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1. Introduction

The dynamic vibration absorber (DVA) or tuned-mass damper (TMD) is a widely used passive
vibration control device. A simple DVA consists of a mass and a spring. When a mass–spring
system or a primary system is excited by a harmonic force, its vibration can be suppressed by
attaching a DVA as shown in Fig. 1(a). However, adding a DVA to a one-degree-of-freedom (dof)
system results in a new 2-dof system. If the exciting frequency coincides one of the two natural
frequencies of the new system, the system will be at resonance. To overcome this problem, a
damper is added to DVA. Fig. 1(b) shows a primary system attached by a damped DVA.
Equations of motion of the system are given as

m €x þ ca _x � ca _xa þ ðk þ kaÞx � kaxa ¼ F0 sinðotÞ; ma €xa � ca _x þ ca _xa � kax þ kaxa ¼ 0, (1)

where m and ma are the primary mass and the absorber mass, respectively, k and ka are the
primary stiffness and the absorber stiffness, respectively, ca is the damping value of the damper,
F0 is the force amplitude and o is the exciting frequency. The normalized amplitude of the steady-
state response of the primary mass is given as

G ¼
Xk

F0

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2zrÞ2 þ ðb2 � r2Þ2

½1� ð1þ mÞr2�2ð2zrÞ2 þ ½ð1� r2Þðb2 � r2Þ � mb2r2�2

s
, (2)
see front matter r 2004 Elsevier Ltd. All rights reserved.
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(a) (b)

Fig. 1. Dynamic vibration absorber model A: (a) DVA; (b) damped DVA.
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where following the notations used in Inman’s textbook [1], the variables in the above equation
are defined as

op ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; oa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ka=ma

p
; b ¼ oa=op; m ¼ ma=m; z ¼ ca=ð2maopÞ; r ¼ o=op.

Using the following values: m ¼ 1:0 kg; k ¼ 8900N=m; ma ¼ :15kg; b ¼ 1; Fig. 2 shows G vs. r
for three different values of the damping ratio z: In a classical textbook on mechanical vibrations [2],
Den Hartog pointed out a remarkable peculiarity in the figure that all three curves intersect at the
two points P and Q: He proved that this is no accident and there exist the two fixed points
independent of damping. Den Hartog further found that the optimum tuning parameter for b should
be b ¼ 1=ð1þ mÞ such that the ordinates G of P and Q are equal. He also indicated that the optimum
damping ratio z must be a value of z for which the curve passes horizontally through either P or Q:
Den Hartog claimed that this optimum value can be found by differentiating Eq. (2) with respect to
r; thus finding the slope, and equating the slope to zero for the point P or Q: Recognizing an undue
amount of labor of this method, he did not present an analytical result. Subsequently, Brock [3] took
a different approach which is quite clever, yet straightforward. No differentiation was needed. Based
on the results, he suggested that the optimum damping ratio can be given by

zopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

8ð1þ mÞ3

s
. (3)

It should be noted that frequently [5–7], the optimum damping ratio is also given as

zopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

8ð1þ mÞ

s
.

In this case, the damping ratio is defined as z ¼ ca=ð2maoaÞ:



ARTICLE IN PRESS

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
10-1

100

101

102

r

G

P

Q

Fig. 2. Normalized amplitude of the steady-state response of the primary mass of model A: z ¼ :01 (solid line); z ¼ :05
(dashed line); z ¼ :15 (dash–dot line).
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Den Hartog included this result in the late edition of his book [4]. However, he still
stated that the result can be obtained by the approach given in Ref. [2] (see the description
given in Ref. [4, p. 103]). We attempted Den Hartog’s approach and encountered a prohibitive
complexity. We also note that in a recent textbook by Kelly [5], a different way is suggested.
Kelly states that the optimum value z can be obtained by setting dG=dz ¼ 0 using
b ¼ 1=ð1þ mÞ (see the paragraph above Eq. (8.63) of Ref. [5]). We tried this way and failed to
get any result.
Another less common way to attach a damper to a DVA is shown in Fig. 3. In active suspension

systems [8–10], depending on how the inertia reference frame is interpreted, the damper in
Fig. 3(a) is referred to as skyhook damper while the damper in Fig. 3(b) is referred to as
groundhook damper. The force a skyhook damper would deliver has been shown to be the
optimal force to minimize the sprung mass (ma for the present system) motion. Although the
skyhook damper has been perceived as an ideal active suspension device, it is not practical in most
situations. Apparently, the objective of using a damper for a vibration absorber is different from
that of using a skyhook damper for active suspension systems. Nevertheless, connecting a damper
between the inertial reference frame and the absorber mass provides an alternative, which
sometimes becomes a sole choice, for example, when a damper is too massive.
In this study, we refer to the damped DVA in Fig. 1 as model A and to the damped DVA in

Fig. 3 as model B. To the best of our knowledge, no study has been reported on the optimum
parameters of model B. The contribution of this technical note is twofold: clarification of
the derivation process of Eq. (3) for model A and development of the optimum parameters
for model B.
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Fig. 3. Dynamic vibration absorber model B: (a) skyhook damper; (b) groundhook damper.
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2. Optimum parameters of model B

Equations of motion for model B are given as

m €x þ ðk þ kaÞx � kaxa ¼ F0 sinðotÞ; ma €xa þ ca _xa � kax þ kaxa ¼ 0. (4)

The normalized amplitude of the steady-state response of the primary mass is given as

G ¼
Xk

F0

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2zrÞ2 þ ðb2 � r2Þ2

ð1þ mb2 � r2Þ2ð2zrÞ2 þ ½ð1� r2Þðb2 � r2Þ � mb2r2�2

s
. (5)

Using the following values: m ¼ 1:0kg; k ¼ 8900N=m; ma ¼ :15 kg; b ¼ 1; the normalized
amplitudes are evaluated for three different damping ratios and the results are shown in Fig. 4.
Comparison of Figs. 2 and 4 reveals that both the models behave similarly. To find the

abscissas of points P and Q; Den Hartog expressed Eq. (2) in the form (note an error in Ref. [4,
Eq. (3.24)])

G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Az2 þ B

Cz2 þ D

s
(6)

which is independent of damping if A=C ¼ B=D: Following the same procedure, we solve the
equation

1

ð1þ mb2 � r2Þ2
¼

ðb2 � r2Þ2

½ð1� r2Þðb2 � r2Þ � mb2r2�2
. (7)
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Fig. 4. Normalized amplitude of the steady-state response of the primary mass of model B: z ¼ :01 (solid line); z ¼ :05
(dashed line); z ¼ :15 (dash–dot line).
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The solutions are

r1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ mÞb2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðm� 1Þb2 þ ðm2 þ 1Þb4

q
2

vuut
. (8)

The ordinates of points P and Q can be found by letting z ! 1 in Eq. (5):

G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1þ mb2 � r2Þ2

s
. (9)

The optimum value for b is obtained by setting Gðr1Þ ¼ Gðr2Þ:

1

1þ mb2 � r21
¼

�1

1þ mb2 � r22
(10)

which yields

b� ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1� m

p . (11)

Substituting r1 and b� into Eq. (9) gives the common ordinate

Gðr1Þ ¼ Gðr2Þ ¼
2ð1� mÞffiffiffiffiffiffi

2m
p . (12)

Now we are ready to apply Brock’s approach to find the optimum damping ratios. In order to
cause the curve of G vs. r to pass horizontally through point P; we first require that it pass through
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a point P0 of abscissa r2 ¼ r21 þ d and ordinate G ¼ 2ð1� mÞ=
ffiffiffiffiffiffi
2m

p
; and then let d approach zero as

a limit. Solving Eq. (5) for z2; we obtain (note an error in Ref. [3, Eq. (3)])

z2 ¼
ðb2 � r2Þ2 � G2½ð1� r2Þðb2 � r2Þ � mb2r2�2

4r2½G2ð1þ mb2 � r2Þ2 � 1�
. (13)

Following Brock’s idea, after substituting r2 ¼ r21 þ d and G ¼ 2ð1� mÞ=
ffiffiffiffiffiffi
2m

p
into the above

equation, we should have a result of the form

z2 ¼
A0 þ A1dþ A2d

2
þ A3d

3
þ � � �

B0 þ B1dþ B2d
2
þ B3d

3
þ � � �

. (14)

Since Eq. (13) assumes the indeterminate form 0=0 if d ¼ 0; we know that A0 ¼ B0 ¼ 0: As d is a
very small number, we can neglect the higher order terms (this is how we interpret Brock’s
approach as he did not explicitly say it) and the desired result is given by

z2 ¼
A1

B1
. (15)

Finding A1 and B1 proved to be quite tedious. As Brock did not show the procedure, we give a
brief description of how we did it. Because we only need to find all the terms associated with d; we
use the approximations

r4 � r41 þ 2r21d; r6 � r61 þ 3r41d; r8 � r81 þ 4r61d. (16)

This way, we obtain

A1 ¼ 2b2fG2½1þ ð1þ mÞb2� � 1g þ 2f1� 2G2b2 � G2½1þ ð1þ mÞb2�2gr21
þ 6G2½1þ ð1þ mÞb2�r41 � 4G2r61,

B1 ¼ 4G2ð1þ mb2Þ2 � 4� 16G2ð1þ mb2Þr21 þ 12G2r41.

Now substituting r21 of Eq. (8), b
� of Eq. (11), and Gðr1; b

�
Þ of Eq. (12) into the above equations

yields

z21 ¼
3m

ffiffiffiffiffiffi
2m

p

8ð
ffiffiffiffiffiffi
2m

p
� mÞð1� mÞ

. (17)

By a similar procedure with r22 of Eq. (8), we obtain

z22 ¼
3m

ffiffiffiffiffiffi
2m

p

8ð
ffiffiffiffiffiffi
2m

p
þ mÞð1� mÞ

. (18)

As suggested by Brock, a convenient average value

zopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ z22

2

s
¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

ð1� mÞð2� mÞ

s
(19)

can be used as the optimum damping ratio.
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With the optimum parameters for both the models, a comparison is conducted. Using the
following values: m ¼ 1:0 kg; k ¼ 8900N=m;ma ¼ :15 kg; we list some values for each model in
Table 1. In the table, Ḡ is the average normalized amplitude defined as

Ḡ ¼
1

1:5� :5

Z 1:5

:5
G dr. (20)

Using the optimum parameters, we plot the curves of G vs. r for both the models in Fig. 5.
Numerically we can find the peak values Gpi; i ¼ 1; 2 of the normalized amplitude and their
corresponding frequency ratios rpi; i ¼ 1; 2 and the value Gv of the dip between the two peaks and
its corresponding frequency ratio rv: The results are summarized in Table 2. We make the
following observations. First we note that two peaks in each of the curves are almost equal in
height. As expected, Gðr1Þ ¼ Gðr2Þ � Gp1 � Gp2: For model B to be optimum, a larger damping
Table 1

Comparison of the two models

Model b� zopt Gðr1Þ ¼ Gðr2Þ
a Gðr ¼ b�Þ Ḡ

A 0.8696 0.1923 3.786 3.476 2.522

B 1.085 0.2675 3.104 2.795 2.376

ar1 ¼ 0:7999; r2 ¼ 1:049 for Model A; r1 ¼ 0:9243; r2 ¼ 1:224 for Model B.
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Fig. 5. Comparison of the optimum model A and model B: model A (solid line); model B (dashed line).
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Table 2

Summary of some key values from Fig. 5

Model Gp1 rp1 Gp2 rp2 Gv rv

A 3.793 0.807 3.795 1.059 3.311 0.923

B 3.180 0.884 3.179 1.195 2.745 1.046
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ratio is required. Overall, model B gives better vibration suppression, evidenced by the smaller
Gpi; the smaller Gv; and the smaller Ḡ: We also note that the performance at the anti-resonance
frequency of model B does not significantly degrade due to an increase of damping, i.e., around
r ¼ b�; there is still a dip.
Brock also found the result for constant tuning. The constant tuning is defined as the case when

b ¼ 1: In this case, the ordinates of P and Q are not equal. For model A, the ordinate of point P is
greater than that of point Q: The optimum damping ratio is considered to be the value for which
the ðr;GÞ curve passes horizontally through point P: Brock found that this value is

zopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð3þ mÞ½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð2þ mÞ

p
�

8ð1þ mÞ

s
. (21)

In the case of model B, the ordinate of point Q is greater than that of point P: We found that the
optimum damping ratio is of the form

zopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m½mþ 6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 2Þ

p
�

q
4

. (22)
3. Summary

We have revisited a classical problem: optimum damped dynamic vibration absorber named as
model A in this study. We have failed to obtain the results using Den Harto’s method and Kelly’s
method. After comparing Brock’s approach with the previous two methods, we have realized that
Brock employed a perturbation method instead of differentiating a high-order equation. We have
applied Brock’s approach to a different type of damped vibration absorber named model B in this
study. We have found the optimum parameters for model B. We have verified all the results
numerically and presented a comparison of the two models.
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