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Abstract

In this paper, we use the semi-inverse method to find the solutions to the dynamic equation of
inhomogeneous, functionally graded simply supported beams. For the anti-symmetric mode and the
material density (or the Young’s modulus) that are both polynomial functions and and have been pre-
specified, we find the Young’s modulus (or the density) in polynomial functions and determine the closed
from expression for the natural frequency.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration of structures made of functionally graded materials (FGM) attracted much
attention recently. FGM are materials that exhibit continuous smooth variation of the elastic
modulus in the thickness direction in order to be able to design structures with desired
characteristics. The papers by Loy et al. [1], Vel and Batra [2], Yang and Shen [3,4], Cheng and
Batra [5], Chen and Ding [6] deal with various vibration problems of the structures made of the
FGM. The functional grading in the axial direction, i.e. the variation of the elastic modulus along
the axis, was studied by Candan and Elishakoff [7], Elishakoff and Candan [8], and Guede and
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Elishakoff [9]. The problematics described in these papers are intimately connected with the
studies by Wang et al. [10], and Wang and Wang [11,12].

Neuringer and Elishakoll [13,14] considered the case where the axially graded structure has a
prescribed polynomial second mode. In this paper, we investigate this topic in more detail.

2. Problem description

The dynamic governing equation of an inhomogeneous beam reads

& Ew©]

42 [D(i) 42 ] kL*R(&w(S) =0, (1
where D = EI is the flexural stiffness, E the Young’s modulus, / the moment of inertia of the
cross section, R = pA the inertial coefficient, p the density, 4 the area of the cross-section, w the
displacement, k = w?, o the natural frequency, ¢ = x/L a non-dimensional axial coordinate, and
L is the length.

Since a large number of functionally graded materials is emerging, the beam of variable
parameters is expected to be utilized much more widely in engineering than at present. Thus, the
dynamic problem of an inhomogeneous beam becomes of prime importance. In this paper, we
investigate the case when the inertial coefficient R(¢) is given, and find the flexural stiffness D(&)
and the corresponding natural frequency w, when the second mode (postulated as the static
displacement of homogeneous beam under the action of anti-symmetric linear load) is known.
The result indicated that two kinds of inverse problems formulated here can be solved in the
closed form if some condition is satisfied.

3. Basic equations

It is assumed that the cross-sectional area A is constant, whereas R(£), D(¢) and w(&) are
polynomial functions given by

m n )4
RO=D a&, DO=) b&, w@=>) wd, )
i=0

i=0 i=0
where m,n, and p are the degree of the polynomials for R(&), D(&) and w(&), respectively.
As the involved functions are assumed to be polynomial, the degrees of the above polynomial
functions must be linked, namely
n+(p—2)—2=m+p (3)
or simply, n —m = 4.
Thus, D(&) can be written as

m+4

DR =Y be. @
i=0
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We observe that Eq. (3) is not dependent on the degree p of the displacement polynomial w(&);
therefore, any polynomial function for the displacement may be used in Eq. (1) if, obviously, it
also satisfies the boundary conditions. The following boundary conditions in addition to the
conditions defining the anti-symmetric property of the mode of a simply supported beam must be
satisfied:

w(0) =0, DOW'(0)=0, w(l)=0, D(Hn"(1)=0, (5)
and
w (%) =0. (6)
Eq. (5) allows for Young’s modulus to assume a zero value at ¢ =0 or { = 1. This, however,
makes no physical sense. Hence, Eq. (5) is replaced with the following requirements:
w(0)=0, w'0)=0, wl)=0, w'()=0. (7)
Satisfaction of Eqgs. (6) and (7) requires the order of the displacement polynomial to be at least
five. Assuming that w(&) is a fifth-order polynomial,

w(&) = & + W&y + wal + w3 + walt 4+ wsE, (®)
the satisfaction of the boundary conditions yields
w(&) = wi(& — 108 + 158" — 62), ©)

where w; is an arbitrary coefficient. By substituting the expressions of D(&), R(&), w(&) in Eq. (1),
we obtain
m+4 )
wi Y il = )b ?60(—¢ + 38 - 28)
i=2
m+4 m+4

Fwr > BiE360(1 —28) + w12 Y ibiE T 60(—1 + 6 — 6&%)
i=0 i=1

=wikL* Y a,f'(& — 108 + 158* - 62°). (10)
i=0
The latter expression can be rewritten as
m+-3 ] m+4 ] m+3 ] m+4 )
—60 ) " i(i+ Dbt & + 180 > i(i — Dbig' =120 Y (i = 1)(i — b1 & +360 > b’
i=1 =2 i=3 i=0
m+5 ) m+3 ) m+4 ) m+5 )
=720 ) " by & =120 > (i + Db & +720 > ibiE' =720 Y (i — Dby &
i=1 i=0 i=1 =2
m+1 ) m+3 ] m+4 ) m+5 )
— kL' ai g &+ 10kLY > i 3& — 15KkLH Y " a a8 4+ 6kL* Y~ ars& = 0. (11)
i=1 i=3 i=4 i=5

Eq. (11) has to be satisfied for any £. This requirement yields the following relations:
—120(3by — b)) = 0, (12)
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—kL*ay — 60 x 2 x 3(2by — 3b; + by) = 0, (13)

—kL*a; — 60 x 3 x 4(2by — 3b, + b3) = 0, (14)
kL*(10ag — a>) — 60 x 4 x 5(2b; — 3b3 + by) = 0, (15)
kLY(—15ag + 10a; — az) — 60 x 5 x 6(2b3 — 3by + bs) = 0, (16)

kL*(6a;_s — 15a;_4 4+ 10a;_3 — a;_1) — 60(i + 1)(i + 2)(2b;_1 — 3b; + biy1) = 0,
S5<ism+ 1 (17)

KL*(6a,—3 — 15ay—2 + 10a,,_1) — 60(m + 3)(m + 4) (b1 — 3bmss + byi3) =0,  (18)

kL*(6y—> — 15am—1 + 10a,,) — 60(m + 4)(m + 5)2bmis> — 3bmss + buss) = 0, (19)
KL* (61 — 15a,,) — 60(m + 5)(m + 6)(2by13 — 3bpia) =0, (20)
6kL*a,, — 60(m + 6)(m + 7)2byss = 0. (21)

Note that Eqgs. (12)—~(21) are valid only if m>4. The cases which satisfy the inequality m <4 will be
discussed at the later stage. According to previous equations, and bearing in mind the expression
of the displacement mode w(&) specified in Eq. (9), we consider two separate problems: (1)
material density coefficients a; are specified, find coefficients b; in the elastic modulus
representation; (2) elastic modulus coefficients b; are specified, determine the coefficients a; so
that a closed-form solution is obtainable.

4. Specified inertial coefficient function

Let us consider the case when the function R(¢) of the inertial coefficient is known. This implies
that all coefficients a; are given. It must be remarked that the coefficients «; cannot be equal to
each other, otherwise in Eq. (17) the coefficient in front of k¥ would vanish. Egs. (12)—~(20) can be
written as matrix equation:

60D - (C-B) = kKL'E - A, (22)
where D is m + 5 tri-diagonal square matrix,

D =diag{l-2,2-3,....i(i+ 1),...,(m+ 5)(m + 6)}, (23)
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(3 -1 0 0 0 0 0 0]
-2 3 -1 0 0 0
0 -2 3 -1 0 0
C= ; ; ; ; : (24)
0 0 0 0 2 3 ~1 0
0 0 0 0 0 -2 3 -l
0 0 0 0 0 0 -2 3|

C is the Jacob matrix of m + 5-order, whereas
B= (b09b17b27~"abm+3abm+4)T3 A= (a()aal,az,'--aam—laam)T' (25)

Namely, B is an m + 5 dimensional column vector. A is an m + 1 dimensional column vector.
Moreover, E is the matrix m + 5 of the row, m + 1 of the column, and

0 0

1 0 0

0 1 0 0

—-10 0 1 0 0

15 —-10 0 1 0 0

-6 15 —-10 0 1 0 0
E=| 0 -6 15 —-10 0 0 0 26)

0 0 -6 15 —-10 0 1 0

0 0 —6 15 —10 0 1

0 0 —6 15 —10 0

0 o0 =6 15 10
L0 0 -6 15|
It is easy to check that C is reversible as a sign-oscillating matrix:
1
-1
¢ = ST _ | {2} mt5)x (m+-5)> (27)
where
(2m+5—j+1 _ 1)(2z _ 1), i<,
Oij = m+5—i+1 i i—j L. (28)
& - D2 =2"), i>j.
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So, we can write ¢! as

[ 2" -1 2t 22 . 15 7 3 1

2"—2 3

2" — 4 5

(i <)) 7

o1 1
¢ - 2n+l —1 15
OCU(Z>])
on _2}1—2 2n—1 -1
! e 2'—4 "2 21 |
(29)
Therefore, B has a closed-form unique solution:
kL* )

b0=b1/3a bi=Efi(a05a15a2a-"1am—1>am:m) (l= 1>~'~1m+4)' (30)

Note that the solution in terms of b,.4 must be compatible with Eq. (21). As a result,
we get

kL* 3kLay,
o m)
. a o e am— D) an’h = ’
g0 mraldo,dra, s ey 60(m + 6)(m + 7)

(3D

bm+4 =

Thus, we arrive at an important restrictive condition signifying that the coefficients a; cannot be
chosen arbitrarily. Moreover, if any b; coefficient is specified then the expression given in Eq. (30)
is the final formula for the natural frequency.

To sum up, if the coefficients a; satisfy Eq. (31), and any coefficient b; is specified, both k£ and
the other m + 4 coefficients b; could be ascertained by Eq. (30).

4.1. Example 1

Let m = 5 and if b, 4 = b is known, the determinant of the matrix C, |C| = 2047. Thus C is
reversible. From Eq. (22), we obtain

L4
B = "6—0 C'D'EA, (32)
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10.4998
0.4993
0.4983
0.4963
0.4924
0.4846
0.4690
0.4377
0.3752
1 0.2501

We denote

Hence, Eq. (32) becomes

r0.0238
0.0714
0.0000
—0.1429
0.0714
0.0000
0.0000

bo
by
by
b;
b4 kL*
bs 60
b
b7
bg
bo
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0.2496
0.7489
0.7474
0.7445
0.7386
0.7269
0.7035
0.6566
0.5628
0.3752

0

From Eq. (21), we get

0.0000
0.0000

0.1246
0.3737
0.8720
0.8686
0.8617
0.8481
0.8207
0.7660
0.6566
0.4377

0.0620
0.1861
0.4343
0.9306
0.9233
0.9086
0.8793
0.8207
0.7035
0.4690

0.0308
0.0923
0.2154
0.4617
0.9541
0.9389
0.9086
0.8481
0.7269
0.4846

0.0151
0.0454
0.1060
0.2272
0.4695
0.9541
0.9233
0.8617
0.7386
0.4924

C'D'E=G.

0.0047
0.0142
0.0332
—0.0121
—0.1029
0.0490
—0.0044
—0.0042
—0.0036
—0.0024

by

0.0012
0.0035
0.0082
0.0176

—0.0136
—0.0760

0.0372

—0.0042
—0.0036
—0.0024

0.0003
0.0010
0.0023
0.0050
0.0103
—0.0124
—0.0578
0.0299
—0.0029
—0.0020

3kLtas

T 60 x 11 x 127
Eq. (35) must be compatible with Eq. (36). Hence,

0.0073
0.0220
0.0513
0.1099
0.2272
0.4617
0.9306
0.8686
0.7445
0.4963

0.0001
0.0003
0.0007
0.0015
0.0032
0.0065
—0.0107
—0.0451
0.0250
—0.0015

a; + a> + 0.833a3 + 0.625a4 + 0.5a5 = 0.

The fundamental natural frequency squared reads

_60><11><12

2640

3L,

by

[

b.

0.0034
0.0103
0.0239
0.0513
0.1060
0.2154
0.4343
0.8720
0.7474
0.4983

0.0000 T
0.0001

0.0015
0.0044
0.0103
0.0220
0.0454
0.0923
0.1861
0.3737
0.7489
0.4993

0.0002 | | ao
0.0005 | | @
0.0011 | | @
0.0022 | | a3
0.0044 | | a4
—0.0090 | | as

—0.0359
0.0215 |

0.0005 1
0.0015
0.0034
0.0073
0.0151
0.0308
0.0620
0.1246
0.2496
0.4998 |
(33)

(34)

(35)

(36)

(37)

(3%)
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5. Specified flexural stiffness function

Consider now the case when the flexural stiffness function D(&) of a longitudinally functionally
graded beam is specified, implying that all b; coefficients are given. The following question arises:
Is it possible to determine the material density coefficients a;?

There are m+6 Eqgs. (12)~(21), while one has only m+ 1 unknowns, ay,...,a,. In
actuality, however, in order for the process of determining coefficients a; to proceed,
one of the coefficients a; should be pre-specified. The most convenient assumption is
to fix either ay,a; or a,, since in this case only one equation, in Egs. (13), (14) or (21),
respectively, will be sufficient to determine the sought expression of the natural frequency
coefficient. Let us assume that the coefficient a is given. Thus, we deduce from the compatibility
of Egs. (12)—(21), that five coefficients b;, namely by, byi1, bint2, biis, bya, cannot be chosen
arbitrarily.

Eliminating k from Egs. (13)—(21), we get

2by — 3by + b3

=2q0) ——8M—— 39
0 Dby —3by + by 39)

10  2by, — 3b3 + by
— 100y + — ap 22203 D4 40
=100 34 S T3k ¥ by 40)

2by — 3b4 + bs

=1 I =03 7 20405 41
as Sag + 10a; + Sao by — 3by + by’ (41)

G+ D(E+2) u 2bi_1 — 3b; + bi+l
6 O by —3b + by

ai—1 = 6a;_s — 15a;_4 + 10a;_3 + S<ism+1). (42)

The coefficients b; must satisfy the following conditions:

(1) All coefficients b; cannot be equal to each other, otherwise @; cannot be determined.

(2) In Eq. (13), in order for the physical realizability condition k = w?>0 to be satisfied, the
expression 2by — 3b; + b, and the coefficient @y should have opposite signs. Also, since
D(0)>0, the coefficient by must be positive.

(3) The coefficient by, b,11, bii2, byis, bra, must be related as follows:

1 —18a,,(2by — 3b1 + by)

bo=301 b =— om+T) (13.:44)

e [ e
b = [ s B 0 3

e
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b = (3 )iz = (34 5 ) bsa 4 25 b, 47

where
s st
To sum up, when the coefficients b; (by, ..., b,;) and aq satisfy the conditions as specified above,

we can obtain the remaining coefficients a; from Eqgs. (39)—(42) and the remaining five coefficients
b; from Eqgs. (42)—(48). The fundamental natural frequently squared reads
360(—2bg + 3by — by)

a0L4 ( )
6. Particular case: m <4
Let us discuss the particular case m <4. The inertial coefficients are specified as follows.
6.1. Sub-case a: m=0, R({) =ag, by =b
Eq. (1 1) results in
5 4
— 60 Z i(i + )b+ 180 Z i(i — Dbig" =120 > (i — 1) = 2)bi—1 &+ 360 Y _ b’
i=1 i=3 i=0
—720 Z bi_1& =120 Z(z’—i— Db & +720 > " ibig' =720 Y (i — Dby &
i=1 =0 i=1 =2
— kL2 " a &+ 10KLY Y a8 — 1SKLY Y~ @i 4+ 6kL* Y a; 5E = 0. (50)
i=1 i=3 i=4 i=5

Since Eq. (50) has to be satisfied for any &, the following relations are obtained:
360by — 120b; =0, —720by + 1080b, — 360b, — kL*ay = 0,

—1440b; + 2160by — 720b3 = 0, —240b, + 360b3 — 120b4 + kL*ag = 0,
—240b3 + 360bs — kL*ay = 0, —840bs — kL*ay = 0. (51)

This set is compatible and has a unique solution. The coefficient @y can be chosen arbitrarily.

Then,

1 1 840h
= — = — = = =-2 - 2
bo 3 b4 3 b, bl b, bz O, b3 b, k a0L4 (5 )

6.2. Sub-case b m =1, R(&) =ay+ a1&, bs =b

Eq. (11) can be re-written as

4 5 6 5
—60 ) " i(i4 Db & + 180 > (i — D)bid" =120 Y (i = 1)(i = b1 & +360 > b’
i=1 =2 i=3 i=0
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6 4 5 6
=720 ) " b & =120 ) (i + Db & +720 > ibig' =720 Y (i — Db &
i=1 i=0 i=1 =2

2 4 5 6
— kL* Z a1 &+ 10kL* Z ai_3& — 15kL* Z ai_s&" + 6kL* Z ai_s&'=0.  (53)
i=1 i=3 i=4 i=5

It has to be satisfied for any £. This requirement yields the following relations:
360by — 120b; = 0,

—720b + 10805, — 360b, — kL*ay = 0,
—1440b, + 2160b, — 720b5 — kL*a; = 0,
—240b, + 360b; — 120b4 + kL*ay = 0,

—720b5 + 1080b4 — 360bs + 2kL*ay — 3kL*ag = 0,

—1680b4 + 2520bs — SkL*ay + 2kL*ag = 0, 1120bs = kL*a;. (54)
The solution of this set reads
. 8a0 — 11611 . —96610 — 5611 . 17
by = 6a; b, by = 36a, b =740,
64ay + 17a, 64ay + 17a, 11200
hy=———""p =—" "p k= . 55
: 48a, 0 144a; L'a, (53)

In order for the set to be compatible, ¢; must vanish. Therefore, we conclude that the set has no
solution.

6.3. Sub-case c: m =2, R(&) =ay+ a;é+ &, bg=b

Eq. (11) can be re-written as

5 6 7 6
— 60 Z i(i + )b 1 &+ 180 Z i(i — D)b;E = 120 Z(i — )i = 2)bi_1 & + 360 Z bt
i=1 =2 =3 i=0

7 5 6 7
=720 ) " b & =120 > (i + Db & +720 > ibig' =720 Y (i — Db &
i=1 i=0 i=1 =2
3 ) 5 ) 6 ) 7 )
— kL2 a4 &+ 10kLY Y a8 — 1SKLY Y~ ap 4 + 6kL* Y a; & = 0. (56)
i=1 i=3 i=4 =5

It has to be satisfied for any . This requirement yields the following relations:
360by — 120b; = 0,

—720by + 1080b, — 360b, — kL*ay = 0,
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—1440b, + 2160by — 720b3 — kL*a; = 0,

—2400b, + 3600b3 — 1200b4 — kL*ar 4+ 10kL*ay = 0,
—720b3 + 1080b4 — 360bs + 2kL*a; — 3kL*ay = 0,
—5040b4 + 7560bs — 2520b4 + 10kL*ay — 15kL*a; + 6kL*ay = 0,
—2240bs + 3360bs — SkL*ar + 2kL*a; = 0,

—1440b6 + kL*a> = 0. (57)
The solution of this set reads
_ —12a, 4+ 9a;

_ —3612 — 33&1 + 2400 _ 15a2 — 5611 — 9661()

bs=————b, by= b, b3= b
i Ta, S 144, . 28a; :
_ 87ay + 255a, _ 111ay + 255a; + 960ag
b= R, 0 DT 560a, b,
318ay + Sla; + 128ay 14406
by = b, k=——". 58
0 224a, ’ Loy (58)
In order for the set to be compatible, we have to improve the following requirement:
a) = dy. (59)
6.4. Sub-case d: m =3, R(E) =ag+ a1 &+ &+ a8, b =b
Eq. (11) can be re-written as
6 . 7 ' 8 ' 7 '
—60 ) " i(i+ Db & + 180 > (i — D)big' =120 Y " (i = 1)(i — b1 & +360 > b’
i=1 i=2 i=3 i=0
8 ' 6 ' 7 ' 8 '
=720 ) " by & =120 (i + Dbi& +720 > ibiE' =720 Y (i — Dby &
i=1 i=0 i=1 i=2
4 ' 6 ' 7 ' 8 '
— kL2 a4 &+ 10kLH Y " a8 — 1SKLY Y~ @i gl + 6L Y~ a;5E' = 0. (60)
=1 i=3 i=4 i=5

It has to be satisfied for any £. This requirement yields the following relations:
360by — 120b; = 0,

—720by + 10805, — 360b, — kL*ay = 0,
—1440b; + 2160by — 720b; — kL*a; = 0,

—2400b, + 3600b3 — 1200b4 — kL*ay 4+ 10kL*ay = 0,
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—3600b3 + 5400b4 — 1800bs — kL*a310kL*a; — 15kL%ay = 0,
—5040b4 4 7560bs — 2520bg + 10kL*ay — 15kL*a; 4+ 6kL*ay = 0,
—6720b5 4+ 10080bs — 3360b7 + 10kL*as — 15kL*ay 4+ 6kL*a; = 0,
—2880b¢ + 4320b7 — SkL*a3 + 2kL*a, = 0,

—1800b7 + kL*a3 = 0. (61)

The solution of this set is given by

—13 10 —29a3 — 240 180
bézwb’ bs = a3 a + 180a b,
8a; 112a5
95a; — 60a; — 660a; + 480ay 119as + 300a; — 100a; — 19204y
b4 = b, b3 = b,
224a5 448a;
by — 167as + 348a; + 10204, b b — 263a; + 444a; + 1020a; + 38404y b
o 896a; SR 1792a; :
455a3 + 636a; + 1020a; + 25604y 1800h
by = b, k=——. 62
0 3584a; ’ Lias (62)
In order for the set to be compatible, the following condition must be met:
az + 1.22a, + 1.22a; = 0. (63)

7. Conclusion

The reported results indicate that the proposed method is feasible when the inertial coefficient,
flexural stiffness and the mode shape all are polynomial functions. It is hoped that when the
axially graded materials will be developed this study, and the attendant ones, will gain
considerable practical interest.
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