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1. Introduction

Hysteresis, a phenomenon well-known in many fields of science, is caused by various processes.
The models describing systems with hysteresis are discontinuous and contain high nonlinearities
with memory-dependent properties. Investigation of these systems within the framework of
approximate analytical approaches, such as slowly varying parameters or harmonic balance
methods, admits the conclusion that independently of the values of control parameters a
hysteretic system under external periodic excitation exhibits a stable symmetric asymptotic
response. However, recent publications and research results, based on both numerical and
combined numerical–analytical techniques, show frequency–response curves and bifurcation
diagrams that point to the presence of solutions and bifurcations mostly unexpected for hysteretic
oscillators. At the same time, studies into control parameter spaces are evidently insufficient.
In this connection, prediction of the behaviour of such systems depending on various parameters
becomes highly topical.

In hysteresis simulation a system is frequently viewed as a black box and the system’s output
(or response) is modelled with the use of analytical expressions or differential equations supposing
that the input of the system is known. Though various transient processes of the input may
be reflected in the formation of minor loops, as a rule it is the regular signals of inputs that are
considered and the regular response of the system is usually expected. However, as the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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investigation shows, the hysteretic dissipation can change the conditions for the chaotic response
occurrence in a substantial way.

In the present work the classical Masing and Bouc–Wen hysteretic oscillators are considered.
The motion of each oscillator is described by a coupled differential system and the motion
components exert influence on each other in time. The restraining and generating effects of the
hysteretic dissipation on the chaotic behaviour occurrence are demonstrated. To predict
conditions for the stable/unstable behaviour of the hysteretic oscillators under harmonic
excitation an effective algorithm aiming at the numerical analysis of these systems is applied. This
technique is based on the analysis of the wandering trajectories and has already been successfully
applied to the cases of smooth and non-smooth systems (cf. Refs. [1–4]). From the computational
point of view, the applied approach is simpler and faster than the standard procedures (the theory,
implementation and sample numerical algorithms are presented, for example, in Refs. [5–9]). The
problems and difficulties of principle which arise using standard procedures are also reported in
these references.

According to Wolf’s algorithm, the calculation of the Lyapunov exponent l as the measure of
the trajectory divergence begins with the choosing of a basic trajectory x�ðt;xð0ÞÞ: At each time step
tk the dynamical system _x ¼ f ðt;xÞ under investigation, where x 2 Rn is the state vector, f ðt;xÞ is
defined in R � Rn and is describing the time derivative of the state vector, is integrated again with
any neighbouring points x�ðtkÞ þ Z acting as the initial conditions. Thus, to find l the governing
equations and the corresponding variational equations _Z ¼ A � Z; in which A is matrix of partial
derivatives rf ðx�ðtkÞÞ; are solved N times (where N is the number of the time steps). Averaging
over a long time results in a reliable value of l variations of distances between the trajectories. The
analogous calculations it is necessary to execute for all nodal points of a sampled space under
investigation. This procedure is very computationally intensive especially for discontinuous
systems. The method can often suffice for low-dimensional systems, but in practice, it fails with a
chaotic system of high-dimensions. To realize this paper’s approach it is enough to solve the
equations governing the dynamical system only two times for each selected trajectory. The
governing equations are solved 2 times instead of 2N times and it is not required to average the
variations of distances between the trajectories over a long time.
2. Results and discussions

Let us consider classical hysteretic models, like the Masing oscillator [10–12] and the Bouc–Wen
oscillator [12–14]. In both cases, external periodic excitation with amplitude F and frequency O
acts on mass m which oscillates along an inertial base. These oscillators possess hysteretic
properties and it is assumed that there is a linear viscous damper with coefficient 2m:

The following set of differential equations governs the motion of the Masing oscillator:

_x ¼ y;

_y ¼ 
2my 
 ð1
 nÞgðxÞ 
 nz þ F cos Ot;

_z ¼ g0 z 
 zi

2

� �
y: (1)
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In the above n 2 ½0; 1
; gðxÞ ¼ ð1
 dÞx=ð1þ jxjnÞ1=n
þ dx; R ¼ ð1
 nÞgðxÞ þ nz is the total

restoring force with nonlinear elastic part ð1
 nÞgðxÞ and hysteretic part nz: It is clear that the case
n ¼ 1 corresponds to the maximum hysteretic dissipation and n ¼ 0 corresponds to the elastic
behaviour of the oscillator. Parameter d characterizes the ratio between the post- and pre-yielding
stiffness. Parameter n governs smoothness of the transitions from the elastic to the plastic range.
Couples �ðxi; ziÞ represent the velocity reversal points at _x ¼ 0: According to the Masing rule
extended onto the case of the steady-state motion of the hysteretic oscillator, loading/unloading
branches of a hysteresis loop are geometrically similar. Thus, if f ðx; zÞ ¼ 0 is the equation of a
virgin loading curve, then the equations f ððx � xiÞ=2; ðz � ziÞ=2Þ ¼ 0 describe loading/unloading
branches of the hysteresis loop. In the case of the non-steady state motion of the Masing oscillator
it is assumed that the equation of any hysteretic response curve can be obtained by applying the
original Masing rule to the virgin loading curve using the latest point of the velocity reversal.

The motion of the Bouc–Wen oscillator is governed by the following set of differential
equations:

_x ¼ y;

_y ¼ 
2my 
 dx 
 ð1
 dÞz þ F cos Ot;

_z ¼ ½kz 
 ðgþ b sgnð _xÞsgnðzÞÞjzjn
y; (2)

where R ¼ dx þ ð1
 dÞz is the total restoring force; parameters ðkz;b; nÞ 2 Rþ and g 2 R govern
the shape of the hysteresis loop. Parameters d and n have the same sense as in the case of the
Masing model.

The chaotic behaviour of nonlinear deterministic systems assumes the wandering of the motion
trajectories around various equilibrium states. They are characterized by unpredictability and
sensitive dependence on the initial conditions. By analyzing the motion trajectories of these
systems, it is possible to find the chaotic vibration regions in the control parameter space.

For the sake of chaotic and regular dynamics tracing, it is supposed that with the increase of
time all trajectories remain in the closed bounded domain of the phase space. To analyze
trajectories of sets (1) and (2), characteristic vibration amplitudes Ai of the motion components
are introduced Ai ¼

1
2
jmaxt1ptpT xiðtÞ 
mint1ptpT xiðtÞj: Here and below index number, i runs

over three values corresponding to three generalized coordinates x; y; z: ½t1;T 
 � ½t0;T 
 and
½t0;T 
 is the time interval, in which the trajectory is considered, and ½t0; t1
 is the time interval in
which all transient processes are damped. Two neighbouring initial points xð0Þ ¼ xðt0Þ and ~xð0Þ ¼
~xðt0Þ (x ¼ ðx; y; zÞT or x ¼ ðx1; x2;x3Þ

T) are chosen in the three-dimensional parallelepiped
Pdx;dy;dz

ðxð0ÞÞ such that jx
ð0Þ
i 
 ~xð0Þ

i jodi; where di40 is small in comparison with Ai: In the case of
regular motion it is expected that the �i40 used in inequalityjxiðtÞ 
 ~xiðtÞjo�i is also small in
comparison with Ai: The wandering orbits attempt to fill up some bounded domain of the phase
space. At instant t0 the neighbouring trajectories diverge exponentially afterwards. Hence, for
some instant t1 the absolute values of differences jxiðtÞ 
 ~xiðtÞj can take any values in closed
interval ½0; 2Ai
: An auxiliary parameter a is introduced, 0oao1: aAi is referred to as divergence
measures of observable trajectories in the directions of generalized coordinates, and with the aid
of parameter a one has been chosen, which is inadmissible for the case of ‘regularity’ of the
motion. The domains, where a chaotic behaviour of the considered systems is possible, can be
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found using the following condition:

9t� 2 ½t1;T 
 : jxðt�Þ 
 ~xðt�Þj4aAx: (3)

If inequality (3) is satisfied in some nodal point of the sampled control parameter space, then
such motion is relative to chaotic one (including transient and alternating chaos). The manifold of
all such nodal points of the investigated control parameter space set up chaotic behaviour
domains for the considered systems.

The motion stability depends on all parameters of the considered hysteretic models including
initial conditions. Irregular responses of the Masing and the Bouc–Wen hysteretic oscillators in
the planes defined by the damping coefficient—amplitude and the frequency—amplitude of the
external periodic excitation have been traced with a sufficient accuracy after a coordinate
sampling. Figs. 1 and 2 display the relevant domains.

In the case of the elastic behaviour without hysteretic dissipation ðn ¼ 0Þ the Masing oscillator
(1) is nonlinear and its chaotic behaviour has been detected. It is worth noticing, that for the
viscous damping equal to zero ðm ¼ 0Þ (Fig. 1(a)), the domains of the chaotic behaviour in
the ðO;FÞ plane decrease with the increase of the hysteretic dissipation value. In this case the
hysteretic dissipation has a restraining effect. When ma0 (Fig. 1(b)) the hysteretic dissipation
changes the form and location of the chaotic domains in the ðm;FÞ plane that made conditional
upon mutual influence of the nonlinear terms in set (1).

The situation is different for the Bouc–Wen oscillator which is linear (when d ¼ 0). Therefore,
chaotic responses of the Bouc–Wen oscillator are not observed up to some value of hysteretic
dissipation dcr; when the influence of the nonlinear terms becomes critical. In other words,
adding hysteretic dissipation leads to chaotic responses occurring in this system (Fig. 2(a)
and (b)). It demonstrates generating effect of the hysteretic dissipation on chaos occurring in
hysteretic system.
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Fig. 1. Domains where chaotic behaviour of the Masing histeretic oscillator is possible ðd ¼ 0:05; n ¼ 10:0; xð0Þ ¼ 0:1;
_xð0Þ ¼ 0:1; zð0Þ ¼ 0): (a) in the ðO;F Þ plane ðm ¼ 0Þ; (b) in the ðm;FÞ plane ðO ¼ 0:15Þ: Grey colour corresponds to the

pure elastic behaviour of the oscillator without any hysteretic dissipation ðn ¼ 0Þ: Black colour corresponds to the

motion with the hysteretic dissipation value n ¼ 0:5:
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Fig. 2. Black regions and dots depict the domains where chaotic behaviour of the Bouc–Wen histeretic oscillator is

possible (kz ¼ 0:5; g ¼ 0:3; b ¼ 0:005; n ¼ 1:0; xð0Þ ¼ 0:1; _xð0Þ ¼ 0:1; zð0Þ ¼ 0): (a) in the ðm;F Þ plane ðO ¼ 0:27Þ; (b) in
the ðO;F Þ plane ðm ¼ 0Þ: The hysteretic dissipation is characterized by the value d ¼ 0:0476: In the case of motion

without hysteretic dissipation only regular behaviour of the oscillator is possible.
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Fig. 3. Chaotic response of the Masing hysteretic oscillator (O ¼ 0:15; F ¼ 1:21; m ¼ 0:026; n ¼ 0:5; d ¼ 0:05; n ¼ 10:0;
xð0Þ ¼ 0:1; _xð0Þ ¼ 0:1; zð0Þ ¼ 0): (a) phase portrait; (b) hysteresis loop.
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Figs. 3 and 4 characterize the obtained domains and demonstrate oscillator motions of various
character such as chaos and hysteresis loss (Fig. 3), and periodic response (Fig. 4).
3. Conclusions

Highly nonlinear hysteretic Masing and Bouc–Wen models with discontinuous right-hand sides
are investigated using an effective approach based on analysis of the wandering trajectories [1–4].
This algorithm for quantifying regular and chaotic dynamics is simpler and faster from a
computational point of view than standard procedures and is sufficiently accurate to trace
regular/irregular responses of hysteretic systems. Domains where chaotic/regular behaviour of
the oscillators with hysteresis is possible are found in planes determined by the damping
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Fig. 4. Periodic response of the Bouc–Wen hysteretic oscillator (O ¼ 0:35; F ¼ 1:2; m ¼ 0:0; d ¼ 0:0476; kz ¼ 0:5;
g ¼ 0:3; b ¼ 0:005; n ¼ 1:0; xð0Þ ¼ 0:1; _xð0Þ ¼ 0:1; zð0Þ ¼ 0): (a) phase portrait; (b) hysteresis loop.
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coefficient—amplitude and frequency—amplitude regions under the external periodic excitation.
A substantial influence of hysteretic dissipation on the possibility of chaotic behaviour occurrence
in the systems with hysteresis is shown, and moreover, the restraining and generating effects of
hysteretic dissipation on the occurrence of the chaotic behaviour is demonstrated.

Further investigations on the hysteretic dissipation generating effects on chaos occurrence are
planned for the mechanical systems with memory modelled by means of additional state variables.
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