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Abstract

The present paper proposes a novel procedure to derive both stiffness and damping parameters from
forced vibrating isotropic plates. The key feature is that displacement and curvature fields can be measured
at different times over the whole surface of the plate by a suitable optical technique. As a consequence, the
virtual fields method (VFM) provides sets of equations relating the stiffness and damping parameters to
these measured fields and to geometric and excitation (frequency, amplitude) parameters. First, the theory
of the VFM is exposed and, then, validation is performed on simulated full-field displacement and
curvature data. Calculations are performed in the case of isotropic plates with low and high damping, at
resonance and out of resonance. It is shown that the procedure is valid and robust to noise, except on the
damping parameters when the damping is low. Future work necessary to develop the method is described as
a conclusion.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The measurement of material elastic stiffness parameters, essential for predicting the behaviour
of structures, is common in material-testing laboratories. It is usually performed using tension,
see front matter r 2004 Elsevier Ltd. All rights reserved.
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bending or torsion tests on rectangular coupons, leading to simple stress states that can be
expressed as functions of the specimen geometry and the applied load through a closed-form
solution of the mechanical problem. Nevertheless, these procedures exhibit certain drawbacks.
First, experimental boundary conditions must comply with that of the mechanical model, which is
not always easy to achieve, particularly for anisotropic materials for which the usual Saint-Venant
assumption for isotropic materials is no longer valid [1,2]. Moreover, anisotropic coupling effects
can cause specific testing difficulties [3]. Finally, only a small number of parameters can be
retrieved from a specific test because of the very simple stress state. As a result, several tests have
to be performed usually to identify the full set of material parameters, increasing the cost of the
procedure.
An alternative to these usual testing procedures is to consider more complex configurations

for which the constraints on the boundary conditions will be less severe, since in this
case the stress state is unknown a priori and no closed-form solution is available. Moreover,
since all stress components are present in this case, it can be expected that a greater
number of material parameters will be involved in the response of the specimen and can
therefore be measured. In this case, new strategies are to be developed to extract the material
stiffnesses. Such approaches have been implemented using the eigen-frequencies of vibrating
plates, coupled to some numerical procedure based on finite element model updating [4–9]
or some approximation of the solution [10,11]. An alternative to these methods was suggested
by Grédiac et al., making use of the measurement of slope fields at the surface of bent plates
[12–14] and performing the identification through the so-called Virtual Fields Method (VFM).
The main advantage of this technique is that stiffnesses are obtained directly (no iterations, no
optimization scheme) and that constraints on specimen geometry and boundary conditions are
less critical.
The problem of the measurement of damping parameters is more acute. Indeed, although such

information is necessary to perform accurate simulation of the vibrations of a large range of
structures (for instance, to compute the forces in joints or the vibro-acoustic response of a car),
fewer research efforts have been dedicated to this. Moreover, damping parameters have proved
more tricky to measure than stiffnesses because of all the parasitic dissipation that is usually
added in a classical mechanical test. Most of the work encountered in the literature concerns beam
specimens. A usual strategy consists in monitoring the vibrations of beams in free vibrations,
either in bending with free–free or cantilever boundary conditions [15–20], in torsion [21,22] or in
longitudinal vibrations [23]. The results are processed using either the logarithmic decay time
when the first mode is predominant [15,16,18–20,22] or the width of the �3dB peak of the
impulse response in the frequency domain when several modes are present. Other techniques
such as circle-fit in the Argand plane can also be found [24]. Some authors prefer to work on
forced vibrating beams [25,26], using inertial excitation [25] or clamped–clamped beams with mid-
span loading [26]. In any case, the experimental problems encountered by the authors are often
similar: dissipation coming from the boundary conditions [16,19], presence of higher order
modes [18].
The purpose of the present paper is to propose a novel procedure to extract both stiffness and

damping parameters from forced vibrating plates. It is an extension of initial work by Grédiac
et al. [12,13] using the VFM, where damping was not considered. This study shows how damping
can be introduced in the VFM procedure.
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2. Theory

For a solid of any shape, in the case of small perturbations and absence of volume forces, the
general expression of the principle of virtual work can be written as

�

Z
V

s : �� dV þ

Z
qV

F :u� dS ¼

Z
V

a:u� dm; (1)

where s is the stress tensor, �� is a virtual strain tensor, V is the volume of the solid, qV the surface
of its boundary, F the surface density of external forces acting on qV ; u� is a kinematically
admissible virtual displacement field associated to ��; a is the acceleration field, dV ; dS and dm

are, respectively, elementary volume, surface and mass.
The principle of the VFM is to replace the stress components in the above equation by the true

elastic strains through the constitutive equations of which parameters are to be identified. Then,
by selecting ‘appropriate’ virtual fields, it is possible to derive equations relating the materials
constitutive parameters to integral functions of the true strains. If full-field measurements are
available, then these integral functions can be evaluated and, if enough independent virtual fields
are used, the materials constitutive parameters can be identified. In the present section, it is shown
how this method can be adapted to damping identification.
2.1. Considered case

Let us consider now that the solid is a rectangular thin plate. Its thickness is h (Fig. 1).
The plate is clamped at point O as seen in Fig. 1, which is the origin of the coordinate system.

Let us now suppose that this point is translated along the z-axis in a sine movement (inertial
excitation). This arrangement is an extension of the experimental study of vibrating plates
reported in Ref. [27]. If we call dðtÞ the displacement of this point along the z-direction, and using
usual complex notations, then:

dðtÞ ¼ d cos ot ¼ Reðd expðjotÞÞ; (2)

where o is the pulsation and d the amplitude of the sine movement. For a homogeneous material,
this is a case of pure bending and only out-of-plane displacements will be considered. Assuming
classical thin plate theory, they are independent on z. The global out-of-plane displacement field
mðx; y; tÞ is therefore the superposition of the imposed excitation displacement dðtÞ and the
 O x 

y 

z 

L 

x0 y0 

l 

Fig. 1. Rectangular plate under study.
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out-of-plane deflection lðx; y; tÞ due to the deformation of the plate:

mðx; y; tÞ ¼ dðtÞ þ lðx; y; tÞ: (3)

The deflection caused by the deformation of the plate is made up of the combination of the
response of each mode:

mðx; y; tÞ ¼ dðtÞ þ
X1
k¼1

lkðx; y; tÞ; (4)

where lkðx; y; tÞ is the response of the kth mode. Since the excitation has a sine shape and
assuming the linear behaviour of the plate, the response is harmonic with the same pulsation o:

mðx; y; tÞ ¼ dðtÞ þ
X1
k¼1

jlkðx; yÞj cosðot � fkðx; yÞÞ; (5)

where jlkðx; yÞj and fkðx; yÞ are, respectively, the amplitude and the phase of the response of the
kth mode. Because of the damping, the latter can take all the values between 0 and p; depending
on the distance between the excitation and the kth mode frequency. In the case of a plate having
sufficiently separated modes and excited close to its kth mode frequency, the response is
dominated by that of the resonant mode whose amplitude becomes predominant and whose phase
comes close to p=2: The responses linked to the other modes have relatively small amplitudes and
their phases are close to 0 or p: One could therefore think that, in this case, their contributions
could be ignored. In fact, this is not always the case and it depends on the considered mode and on
the importance of the damping.
In the general case, a correct representation of the harmonic response of the vibrating plate

must take into account the contributions of a great number of modes even close to a resonance
and even with well-separated modal frequencies. Using complex notation, it is more convenient to
write

mðx; y; tÞ ¼ Reðuðx; yÞ expðjotÞÞ

¼ Reððd þ wðx; yÞÞ expðjotÞÞ; ð6Þ

with

uðx; yÞ 2 C; uðx; yÞ ¼ urðx; yÞ þ juiðx; yÞ;

wðx; yÞ 2 C; wðx; yÞ ¼ wrðx; yÞ þ jwiðx; yÞ: ð7Þ

These expressions for uðx; yÞ and wðx; yÞ provide complete representations of the harmonic
responses and are valid regardless of the excitation frequency (physical basis as opposed to the
modal basis).

2.2. Choice of the virtual fields

The virtual displacement fields must be kinematically admissible. In particular, it means that
they should be such that the virtual movement of point O matches its true movement. For
instance, they can be written as

u�ðx; yÞ expðjotÞ ¼ ðd þ w�ðx; yÞÞ expðjotÞ; u�ðx; yÞ 2 C; w�ðx; yÞ 2 C; (8)
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with

u�ðx; yÞ ¼ u�r ðx; yÞ þ ju�i ðx; yÞ ¼ d þ w�
r ðx; yÞ þ jw�

i ðx; yÞ; (9)

where w�ðx; yÞ ¼ w�
r ðx; yÞ þ jw�

i ðx; yÞ is a virtual deflection field, with w�ð0; 0Þ ¼ 0: As mentioned in
Section 2.3, w� must be such that the clamping moments do not work virtually. Therefore, one
must have

qw�

qx
ð0; 0Þ ¼ 0 and

qw�

qy
ð0; 0Þ ¼ 0: (10)

It is interesting to note that, in practice, the clamping will not be reduced to one point but to a
small area of the plate (area under the head of a nut, for instance). In this case, it will be necessary
to extend the above condition to the whole area. A way of doing this could be to use piecewise
virtual fields with a rigid-body virtual field over a square area containing the constrained material.
Such piecewise virtual fields are presently under development [28].
2.3. Virtual work of external forces

The only external forces acting on the plate are those introduced by the clamping at point O

(see Fig. 1). If there is a chance to measure experimentally the force acting in the z-direction, the
two bending moments Mx and My will be unknown and their contribution to the virtual work of
the external forces will have to be zeroed by choosing appropriate virtual fields (see Section 2.2).
Let us consider now only F, the force in the z-direction. It can be written as

F expðjotÞ ¼ ðFr þ jFiÞ expðjotÞ: (11)

Therefore, the virtual work of the external forces (VWEF) can be simply written as

VWEF ¼ ReðF expðjotÞÞReðd expðjotÞÞ: (12)

Developing the above, it can be shown that

VWEF ¼ 1
2

Frd þ 1
2
ReðFd expðj2otÞÞ: (13)

Finally, we get

VWEF ¼ 1
2

Frd þ 1
2

Frd cosð2otÞ � 1
2
Fid sinð2otÞ: (14)

It can be seen that VWEF is composed of three distinct terms, one independent of time and the
two others depending on sine and cosine of twice the excitation pulsation.
2.4. Virtual work of the internal forces

The virtual work of the internal forces (VWIF) is written according to the Love-Kirchhoff
theory of thin plates [29]. In the case of dissipative materials, VWIF can be written as the sum of
an elastic and a dissipative contribution. One has

VWIF ¼ �

Z
S

ðfmeg þ fmdgÞfkg� dS; (15)
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where fmeg and fmdg are, respectively, the elastic and dissipative moments and fkg� is the virtual
curvature field resulting from the virtual displacement field described in Section 2.2. It is
important to note at this stage that the three above quantities are complex.
In the case of an isotropic and homogeneous material, the elastic moment can be written as

fmeg ¼

me
x

me
y

me
s

2
64

3
75 ¼

Dxx Dxy 0

Dxy Dxx 0

0 0 ðDxx � DxyÞ=2

2
64

3
75 �

kx

ky

ks

2
64

3
75; (16)

where Dxx and Dxy are the isotropic bending stiffness components of the plate.
Assuming that the dissipation is viscous and that the isotropic bending dissipation components

of the plate, Bxx and Bxy; are proportional to the elastic ones, one can write

fmdg ¼

md
x

md
y

md
s

2
664

3
775 ¼

Bxx Bxy 0

Bxy Bxx 0

0 0 ðBxx � BxyÞ=2

2
64

3
75 �

q
qt

kx

ky

ks

2
64

3
75: (17)

Since the response of the plate is harmonic of pulsation o; one has ðq=qtÞfkg ¼ jofkg and finally
we get

fmdg ¼

md
x

md
y

md
s

2
664

3
775 ¼ jo �

Bxx Bxy 0

Bxy Bxx 0

0 0 ðBxx � BxyÞ=2

2
64

3
75 �

kx

ky

ks

2
64

3
75: (18)

It is important to note that the method could be used with other formulations of damping. The
one chosen here is kept as simple as possible to demonstrate the method. It can be shown that Eq.
(15) can be written as

VWIF ¼ 1
2
Re

Z
S

ðfmeg þ fmdgÞfkg� dS

	 


þ 1
2
Re

Z
S

ðfmeg þ fmdgÞfkg� expðj2otÞdS

	 

; ð19Þ

where fkg� indicates the conjugate of the virtual curvatures.
Using Eqs. (16) and (17) to replace in Eq. (19), one can define the quantities Gp;q and Hp;q such

that

Gp;q ¼ �

Z
S

kxðx; yÞk
�
x þ kyðx; yÞk

�
y þ

1
2

ksðx; yÞk
�
s

� �
dS;

Hp;q ¼ �

Z
S

kxðx; yÞk
�
y þ kyðx; yÞk

�
x �

1
2

ksðx; yÞk
�
s

� �
dS; ð20Þ

where p and q indicate that the Gp;q and Hp;q quantities are calculated using:


 the real or imaginary parts of the actual curvatures according to whether p is r or i;



 the real or imaginary parts of the virtual curvatures according to whether q is r or i.
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For instance, Gi;r can be written as

Gi;r ¼ �

Z
S

kxi
ðx; yÞk�

xr
þ kyi

ðx; yÞk�
yr
þ 1

2
ksi

ðx; yÞk�
sr

� �
dS: (21)

Therefore, VWIF can be expressed using four G quantities: Gr;r; Gi;i; Gi;r; Gr;i and four H
quantities: Hr;r; Hi;i; Hi;r; Hr;i:
Finally, one has

VWIF ¼ 1
2
½DxxðGr;r þ Gi;iÞ þ DxyðHr;r þ Hi;iÞ�

þ 1
2
½BxxoðGr;i � Gi;rÞ þ BxyoðHr;i � Hi;rÞ�

þ 1
2
½DxxðGr;r � Gi;iÞ þ DxyðHr;r � Hi;iÞ� cosð2otÞ

þ 1
2
½�BxxoðGi;r þ Gr;iÞ � BxyoðHi;r þ Hr;iÞ� cosð2otÞ

� 1
2½DxxðGr;i þ Gi;rÞ þ DxyðHr;i þ Hi;rÞ� sinð2otÞ

� 1
2½BxxoðGr;r � Gi;iÞ þ BxyoðHr;r � Hi;iÞ� sinð2otÞ: ð22Þ
2.5. Virtual work of the inertial forces

Taking into account Eq. (7), the acceleration a can be written as

aðx; yÞ expðjotÞ ¼
q2

qt2
ðuðx; yÞ expðjotÞÞ

¼ � do2 expðjotÞ � wðx; yÞo2 expðjotÞ: ð23Þ

Moreover, dm ¼ rhdS; where r is the density of the material. Therefore, the virtual work of the
inertial forces VWAC can be written as

VWAC ¼ �
rho2

2
Re

Z
S

uðx; yÞu�ðx; yÞdS

	 


�
rho2

2
Re

Z
S

uðx; yÞu�ðx; yÞ expðj2otÞdS

	 

; ð24Þ

where u�ðx; yÞ indicates the conjugate of the virtual displacement field. Finally, we get

VWAC ¼ �
rho2

2

Z
S

ðuru
�
r þ uiu

�
i ÞdS

�
rho2

2

Z
S

ðuru
�
r � uiu

�
i ÞdS cosð2otÞ

þ
rho2

2

Z
S

ðuru
�
i þ uiu

�
r ÞdS sinð2otÞ: ð25Þ
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2.6. Summary

Following the above calculations, the principle of virtual work can be written as

VWIFþ VWEF ¼ VWAC; (26)

with the expressions for VWIF, VWEF and VWAC given in the previous sections. As shown
previously, each contribution is written as the sum of a term independent of time and two terms
dependent on sine and cosine of twice the excitation pulsation. Since the above equality is verified
for any time, it can be split into three separate equations. Moreover, the expressions are valid for
any combination of the real and imaginary parts of the virtual fields. As a consequence, each of
the three equations can again be split into two equations, leading finally to a system of six
equations, out of which only four are independent. These equations are given below:

DxxGr;r þ DxyHr;r � BxxoGi;r � BxyoHi;r þ Frd ¼ �rho2

Z
S

uru
�
r dS; (27)

DxxGi;i þ DxyHi;i þ BxxoGr;i þ BxyoHr;i ¼ �rho2

Z
S

uiu
�
i dS; (28)

DxxGi;r þ DxyHi;r þ BxxoGr;r þ BxyoHr;r þ Fid ¼ �rho2

Z
S

uiu
�
r dS; (29)

DxxGr;i þ DxyHr;i � BxxoGi;i � BxyoHi;i ¼ �rho2

Z
S

uru
�
i dS: (30)

Since uðx; yÞ ¼ d þ wrðx; yÞ þ jwiðx; yÞ and u�ðx; yÞ ¼ d þ w�
r ðx; yÞ þ jw�

i ðx; yÞ; w�
r ðx; yÞ can be

taken as zero in Eqs. (27) and (29), which corresponds to a virtual rigid body movement. In this
case, the two force components can be extracted directly:

Fr ¼ �rho2

Z
S

ðd þ wrÞdS; (31)

Fi ¼ �rho2

Z
S

wi dS: (32)

This leaves the following four equations:

DxxGr;r þ DxyHr;r � BxxoGi;r � BxyoHi;r ¼ �rho2

Z
S

ðd þ wrÞw
�
r dS; (33)

DxxGi;i þ DxyHi;i þ BxxoGr;i þ BxyoHr;i ¼ �rho2

Z
S

wiw
�
i dS; (34)

DxxGr;i þ DxyHr;i � BxxoGi;i � BxyoHi;i ¼ �rho2

Z
S

ðd þ wrÞw
�
i dS; (35)

DxxGi;r þ DxyHi;r þ BxxoGr;r þ BxyoHr;r ¼ �rho2

Z
S

wiw
�
r dS: (36)
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These four equations are symmetrical with respect to the real and imaginary parts of the virtual
deflection field. Therefore, it is equivalent to using these four equations with u�ðx; yÞ ¼
d þ w�

r ðx; yÞ þ jw�
i ðx; yÞ; with w�

r ðx; yÞaw�
i ðx; yÞ; or to use the two first ones, Eqs. (33) and (34),

with the two virtual fields: u�
1ðx; yÞ ¼ d þ w�

r ðx; yÞð1þ jÞ and u�2ðx; yÞ ¼ d þ w�
i ðx; yÞð1þ jÞ; with

w�
r ðx; yÞaw�

i ðx; yÞ: Therefore, only Eqs. (33) and (34) will be kept in the following.

2.7. Interpretation

When the excitation has a frequency very close to the frequency of a mode, this latter is
resonant. Its contribution, which lags at p=2 with respect to the driving movement, could be
predominant in the response of the plate and mainly represented by the imaginary part of the
deflection wiðx; yÞ: The responses of the other modes are mainly contained in the real part wrðx; yÞ
and can be much smaller than the imaginary one.
Assuming wrðx; yÞ is negligible compared to wiðx; yÞ; one can write

wrðx; yÞ ’ 0; urðx; yÞ ’ d; uiðx; yÞ ¼ wiðx; yÞ: (37)

Therefore, the real part of the curvatures is close to zero, so that the four quantities Gr;r;Gr;i;Hr;r

and Hr;i are also close to zero. With these approximations, simplified versions of Eqs. (33), (34),
(31) and (32) can be written as

BxxGi;r þ BxyHi;r ¼ �rho
Z

S

ðd þ wrÞw
�
r dS; (38)

DxxGi;i þ DxyHi;i ¼ �rho2

Z
S

wiw
�
i dS; (39)

Fr ¼ �rho2d

Z
S

dS; (40)

Fi ¼ �rho2

Z
S

wi dS: (41)

These approximated equations only work with the contribution of the resonant mode. Eq. (39)
shows the equilibrium between the elastic forces and the acceleration forces. Eq. (38) shows that,
at resonance, the work provided by the driving movement is balanced by the internal dissipation
of the plate. Eq. (40) simply states that the in-phase clamping force is equal to the inertial force of
the undeformed plate. This is normal, since at resonance there is no in-phase deformation of the
plate. Finally, Eq. (41) describes the clamping force when the plate is back at its equilibrium
position and the only deflections come from the deformation of the plate.

2.8. Resolution

In the general case, four quantities are to be identified: Dxx;Dxy;Bxx;Bxy: It is assumed that the
real and imaginary parts of the deflection and the curvatures are provided by the full-field
measurement technique, capturing the in-phase and out-of-phase (p=2 lag) responses of the
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vibrating plate. Two independent virtual fields u�ð1Þ and u�
ð2Þ can be chosen, such that

u�
ð1Þ ¼ d þ w�

rð1Þ þ jw�
ið1Þ; u�

ð2Þ ¼ d þ w�
rð2Þ þ jw�

ið2Þ: (42)

With the actual curvatures, the Gð1Þ
p;q and H ð1Þ

p;q quantities are derived from the first virtual field,
and the Gð2Þ

p;q and H ð2Þ
p;q ones are derived from the second. Then, introducing successively the

expressions of these two virtual fields in Eqs. (33) and (34) leads to a set of four linear independent
equations, which is written below in matrix form:

G
ð1Þ
i;i H

ð1Þ
i;i oG

ð1Þ
r;i oH

ð1Þ
r;i

Gð1Þ
r;r H ð1Þ

r;r �oG
ð1Þ
i;r �oH

ð1Þ
i;r

G
ð2Þ
i;i H

ð2Þ
i;i oG

ð2Þ
r;i oH

ð2Þ
r;i

Gð2Þ
r;r H ð2Þ

r;r �oG
ð2Þ
i;r �oH

ð2Þ
i;r

2
6666664

3
7777775
�

Dxx

Dxy

Bxx

Bxy

2
66664

3
77775 ¼

�rho2
R

S
wiw

�
ið1Þ dS

�rho2
R

S
ðd þ wrÞw

�
rð1Þ dS

�rho2
R

S
wiw

�
ið2Þ dS

�rho2
R

S
ðd þ wrÞw

�
rð2Þ dS

2
666664

3
777775: (43)

The coefficients of the right-hand-side vector are calculated by integration of the actual and
virtual deflections of the plate. Therefore, the unknown quantities are very simply obtained by
solving the linear system. Obviously, this can only be performed if the matrix can be inverted, that
is, the linear equations are independent. This depends on the mechanical configuration (actual
fields) and on the choice of the virtual fields. This issue will not be addressed here, but a recent
procedure based on the so-called ‘‘special’’ virtual fields [30–32] has been shown to solve this
problem, provided that the system is linear, which is the case here. It must also be pointed out that
this identification procedure is direct. No initial values for the unknown parameters and no
iterative process are required.

2.9. Simplified identification

In this section, the frequency of the driving movement is chosen to obtain a resonant response
of the plate. Full-field measurements provide the real and imaginary components of the deflection
and curvature fields of the plate. The same assumptions are made as in Section 2.7 about,
respectively, the predominant and negligible contributions of the resonant and non-resonant
modes.

2.9.1. Simplified identification of the stiffnesses
In these conditions, Eq. (39) applies. As for the general case, two virtual fields can be chosen

and lead to the very simple linear system containing two equations with the stiffnesses as
unknowns:

G
ð1Þ
i;i H

ð1Þ
i;i

G
ð2Þ
i;i H

ð2Þ
i;i

2
4

3
5 �

Dxx

Dxy

" #
¼

�rho2
R

S
wiw

�
ið1Þ dS

�rho2
R

S
wiw

�
ið2Þ dS

2
4

3
5: (44)

These equations are similar, in the isotropic case, to those used in the identification of the
stiffnesses of composite anisotropic plates already performed by Grédiac et al. [12,13] by means of
the vibrating responses of plates in free–free boundary conditions. The accuracy of the results
obviously depends on the above assumption on the resonant mode. Nevertheless, the results
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obtained by Grédiac et al. were quite satisfactory, showing that this simplified formulation can be
useful in practice.
2.9.2. Simplified identification of the damping factor
In this part, it is assumed that the material of the plate presents an isotropic proportional

damping such that

b ¼
Bxx

Dxx

¼
Bxy

Dxy

: (45)

Introducing the preceding expression (45) in Eqs. (38) and (39), these can be rewritten as

bðDxxGi;r þ DxyHi;rÞ ¼ �rho
Z

S

ðd þ wrÞw
�
rdS; (46)

DxxGi;i þ DxyHi;i ¼ �rho2

Z
S

wiw
�
i dS: (47)

One can choose a virtual displacement field w�ðx; yÞ ¼ w�
r ðx; yÞ þ jw�

i ðx; yÞ such that w�
r ðx; yÞ ¼

w�
i ðx; yÞ; so that Gi;r ¼ Gi;i and Hi;r ¼ Hi;i: Introducing these equalities in Eqs. (46) and (47), we

get

b ¼
1

o
�

R
S
ðd þ wrÞw

�
r dSR

S
wiw

�
i dS

: (48)

This expression leads to a very simple method to identify the damping factor of a material.
Measurements of only the in-phase and p=2 lag deflection fields of the vibrating plate are needed,
which are much easier to perform than measurements of the curvatures. Obviously, the
assumption that there is no significant contribution of the non-resonant modes is a limitation for
the general application of this procedure. The effect of coupling between modes due to the
damping must remain negligible. It would be the case for low damped plates exhibiting well-
separated modal frequencies.
3. Simulation—identification at resonances

3.1. Introduction

The objective of this section is to check the validity of the method and its robustness (sensitivity
to noise). Finite element simulations of isotropic damped plates clamped at one point, as shown in
Fig. 1, have been performed. An initial undamped modal analysis provided the first natural
frequencies and mode shapes. Then, the forced vibration responses of the plate to sine driving
displacements of the clamping point have been computed. This provided the real and imaginary
components of the responses of the damped plate for several values of damping. These data are
considered as input data to the identification procedure and the corresponding stiffness and
damping components are extracted and compared to the reference ones.
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Table 1

Parameters of the FE models

L (mm) l (mm) h (mm) x0 (mm) y0 (mm) r (kgm�3) E (GPa) n d (mm)

200 100 1 50 25 7800 210 0.3 0.1

Table 2

Reference stiffness and damping parameters

Dxx (Nm) Dxy (Nm) Bxx (Nm s) Bxy (Nm s)

Low damping 19.2308 5.7692 1:92� 10�4 5:77� 10�5

High damping 19.2308 5.7692 1:92� 10�2 5:77� 10�3
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3.2. Finite element models

The numerical simulations described below have been carried out using the ANSYS 5:5 finite
element package. The theory of the method has been established without any assumption about
the shape of the plate. For the sake of simplicity, rectangular plates have been used here, but any
other shape could have been chosen. The numerical parameters of the models are reported in
Table 1. The definitions of the geometrical data L; l; h; x0 and y0 refer to Fig. 1. As expected, r; E
and n are, respectively, the material density, Young’s modulus and Poisson’s ratio. It is recalled
that d is the amplitude of the driving movement. The FE models are built up using rectangular
four-noded Shell63 elements. This element has six degrees of freedom at each node and has both
bending and membrane capabilities. For the calculations of the harmonic responses, the damping
is introduced by means of a unique b proportional damping factor:

b ¼
Bxx

Dxx

¼
Bxy

Dxy

: (49)

It is important to note that the identification procedure, in the general case, considers the two
damping components Bxx and Bxy to be independent. Therefore, the identification procedure will
provide these two values, whether independent or not. Two values of damping have been used for
the simulations: the first one, called ‘‘low damping’’, has a value b ¼ 10�5 and corresponds
roughly to the material dissipation of aluminium. The second one, referred to as ‘‘high damping’’,
has a value b ¼ 10�3; which is the damping exhibited by some polymers.
Table 2 presents the reference values of stiffness and damping for, respectively, the low and high

damped models of the plate.

3.3. Harmonic responses

3.3.1. Presentation
All the simulated data come from calculations with a regular mesh containing 4608 ð48� 96Þ

elements. Figs. 2 and 3 present the harmonic responses calculated respectively with low damping
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Fig. 2. Plate with low damping. Mode shapes, real and imaginary parts of the responses.
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and high damping. In each figure, the central and right-hand-side columns show the shapes of the
real and imaginary parts of the responses to an harmonic excitation. The frequencies of the latter
are each chosen very close to the frequency of one of the six first modes. For comparisons, the left-
hand-side column presents the corresponding mode shapes of the undamped plates. Obviously,
each line refers to the same frequency. The modes are drawn with arbitrary scales. For the sake of
legibility of the figures, no scale bars are drawn for the responses. Real and imaginary parts
referring to the same frequency are drawn with the same grey scale. The black and white colours
refer, respectively, to the minimum and maximum deflections and the corresponding values are
indicated under each representation.
On each window the black circle mark locates the clamping point.
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3.3.2. Interpretation
As expected for the low damped plate, the imaginary responses show very sharp resonances

with large amplitudes of displacement and shapes very close to the modal ones. This confirms that
the resonant mode is predominant for these six cases of excitation and that the damping has no
significant coupling effect between modes, i.e. the contributions of the non-resonant modes
remain small. In the case of the highly damped plate, for all frequencies, the amplitudes of the real
and imaginary parts of the operational deflection shapes remain of the same order of magnitude.
Considering the responses in increasing frequency order, one could see that the imaginary parts of
the responses are less and less similar to the corresponding mode shapes and the real parts are
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Table 3

Plate with low damping—reference general identification with u�1 and u�2

Freq. (Hz)

26.4 68.9 149.5 313.9 379.8 531.0

Rel. err. Dxx (%) �0.01 �0.04 �0.02 �0.05 �0.36 �0.20

Rel. err. Dxy (%) �0.02 �0.05 0.01 �0.01 �0.10 �0.63

Rel. err. Bxx (%) �0.01 �0.03 0.08 0.07 0.61 13.64

Rel. err. Bxy (%) �0.02 �0.05 0.03 0.17 �0.69 4.06

Table 4

Plate with high damping—reference general identification with u�1 and u�2

Freq. (Hz)

26.4 68.9 149.5 313.9 379.8 531.0

Rel. err. Dxx (%) �0.01 �0.04 �0.11 �0.10 �0.07 �0.05

Rel. err. Dxy (%) �0.02 �0.02 0.16 0.13 �0.39 �0.71

Rel. err. Bxx (%) �0.01 �0.02 �0.00 �0.01 �0.02 0.02

Rel. err. Bxy (%) �0.02 �0.02 0.14 0.13 0.16 0.07
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more and more significant. This is clearly an effect of the viscous proportional damping that
increases with the excitation frequency, and the coupling effect increases accordingly.

3.4. Reference results—general identification

Tables 3 and 4 show, respectively, the identification results for plates with low and high
damping in terms of relative errors between the identified and reference values. Two simple
deflection virtual fields are used for this purpose: u�

1 ¼ d þ x2ð1þ jÞ and u�
2 ¼ d þ y2ð1þ jÞ:

The results are very good, except for the low damped plate at the highest frequency. This
confirms the feasibility of the technique and proves that the virtual fields chosen are suitable
enough to extract the unknown parameters.

3.5. Reference results—simplified identification

The 2� 2 linear system of Eq. (44) and the simplified equation (48) are used with the simulated
responses and the two virtual fields: u�

1 ¼ d þ x2ð1þ jÞ and u�2 ¼ d þ y2ð1þ jÞ; which exhibit
identical real and imaginary parts according to the assumption necessary to derive Eq. (48).
Tables 5 and 6 show the results, respectively, for the low and highly damped plates. The � � ��

marks are reported when the identification leads to unrealistic results.
In the first case, since the damping effects are low, at resonance the stiffness forces balance the

inertial ones. Therefore, correct identifications of the stiffness components are possible. In the case
of high damping and because of the coupling effect, there is not the same balance and the
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Table 5

Plate with low damping—reference simplified identification with u�1 and u�2

Freq. (Hz)

26.4 68.9 149.5 313.9 379.8 531.0

Rel. err. Dxx (%) �0.01 �0.04 0.01 �0.12 �0.36 0.55

Rel. err. Dxy (%) �0.02 �0.04 �0.00 �0.18 0.12 1.53

Rel. err. b (%) �0.22 **** **** **** **** ****

Table 6

Plate with high damping—reference simplified identification with u�1 and u�2

Freq. (Hz)

26.4 68.9 149.5 313.9 379.8 531.0

Rel. err. Dxx (%) �0.05 14.18 **** **** **** ****

Rel. err. Dxy (%) �1.15 **** **** **** **** ****

Rel. err. b (%) �0.96 **** **** **** **** ****
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identification generally leads to unrealistic results. However, since the damping used here is
proportional, it has a smaller effect at low frequency, which is the reason why the identification
performed at the first resonance leads to correct results.

3.6. Stability with respect to measurement noise

Since the present procedure will be used in experimental applications, it is necessary to check its
stability with respect to noise provided by the measurement set-up. For this purpose, random
perturbations from normal distributions have been added to each element curvature and
deflection independently. The level of the perturbations has been chosen as 15% of the peak-to-
peak values of the corresponding curvatures and deflections. The presented results are the
averages of 30 calculations, each time with a new set of noisy data, using the same two virtual
fields u�1 ¼ d þ x2ð1þ jÞ and u�

2 ¼ d þ y2ð1þ jÞ: It must be pointed out that this is a rather crude
approach to noise simulation, but the purpose here is just to illustrate the stability features of the
method. More elaborate simulations will be carried out in the future, using the methodology
developed in Ref. [33]. Moreover, the experimental implementation presently underway will
enable to characterize more accurately the nature of the noise and, therefore, to better simulate its
effect on the identified parameters.

3.6.1. General identifications with noise
Tables 7 and 8 report the coefficients of variation of the identified components respectively for

the low and highly damped plates. It can be seen that the method is rather stable, particularly
when the damping is high. It must be emphasized here that the sensitivity to noise will be reduced
by using the optimized special virtual fields developed in Ref. [33].
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Table 8

Plate with high damping—general identification with noise, using u�1 and u�2

Freq. (Hz)

26.4 68.9 149.5 313.9 379.8 531.0

C. var. Dxx (%) 1.57 2.90 5.29 4.54 6.58 8.27

C. var. Dxy (%) 3.16 5.93 15.54 13.11 **** ****

C. var. Bxx (%) 1.49 7.27 4.81 2.64 3.51 4.62

C. var. Bxy (%) 2.79 24.06 15.88 14.25 15.29 14.10

Table 7

Plate with low damping—general identification with noise, using u�1 and u�2

Freq. (Hz)

26.4 68.9 149.5 313.9 379.8 531.0

C. var. Dxx (%) 1.36 5.65 1.73 1.14 13.72 20.12

C. var. Dxy (%) 2.84 16.11 3.21 2.24 24.82 23.80

C. var. Bxx (%) 1.30 17.98 8.07 12.86 29.09 ****

C. var. Bxy (%) 2.87 **** 17.77 **** **** ****

Table 9

Plate with low damping—simplified identification with noise, using u�1 and u�2

Freq. (Hz)

26.4 68.9 149.5 313.9 379.8 531.0

C. var. Dxx (%) 1.72 6.81 1.57 0.95 19.46 18.81

C. var. Dxy (%) 3.00 19.38 3.48 1.82 32.51 26.40

C. var. b (%) 0.08 **** **** **** **** ****

Table 10

Plate with high damping—simplified identification with noise, using u�1 and u�2

Freq. (Hz)

26.4 68.9 149.5 313.9 379.8 531.0

C. var. Dxx (%) 1.72 **** **** **** **** ****

C. var. Dxy (%) 3.00 **** **** **** **** ****

C. var. b (%) 0.08 **** **** **** **** ****
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3.6.2. Simplified identifications with noise

Using the same data as in Section 4.4, simplified identifications of stiffness components and
damping factor were attempted with Eqs. (44) and (48).
Tables 9 and 10 show, respectively, the results corresponding to the low and highly damped

plates.
The results for the first one remain correct concerning the stiffness components. They confirm

the experimental results obtained in Refs. [12,13] using carbon/epoxy composite plates that
exhibit moderate damping.
In the future, it would be interesting to investigate the domain of applicability of the simplified

approach leading to Eq. (48). Indeed, in this case, only deflection measurements are needed which
are easier to perform than curvature measurements. The simplified approach could therefore be a
very useful, simple and robust method to measure damping on slender panels.
4. Simulation—identification out of resonances

4.1. Introduction

Since the complex expression of the harmonic responses introduced in Section 2.1 needs no
particular assumption, it remains valid for any frequency of excitation. Therefore, Eqs. (34) and
(33) set in Section 2.6 must be verified at resonance and out of resonance so that using linear
system (43) derived from these equations, identification of stiffness and damping is possible out of
resonance.

4.2. Simulated harmonic responses

Figs. 4 and 5 show, respectively, for the low damped and highly damped plates, the real and
imaginary parts of the operational deflection shapes of the plate due to harmonic excitation of six
equally spaced frequencies.
In the same manner as in the previous Figs. 2 and 3, the central and right-hand-side columns

show the real and imaginary parts of the responses with the same scale on each line. The minimum
and maximum values of deflections, respectively, associated to black and white colours, are
reported under each line. The corresponding excitation frequencies are indicated between the two
columns. The first six mode shapes are recalled in the left-hand-side column with associated
resonance frequencies.
It is interesting to note that, for the low damped plate (Fig. 4), the real response is predominant

over the imaginary response, except for the third frequency, because it is close to a resonance
frequency of the undamped plate, so that this mode is nearly resonant. This is also the reason why
the shape of the imaginary part of the response is nearly the same as the corresponding mode.
Since the damping is low, there is no significant contribution of the non-resonant modes in the
vicinity of the resonance, whereas the phase variation of the response is very sharp. Since the
excitation frequency is not exactly the resonance frequency, the phase of the response is not p=2;
which explains that the response has significant real and imaginary components with the same
patterns.
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Fig. 4. Plate with low damping. Excitation out of resonance. Real and imaginary parts of the responses.
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On the contrary, in Fig. 5, because of the high damping effects, the contribution of the non-
resonant modes is significant and the shape of the real response to the third excitation frequency is
quite different from the imaginary one.

4.3. Reference results

The following results come from calculations with the entry data provided by finite element
simulations.
Tables 11 and 12 report the identification results out of resonance, respectively, for the low and

highly damped plate using the following virtual fields: u�1 and u�2:
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It can be seen that all unknowns are identified correctly, except for the damping parameters for
the second frequency and the low damped plate. Again, it is confirmed that it is easier to identify
the damping in the case of the highly damped plate, which is what was expected.

4.4. Results with noisy data

The stability of the identification out of resonance has been tested with the same procedure as
that described in section. Tables 13 and 14 show the results for, respectively, the low and highly
damped plates, using the following virtual fields: u�

1 and u�
2: As for the results reported in section, it

can be seen that the results are satisfactory for the high damping but poor for the low damping.
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Table 12

Plate with high damping—reference identifications out of resonances, using u�1 and u�2

Freq. (Hz)

50 100 150 200 250 300

Rel. err. Dxx (%) �0.02 �0.06 �0.11 �0.10 �0.10 �0.08

Rel. err. Dxy (%) �0.01 �0.02 0.16 0.07 �0.09 �0.32

Rel. err. Bxx (%) �0.01 �0.00 �0.00 �0.02 �0.03 �0.02

Rel. err. Bxy (%) �0.03 0.14 0.14 0.17 0.20 0.18

Table 13

Plate with low damping—identifications with noise out of resonances, using u�1 and u�2

Freq. (Hz)

50 100 150 200 250 300

C. var. Dxx (%) 3.47 16.52 1.14 20.45 52.49 16.46

C. var. Dxy (%) 10.17 **** 2.82 **** **** ****

C. var. Bxx (%) 5.31 **** **** **** **** ****

C. var. Bxy (%) 25.18 **** **** **** **** ****

Table 14

Plate with high damping—identifications with noise out of resonances, using u�1 and u�2

Freq. (Hz)

50 100 150 200 250 300

C. var. Dxx (%) 2.74 2.75 4.07 5.01 6.50 7.13

C. var. Dxy (%) 8.12 7.65 14.78 16.35 19.57 ****

C. var. Bxx (%) 2.99 4.00 3.89 2.60 2.54 3.33

C. var. Bxy (%) 13.75 8.32 14.19 11.49 11.84 11.98

Table 11

Plate with low damping—reference identifications out of resonances, using u�1 and u�2

Freq. (Hz)

50 100 150 200 250 300

Rel. err. Dxx (%) �0.02 �0.25 �0.02 �0.02 �0.07 �0.29

Rel. err. Dxy (%) �0.00 �0.75 0.01 0.15 0.14 �0.15

Rel. err. Bxx (%) �0.02 3.54 0.10 0.55 �0.46 0.34

Rel. err. Bxy (%) �0.04 12.07 0.03 1.85 �1.77 �0.46
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Table 17

Plate with low damping—identifications with noise out of resonances, using u�3 and u�4

Freq. (Hz)

50 100 150 200 250 300

C. var. Dxx (%) 5.80 24.39 0.87 22.57 **** 25.24

C. var. Dxy (%) 26.05 **** 2.97 **** **** ****

C. var. Bxx (%) 16.78 **** **** **** **** ****

C. var. Bxy (%) **** **** **** **** **** ****

Table 18

Plate with high damping—identifications with noise out of resonances, using u�3 and u�4

Freq. (Hz)

50 100 150 200 250 300

C. var. Dxx (%) 3.53 2.72 1.84 2.70 4.05 5.70

C. var. Dxy (%) 13.26 8.87 6.01 9.22 15.04 21.95

C. var. Bxx (%) 6.64 4.07 2.28 2.11 2.21 2.04

C. var. Bxy (%) 21.03 13.66 7.67 7.82 7.87 6.76

Table 15

Plate with low damping—identifications with noise out of resonances, using u�1 and u�4

Freq. (Hz)

50 100 150 200 250 300

C. var. Dxx (%) 5.25 23.19 1.05 **** **** 23.90

C. var. Dxy (%) 21.65 **** 3.89 **** **** ****

C. var. Bxx (%) 19.71 **** **** **** **** ****

C. var. Bxy (%) **** **** **** **** **** ****

Table 16

Plate with high damping—identifications with noise out of resonances, using u�1 and u�4

Freq. (Hz)

50 100 150 200 250 300

C. var. Dxx (%) 2.56 2.36 2.30 2.86 4.37 4.58

C. var. Dxy (%) 9.78 7.68 8.09 9.81 15.71 17.00

C. var. Bxx (%) 3.40 2.95 1.53 1.77 2.42 2.32

C. var. Bxy (%) 13.69 10.34 5.28 6.37 8.49 8.38
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Since these results are highly dependent on the choice of the virtual fields, two other
combinations of virtual fields have been tried. Tables 15 and 16 report the results obtained with
u�
1 ¼ d þ x2ð1þ jÞ and u�4 ¼ d þ xyð1þ jÞ; and Tables 17 and 18, that obtained with u�

3 ¼

d þ x2 þ jy2 and u�
4 ¼ d þ xyð1þ jÞ: No significant improvement can be seen, although small

differences exist. The next step is to use optimized virtual fields as defined in Ref. [33].
5. Conclusion

The present paper is the first attempt at proposing a novel procedure to derive both stiffness
and damping parameters from forced vibrating isotropic plates. The key feature is that
displacement and curvature fields can be measured at different times over the whole surface of the
plate by a suitable optical technique. As a consequence, the virtual fields method (VFM) provides
sets of equations relating the stiffness and damping parameters to these measured fields and to
geometric and excitation (frequency, amplitude) parameters.
The main advantage of the present method is that it does not rely on strong assumptions on the

response of the plate and can even be applied out of resonance. It is also independent of the shape
of the plate. In particular, it can be a very powerful tool to investigate the frequency dependence
of damping for a wide range of materials. It is also interesting to note that simplified formulae
have been obtained to derive the damping ratio as a function of the deflection field only. This
approach is very attractive and its domain of applicability will have to be more closely
investigated.
In the future, the extension of the present approach to anisotropic plates will be performed, in

order to test fibre composites or laminates used as panels in the bodies of vehicles. The numerical
performance of the method will be increased by adopting the latest developments of the VFM [33]
and by designing optimized test configurations in the same spirit as in Ref. [34], but using a
different technique based on the sensitivity indicators in Ref. [33]. Finally, the experimental
implementation of the technique is underway using a deflectometry technique (slope measure-
ments) based on the reflection of a grid in the tested plate [35,36]. Preliminary results have shown
the feasibility of this technique for application on vibrating plates [37].
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[12] M. Grédiac, P.-A. Paris, Direct identification of elastic constants of anisotropic plates by modal analysis:

theoretical and numerical aspects, Journal of Sound and Vibration 193 (3) (1996) 401–415.
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