX2 and MX2 are required. While the
length of L determines the level of accuracy, it can be either larger or smaller than M. For
simplicity, L and M are considered as even integers.

To gain a sufficient number of function values at FPs, we use an iterative procedure as
introduced in the IMI method [29]. By treating the previous calculated FPs as knowns, we seek
two more FPs as shown in Fig. 2. Numerically, this is accomplished by discretizing the same two
boundary conditions again, but with two new FPs,

X4

i¼1

w
ðkÞ
i f 5�i þ

XLþ5

i¼5

w
ðkÞ
i gi�4 ¼ 0; ð10Þ

where f 1 and f 2 have already been determined from Eq. (9), while f 3 and f 4 can be solved. The
one-sided FD approximations used can be similarly formulated, as in Eq. (9). Through such an
iterative procedure, the requested M FPs can be efficiently determined. Here, we note the
flexibility of choosing the total number of terms used by varying L in the FD approximation at
each step of the iteration. In order to apply the IMB method to an eigenvalue problem, a
fundamental representation is essential for an implicit formulation [29],

f i ¼
XLþ1

j¼1

ri;jgj for i ¼ 1; 2; . . . ;M; (11)
f3 f2 f g3g2g Lg4 1 g1 L+1fM fM–1 f
x=0

Fig. 1. Illustration of FPs near the left boundary.
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fMf

x=0

Fig. 2. Illustration of the iterative procedure.

Table 1

Comparison of exact and DSC solutions of the frequency parameters
ffiffiffiffi
o

p
for the SF, CF, and FF beams

Mode SF CF FF

Exact DSC Exact DSC Exact DSC

N ¼ 21 N ¼ 31 N ¼ 21 N ¼ 31 N ¼ 21 N ¼ 31

1 1.2499 1.2499 1.2499 0.5969 0.5969 0.5969 1.5056 1.5056 1.5056

2 2.2500 2.2500 2.2500 1.4942 1.4942 1.4942 2.4998 2.4998 2.4998

3 3.2500 3.2500 3.2500 2.5002 2.5004 2.5003 3.5000 3.5000 3.5000

4 4.2500 4.2500 4.2500 3.5000 3.5005 3.5001 4.5000 4.5001 4.5000

5 5.2500 5.2500 5.2500 4.5000 4.5011 4.5003 5.5000 5.5000 5.5000

6 6.2500 6.2497 6.2500 5.5000 5.5019 5.5005 6.5000 6.4988 6.5000

7 7.2500 7.2478 7.2500 6.5000 6.5025 6.5008 7.5000 7.4937 7.4999

8 8.2500 8.2426 8.2500 7.5000 7.5018 7.5013 8.5000 8.4810 8.5000

9 9.2500 9.2334 9.2501 8.5000 8.4979 8.5019 9.5000 9.4607 9.5005

10 10.2500 10.2255 10.2508 9.5000 9.4917 9.5029 10.5000 10.4447 10.5023
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where ri;j are representation coefficients. Consequently, instead of finding f i; one will implicitly
determine the FP coefficients through the boundary modeling discussed above. By means of all
obtained FP coefficients, the differentiation near the boundary can be carried out in an implicit
manner. Note that in the IMB modeling, boundary conditions are enforced systematically so that
it can achieve arbitrarily high orders in principle. A standard eigen value solver is employed to
attain eigenvalues and eigenfunctions from the matrix formed by the DSC for discretization and
by the present IMB for boundary treatment.

Numerical experiments are conducted with two grid sizes, N ¼ 21 and 31, for the SF, CF, and
FF beams. We set M ¼ 20; L ¼ 8 and r ¼ 2:65 for N ¼ 21; while M ¼ 24; L ¼ 10 and r ¼ 2:94
for N ¼ 31: Results are compared with the exact ones generated by solving the differential
equation (2) directly. It is seen from Table 1 that while only a small number of grid points
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(N ¼ 21) is used, the DSC-IMB solutions are very accurate and reliable up to the 10th mode.
Moreover, when the grid size is slightly larger (N ¼ 31), the numerical accuracies are further
improved significantly. This indicates that the convergence rate of the DSC-IMB analysis is
extremely high.

In summary, this communication addresses a long-standing difficulty in the DSC analysis
of structures, i.e., the treatment of free boundary conditions. A novel high-order boundary
scheme, the iteratively matched boundary (IMB) method, is proposed for the DSC analysis
of beams with free edge supports. In the present method, the boundary conditions are
repeatedly utilized to systematically determine a large number of function values at fictitious
points (FPs). Consequently, translation invariant DSC kernels can be applied near the free
edge. The typical high-order accuracy of the DSC approach is retained. We note that the IMB
method proposed in this work can be easily employed for plate and shell analyses. Moreover, the
present procedure can be generalized to deal with other complex boundary conditions, such as
the Robin boundary condition and multiple boundary conditions occurring in high order
differential equations.

This work was supported in part by Michigan State University and by the University of
Western Sydney.
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