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Abstract

The free vibrational response of clamped homogeneous or symmetrically laminated orthotropic annular
plates with edge damage on the outer circumference has been studied for the first time, using the finite
difference method. The edge damage is modeled via the application of a non-uniform boundary condition.
The sensitivity of vibrational frequencies to the extent of the edge damage is investigated and shown to be
strongly influenced by the material properties and the relative thicknesses of the materials comprising the
laminated plates. It is shown that the orthotropy ratio for the plate (defined here by D,./Dyy) is a
convenient compact parameter for indicating the sensitivity to edge damage. Mode shapes are also
computed and found to be profoundly affected by the orthotropy ratio. The behavior of higher modes of
vibration is also discussed and the phenomenon of cross over, whereby two modes exist having the same
frequency, is observed.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Nowacki and Olesiak [1] are the first reported researchers who attempted to investigate the
vibrations of a circular plate subject to a combination of support conditions. Subsequently,
Bartlett [2] looked into the vibrational and buckling behavior of circular plates having
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non-uniform boundary conditions. He considered an isotropic plate clamped on part of its
boundary and simply supported or free on the remainder and was able to obtain approximate
analytic solutions to the dual series integral equation he derived. Noble [3] revisited Bartlett’s work
and suggested another simpler technique for solving the dual series integral equation. Interestingly,
neither Bartlett nor Noble reproduced the predictions of Nowacki and Oleisak [1]. Bartlett [2] states
that the accuracy of the approximation used by the latter authors is “invariably doubtful”.

Narita and Leissa [4] tackled the problem of free transverse vibrations of a circular plate with
non-uniform boundary conditions using a special analytic technique in which translational and
rotational springs with space varying stiffness expanded into their Fourier components were taken
around the circumference of the plate. Clamped boundary conditions were simulated by assigning
large numerical values to the stiffness of both springs.

Eastep and Hemmig [5] used the finite element method to obtain numerical predictions of the
natural frequencies and mode shapes of a vibrating circular plate with a partially free, partially
clamped edge. In addition, they employed a laser holography method to experimentally determine
the natural frequencies and mode shapes. Excellent agreement was found between the predicted
and measured data.

All the aforementioned investigations involved isotropic homogeneous circular plates. But
nowadays the utilization of composite multi-tiered orthotropic materials is rather widespread due
to their low weight to strength ratio. In addition, it is noted that the existence of non-uniform
boundary conditions can be supposed to model a situation in which there is edge-damage to the
plate, (see also, [6-9]). In the current work the vibrational behavior of axisymetrically layered
composite orthotropic annular plates is examined. Use is made of an accurate finite difference
approach to obtain the frequencies of vibration and the mode shapes. The influence of the
material properties of the plates is investigated and the sensitivity of the plate’s vibrational
response and mode shapes to the situation in which edge damage is present on the outer
circumference is examined.

2. Problem definition and governing equation

A circular annular plate of external radius b, internal radius « and thickness 4, composed of
different polar orthotropic materials with elastic properties that are dependent on the thickness (z)
is considered. If deformation of the plate is permitted in the radial, circumferential and transverse
directions then the governing coupled displacement equations are given by Elishakoff and Stavsky
[10] in the following general form

3
> (Ly+a)U;=0, i=123, (1
j=1

where
U=U U=V, U;=W (2

are the radial, circumferential and transverse displacements, respectively, and L; and o; are
differential operators. It can be further shown that if a reference plane is chosen from the bottom
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of the plate at a distance

h h

h0=/pzdz//pdz (3)
0

0

and if the composite annular plate lamination is symmetric, then the equation of motion for the
flexural displacements becomes uncoupled from the other two equations due to the disappearance
of the coupling terms. After setting W = w(r, 0)e'”’, where o is the vibrational frequency, the
equation of motion for the flexural vibrations becomes

Lizw = Ryw’w, 4)

where the operator Ls; is given by
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The elastic constants and inertia terms are defined by
h/2

(Dyr, Dyg, Drg, D) = / Z(Eyr, Epp, Erp, Esy) dz, (6)
—h/2

/2

Ry = / pd-. (7

—h/2
3. Boundary conditions

Non-uniform boundary conditions are specified in order to model edge-damage (see [11]). Edge
damage on the outer circumference only is considered. Here the outer edge is taken to be partially
clamped and partially simply supported, whereas the inner edge is completely clamped. These
conditions read:

BCl: w(a)=w'(a) =0,
BC2: wb)=w(h)=0, 0,<0<2=n

(where w' denotes the derivative of w with respect to the radial coordinate).
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In these conditions it can be shown that

dz_W _ Dy dw (8)
" dr? rodr’

M,=-D

where the appropriate value of the outer radius replaces r. Note that the angle 6; will be referred
to as the angle of imperfection.

4. Method of solution

A numerical finite difference approach is adopted in order to solve the current problem.
The annular plate is covered with a mesh of nodes in the radial and circumferential directions
(see Fig. 1). The increments in the r and 0 directions are denoted by Ar and A0, respectively. At
each point of the mesh the governing differential equation is replaced by a finite difference
equation based on the use of central differences to fourth order. Such an approach involves
imaginary points that are beyond the outer radius. In order to link the value of w within the
domain to imaginary external values use is made of the boundary conditions that involve

Fig. 1. Schematic of the annular plate and the finite difference mesh.
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derivatives. However, these derivatives are now approximated using shifted differences. For
example,

dwd) , 1 <v vV V4> w(b + Ar), )

dr  Ar
where V is the backwards difference operator. As can be seen differences up to the fourth order
are employed, for consistency with the level of accuracy at points within the solution domain (see,
e.g. [12]).
If there are M points in the radial direction and N points in the circumferential direction at
which the displacement w is unknown the following set of NM linear algebraic equations that
replaces the original differential equation and boundary conditions is obtained

(D — v’ RyDHW = 0, (10)

where D is the matrix of the finite difference coefficients, I is the unit matrix and W is the vector of
flexural displacements at the mesh points. Equation (10) has a non-trivial solution if

det(D — w?RyI) = 0. (11)

The problem is thus reduced to computing the eigenvalues of the matrix D. This was achieved
using a routine of the Matlab software. The eigenvectors (i.e. mode shapes) are produced as
output with the eigenvalues.

5. Results and discussion

For all the calculations performed using the aforedescribed approach the number of points in
the radial and circumferential directions was M = 20 and N = 36, respectively. Results computed
using more points showed negligible variation. The inner radius was assigned the value a=0.08 m
whereas the outer radius was taken to be »=0.16 m. The thickness of the annuli was held fixed at a
value of 7=0.001 m. A number of different material lay-ups was considered. Material properties
relevant to the calculations are listed in Table 1, based on [13]. The computer program was
thoroughly checked by comparing with data from the literature for uniform boundary conditions
for homogeneous isotropic and orthotropic annuli [14,15], with good agreement .

Table 1

Material properties

Material (abbreviation) Density p kg/ E, N/m*>x 10" E, N/m?>x 10" Eg N/m?x 10'°
m’ x 10°

Steel (ST) 7.492 20.6 6.8 20.6

S-glass epoxy (SGE) 2.002 5.21 0.3 1.18

Ultra high modulus graphite epoxy 1.613 31.00 0.16 0.62

(UHMG)

Ultra high modulus graphite epoxy 1.613 0.62 0.16 31.00

inverted (UHMGTI)
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Fig. 2. Sensitivity of various annular plates to edge damage angle.

5.1. Homogeneous annular plates

In Fig. 2 the sensitivity of the lowest frequency of vibration to the angle of edge damage 0, is
illustrated for steel, s-glass epoxy, ultra high modulus graphite epoxy and inverted ultra high
modulus graphite epoxy annular plates. These materials have orthotropy ratios (D,,/Dgg) of 1,
4.42, 50 and 0.02, respectively. Recall that the edge-damage is modeled by the simple support
condition. Thus, when 0; = 0 the entire annulus is clamped along the outer circumference and
there is no edge damage. As 0, increases the edge damage increases until eventually when 0; = 2n
the entire outer circumference is simply supported. In all cases the ratio of these two limiting
frequencies is about 1.5. For the steel plate the frequency drops drastically even with slight
damage at the edge. For example, the frequency drops by almost 74% when less than 20% of the
circumference (~18.8%) is damaged. For the s-glass epoxy annulus the sensitivity to the edge
damage is greater so that the fully clamped annulus’s frequency is reduced by 74% when only
approximately 7% of the edge is damaged.

The sensitivity to edge damage of the homogeneous UHMG annulus is even more
pronounced—edge damage of a mere 3% is sufficient to produce a reduction in the frequency
by 74%. In contrast, the effect of edge damage on a UHMGI annulus is rather more gradual. A
reduction in the frequency by 74% is now achieved when 27% of the circumference is simply
supported.

Summarizing the findings so far described would seem to lead to the conclusion that, for the
problem at hand, the greater the orthotropy ratio of the material comprising the annulus the
greater its sensitivity to edge damage.

5.2. Triple layered annular plates

Attention is now turned to composite orthotropic annular plates having a symmetric lay-up. In
view of the previous findings annuli comprised of UHMG and UHMGI are considered. The
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Fig. 3. Sensitivity of triple layered UHMGI/UHMG/UHMGI annular plates to edge damage angle, for different
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Fig. 4. Sensitivity of triple layered UHMG/UHMGI/UHMG annular plates to edge damage angle, for different
symmetric lay-ups.

central layer is taken as UHMG of thickness a/ whereas the outer layers are UHMGI, each of
thickness 0.5(1 — o)k, where 0<a<<1 will be referred to as the relative thickness parameter. The
influence of both the plates lay-up and the edge damage are illustrated in Fig. 3. It is clear that as
the influence of the outer layers becomes greater the sensitivity to edge damage is reduced. If the
roles of the outer and inner layers are reversed so that UHMGTI is the central core whereas
UHMG comprises the outer layers the vibrational response with edge damage is as presented in
Fig. 4. It is of interest to note that the dominant effect of the outer layers is clearly visible as can be
seen by the clustering of the curves for values of « between 0.8 and 0. In general, comparing Figs.
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Fig. 5. Effect of thickness parameter on the edge damage angle at which the frequency is reduced by 90%—triple
layered UHMG/UHMGI/UHMG (diamonds) and UHMGI/UHMG/UHMGI (squares) annular plates.

35
30
25
20

890%

15
10

4
#
| |}
*

*

*
i

Fig. 6. Dependence of edge damage angle at which a 90% drop in frequency occurs on the normalized orthotropy ratio
for UHMG/UHMGI/UHMG (diamonds) and UHMGI/UHMG/UHMGI (squares) annular plates.

3 and 4, it can be deduced that the sensitivity of the plates having UHMG in the outer layers is
greater than the sensitivity of the plates having UHMGI in the outer layers. Another way of
viewing this greater sensitivity is shown in Fig. 5 in which graphs of the value of 0; at which the
frequency of the clamped plate is reduced by 90%, 699, as a function of the thickness parameter
o, for the UHMGI/UHMG/UHMGI and UHMG/UHMGI/UHMG composite annuli are
drawn. For the former lay-up the curve drops rather gradually as the amount of UHMG in the
core is reduced and the amount of UHMGI increases accordingly. For the latter lay-up the
dominance of the properties of the UHMG layers is strikingly evident until at least about 80-90%
of the plate is comprised of UHMGI.

All the previously described results provide a clear indication of the major role played by the
annuli’s orthotropy in determining their sensitivity to the edge damage angle. In Fig. 6 a graph is
drawn of the dependence of the edge angle at which the frequency was reduced by 90% on the
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normalized plate orthotropy ratio which we define according to I' = (D,,/Dgg)/(Dyr/ Doo)iax-
where the subscript max refers to the maximum value of the orthotropy ratio in the range of
values covered (i.e. for 0<<a<1). The points on the graph are taken from the symmetrically
layered UHMG/UHMGI/UHMG (the diamond points) and UHMGI/UHMG/UHMGI (the
square points) material combinations. Remarkably the two curves are identical. This clearly
highlights the prime role of the orthotropy ratio of the annulus in determining vibrational
response to the non-uniform boundary conditions.

5.3. Mode shapes

Consideration is now given to the mode shapes associated with the frequencies of
the edge damaged annuli discussed above. Fig. 7 illustrates the mode shape for the
lowest frequency of vibration of a UHMG annulus subjected to an edge damage angle
of 10°. Both a three-dimensional representation and a contour map are presented for clarity.
The localized effect of the simply supported damaged section is readily observable. In Fig. 8 the
mode shape is drawn for a steel annulus having a 10° edge damage angle. It is clear that the
reduction in the orthotropy ratio from 50 to unity leads to a less pronounced localization of the
displacement. A greater area in the circumferential direction is apparently influenced by the edge
damage. Finally, in Fig. 9, the mode shape for the 10° edge damaged UHMGI annulus is drawn.
The increased extent to which the edge damage is felt in the mode shape is strikingly evident. The
last three figures suggest that the mode shape is more extensively circumferentially influenced
beyond the locale of the actual edge damage as the value of the orthotropy ratio decreases. This
stands in contrast to the situation with the regard to the vibrational frequency for which it was
shown that as the orthotropy ratio decreased the less sensitive the frequency response was to the
edge damage angle.

5.4. Higher frequencies and associated mode shapes

Until now the discussion has been restricted to the effect of non-uniform boundary conditions
on the lowest frequency of vibration. The influence of the edge damage angle on the higher
vibrational frequencies and mode shapes is now briefly examined.

In Fig. 10 the sensitivity of the first seven frequencies of a UHMGI annular plate are drawn. A
number of observations are in place. First, the higher frequencies are influenced by the edge
damage angle but they decrease less rapidly than the lowest frequency as the angle increases. For
the undamaged plate (0; = 0) the frequencies of the second and third frequencies are identical
(1994.2rad/sec) as are those of the fourth and fifth (2264.2rad/sec), the sixth and seventh
(3168.5rad/sec)and eighth and ninth pairs (4672.9rad/sec)) (the latter pair is not shown in the
figure). This pattern then repeats itself from the 10th frequency onwards. Similar behavior occurs
for the case of complete edge damage (6; = 2n). For other edge damage angles it can be seen that
there are numerous points of cross over of the aforementioned pairs of frequency curves. Eastep
and Hemmig [5] report similar cross over behavior in their numerical and experimental work on
isotropic plates with non-uniform boundary conditions. Such behavior must be carefully
scrutinized by the experimentalist since it indicates the permissibility of two modes having
identical frequencies.
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The behavior of the higher frequencies of a UHMG annular plate (not shown here) is
rather different. The extreme sensitivity to the edge damage angle essentially follows that shown in
Fig. 2, and no points of cross over exist.

In Fig. 11 the contours of the first six mode shapes are drawn for a UHMG plate with 6; = 80°.
Note that for all these mode shapes the displacements are primarily confined to the damaged
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Fig. 7. (a) Mode shape and (b) mode shape contours for a UHMG annular plate subjected to 10° edge damage.
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(b) X

Fig. 8. (a) Mode shape and (b) mode shape contours for a steel annular plate subjected to 10° edge damage.

section of the plate with a symmetric/antisymmetric circumferential wave shape for odd/even
mode numbers.

In contrast, the mode shapes computed in Fig. 12 are for a UHMGI annular plate having the
same edge damage angle. The picture that emerges is conspicuously different from that of Fig. 12
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Fig. 9. (a) Mode shape and (b) mode shape contours for a UHMGI annular plate subjected to 10° edge damage.

and clearly illustrates the way in which a greater area of the plate is influenced by the non-
uniformity of the boundary conditions, in consonance with our previous discussed observation for
the first mode shape. In addition, it can be seen that both mode shapes four and five have four
circumferential waves. However, mode shape five is symmetric whereas mode shape four is
antisymmetric. These shapes interchange at an edge damage angle of 6, = 70° (not shown here)
due to the cross over of the fourth and fifth frequencies in this vicinity (see Fig. 10).
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6. Conclusions
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The free vibrational response of clamped homogeneous or symmetrically laminated orthotropic
annular plates with edge damage on the outer circumference has been studied for the first time,
using the finite difference method. The edge damage was modeled via the application of a non-
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Fig. 12. Mode shapes for first six frequencies of UHMGI annular plate with 80° edge damage angle.

uniform boundary condition. The sensitivity of vibrational frequencies to the extent of the edge
damage was investigated and shown to be strongly influenced by the material properties and the
relative thicknesses of the materials comprising the laminated plates. It was revealed that the
orthotropy ratio for the plate (defined here by D,./Dyy) is a convenient compact parameter for
indicating the sensitivity to edge damage. Mode shapes were also computed and found to be
profoundly effected by the orthotropy ratio. The behavior of higher modes of vibration was also
discussed and the phenomenon of cross over, whereby two modes exist having the same
frequency, is noted.
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