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Abstract

In this paper, feedforward active noise control (ANC) using a neural network (NN) based on filtered-
error back-propagation (BP) algorithm is considered. The filtered-error BP NN (FEBPNN) algorithm is
first derived, and the difference between the FEBPNN algorithm and the filtered-X BP NN (FXBPNN)
algorithm is given to show that the FEBPNN algorithm offers computational advantage over the
FXBPNN algorithm. Computer simulations are carried out to compare the FEBPNN algorithm with the
filtered-X least mean square (FXLMS) algorithm and the FXBPNN algorithm. The controllers based on
the FEBPNN algorithm and the FXLMS algorithm are implemented on a Texas Instruments digital signal
processor (DSP) TMS320VC33. The simulations and the experimental verification tests show that the
FEBPNN algorithm performs as well as the FXLMS algorithm for a linear control problem, and better for
a nonlinear control problem, at the same time, the simulations and the experimental verification tests also
show that the convergence rate of the FEBPNN is acceptable, and the FEBPNN has better tracking ability
under changes of the primal signal, the primary path and the secondary path. The experiments also lead to
the conclusion that more work is required to improve the predictability and consistency of the performance
of the NN controller based on the FEBPNN algorithm.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Based on the rapid progress of high-speed and low-cost computing devices such as digital signal
processor (DSP), digital active noise control (ANC) techniques have been receiving much
attention because of the better performance over conventional passive methods in attenuating
low-frequency noises [1]. A broadband feedforward ANC system in a duct is shown in Fig. 1 [2],
where a reference microphone is used to pick up the reference input signal. The reference input
signal xðnÞ is in turn processed by the ANC system to generate the control signal yðnÞ of equal
amplitude but 180� out of phase from the reference input signal. The control signal is used to drive
the canceling loudspeaker to attenuate the primary acoustic noise in the duct. The error signal eðnÞ

is used to adjust the controller parameters. The most common form of adaptive algorithm/
architecture combination is a transversal finite impulse response (FIR) filter using the filtered-X
least mean square (FXLMS) algorithm [1], which has been widely used in a variety of practical
applications over the past decades. But, such a system is only limited to linear control problems.
When the ANC system comprises nonlinear components (such as, when the control actuator
exhibits nonlinear response characteristics, the preamplifier is in saturation, or the reference input
signal is distorted, etc.), the linear controller will not work well.
In these cases, a nonlinear adaptive control scheme may prove superior to a linear one. The

feedforward neural network (NN) is a perfect control technology for nonlinear systems, and has
been used in various systems with nonlinearity [3]. For active control of sound and vibration, the
feedforward NN based on back-propagation (BP) algorithm has been investigated by several
researchers and experimental investigations have been made [4–7]. It would seem likely that such
an architecture/algorithm combination would be employed to perform the previously mentioned
nonlinear active control tasks, where the NN would be trained to derive an output signal which
would cancel the noise. Of course, owing to the inclusion of the tapped delay line input to the
transfer function model, the standard BP algorithm cannot be used directly in the ANC system, so
it must be modified to enable adaptation of the NN controller for use in feedforward ANC
systems [4].
The back-propagation NN (BPNN) algorithm is modified to be appropriate for ANC systems.

The reference signal is filtered by the estimate of the secondary path transfer function, and since
the reference signal is generally denoted as x, so in this paper, it is referred to as filtered-X BPNN
(FXBPNN) algorithm. One drawback to this algorithm is that it has relatively high
computational load. In practical implementations, this means that a higher clock rate DSP is
required, especially when a higher sampling frequency is required or the NN is required to
noise
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Fig. 1. Feedforward ANC system in a duct.
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expand. To solve the above problem, a filtered-error BPNN (FEBPNN) algorithm is proposed
here. As the term suggests, instead of reference signal xðnÞ; the error signal eðnÞ is filtered by the
estimate of the secondary path transfer function. It can reduce the computational load greatly,
which will be discussed in detail in this paper.
This paper is organized as follows. Section 2 shows the details of the FEBPNN algorithm for

implementing a feedforward NN in the ANC system. The simulation results in using the proposed
FEBPNN algorithm and other conventional algorithms in canceling noise over nonlinear primary
noise path are shown in Section 3. This is followed by the experimental testing of the ANC system
based on FEBPNN algorithm and comparison with the FXLMS algorithm in Section 4. The
results show that the FEBPNN algorithm is effective for nonlinear control problems. Finally, a
qualitative discussion of the performance of the FEBPNN implementation in the feedforward
ANC system is discussed in Section 5, and concludes in Section 6.
2. BPNN algorithms development

The block diagram of a feedforward ANC system using the NN algorithm and the NN
controller with a single hidden layer are shown in Figs. 2 and 3, respectively. The primary path,
PðZÞ is from the reference microphone to the error microphone, the secondary path, SðZÞ is from
the canceling loudspeaker to the error microphone.
It is obvious that the existence of the secondary path transfer function SðZÞ must be taken into

account when adapting the control system if adaptive algorithm stability is to be maintained [4].
For simplicity, assuming that the secondary path is linear and time-invariant, it is a usual practice
to identify the secondary path off-line during a training stage. During the active canceling mode
(on-line), a fixed transfer function, HðZÞ (where HðZÞ ¼ ŜðZÞ) is used. The secondary path
identification is introduced in Ref. [8], where the secondary path transfer function is modeled as a
FIR filter. The objective of this section is to develop adaptive algorithms based on the BPNN to
improve the noise cancellation capability of a nonlinear system. Two algorithms, namely,
FXBPNN and FEBPNN will be described in the following sections.

2.1. FXBPNN algorithm

In order to compare the FEBPNN algorithm with the FXBPNN algorithm, the FXBPNN
algorithm will first be derived, in fact, the FXBPNN is simply an extension of the linear FXLMS
P(Z)

S(Z)

x(n)

y(n)

e(n)d(n)

u(n)

+

+

neural network
controller

Fig. 2. Block diagram of ANC system using the NN algorithm.
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algorithm as having only a single output layer with a single node, having a linear nodal output
function [4], it is also a form of gradient descent algorithm in which the error signal is used to
adjust the weights in the output and hidden layers. The error is back-propagated from the output
to the input of the NN to adjust its weights.
The error criterion of the controller is to minimize the mean square value of the error signal

eðnÞ:

minE½e2ðnÞ�: (1)

For practicality, the instantaneous estimate of squared error is used to approximate the mean
square value of the error signal eðnÞ; so that the error criterion actually employed in the algorithm
derivation is [4]:

min e2ðnÞ: (2)

The FXBPNN algorithm is implemented in two stages, (A) forward and (B) backward
propagation as follows:

ðAÞ Forward propagation:
Step (1): Input the reference signal X ðnÞ and the error signal eðnÞ:
Where X ðnÞ ¼ ½xðnÞxðn � 1Þ . . . xðn � ðI � 1ÞÞ�T is the vector of reference signal samples at time

n; eðnÞ is the error signal at time n, and I is the number of the input layer neurons.
Step (2): Calculate the output of the hidden layer qjðnÞ:

qjðnÞ ¼ f j½netjðnÞ�; (3)

where netjðnÞ ¼
PI�1

i¼0 wijðnÞxðn � iÞ:

W IJðnÞ ¼

w00ðnÞ w01ðnÞ w0J�2ðnÞ

w10ðnÞ w11ðnÞ w1J�2ðnÞ

wI�10ðnÞ wI�11ðnÞ wI�1J�2ðnÞ

2
64

3
75

is the matrix of weights in the hidden layer.
qjðnÞ is the output of the jth hidden layer neuron.
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f ð:Þ is a smoothing nonlinear activation function.

qJ�1ðnÞ ¼ �1:

j ¼ 0; 1; . . . ; J � 2:

J is the number of the hidden layer neurons.
Step (3): Calculate the output of the output layer uðnÞ:

uðnÞ ¼
XJ�1
j¼0

½vjðnÞqjðnÞ� ¼ V0ðnÞQðnÞ; (4)

where uðnÞ is the output of the output layer at time n.
V0ðnÞ ¼ ½v0ðnÞ v1ðnÞ . . . vJ�1ðnÞ� is the vector of weights in the output layer.
QðnÞ ¼ ½q0ðnÞ q1ðnÞ . . . qJ�1ðnÞ�

T is the vector of the output of the hidden layer.
Step (4): Calculate the output of the system yðnÞ:

yðnÞ ¼
XM�1

j¼0

sjðnÞuðn � jÞ ¼ SðnÞUðnÞ; (5)

where SðnÞ ¼ ½s0ðnÞ s1ðnÞ . . . sM�1ðnÞ� is the secondary path model, whose z-transform is SðzÞ:
UðnÞ ¼ ½uðnÞ uðn � 1Þ . . . uðn � ðM � 1ÞÞ�T is the vector of the output of the output layer.
M is the length of the secondary path.

ðBÞ Back propagation:
Using Eq. (2), the cost function is defined as

JðnÞ ¼ 1
2

e2ðnÞ ¼ 1
2
½yðnÞ þ dðnÞ�2: (6)

The gradient descent algorithm is employed to adjust the weights of the control system. The
weights are updated by adding a negative gradient of the error criterion with respect to the weights
of interest

W ðn þ 1Þ ¼ W ðnÞ � mDW ðnÞ; (7)

where m is the learning rate (step size).
Noting that the primary disturbance dðnÞ is in no way a function of the weights of the control

system, the gradient estimate used in the adaptive algorithm is

DW ðnÞ ¼
qJðnÞ

qW ðnÞ
¼ eðnÞ

qyðnÞ

qW ðnÞ
: (8)

The aim of the following analysis, based upon the preceding framework, is to find a solution to
Eq. (8) for each weight in the NN controller. The solution can then be substituted into the
gradient descent algorithm of Eq. (7) to adapt each weight in the control system.

Step (1): Update the weights in the output layer of the NN controller vjðnÞ as

qyðnÞ

qvjðnÞ
¼

XM�1

i¼0

hi
qyðn � iÞ

qvjðnÞ
; j ¼ 0; 1; . . . ; J � 1; (9)
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where H ¼ ½h0 h1 . . . hM�1� is the Mth-order impulse response of the secondary path model,
whose z-transform is HðzÞ; which is estimated during training stage prior to the start of the ANC.
Assuming that the weights of the NN controller vjðnÞ are made to adapt slowly with time, then

the following approximate estimation is used:

quðn � iÞ

qvjðnÞ
	

quðn � iÞ

qvjðn � iÞ
: (10)

Such that

quðn � iÞ

qvjðnÞ
	

quðn � iÞ

qvjðn � iÞ
¼

q½V0ðn � iÞQðn � iÞ�

qvjðn � iÞ
¼ qjðn � iÞ: (11)

Substituting Eq. (11) into Eq. (9) results in

qyðnÞ

qvjðnÞ
¼

XM�1

i¼0

hiqjðn � iÞ: (12)

Thus the adaptation algorithm of the weights in the output layer can be written as

vjðn þ 1Þ ¼ vjðnÞ � meðnÞ
XM�1

i¼0

hiqjðn � iÞ; j ¼ 0; 1; . . . ; J � 1: (13)

Step (2): Update the weights in the hidden layer of the NN controller W IJðnÞ:

qyðnÞ

qwijðnÞ
¼

XM�1

k¼0

hk

quðn � kÞ

qwijðnÞ
; i ¼ 0; 1; . . . ; I � 1; j ¼ 0; 1; . . . ; J � 2: (14)

Assuming that the weights of the NN W IJðnÞ are made to adapt slowly with time, the following
approximate estimation is used:

quðn � kÞ

qwijðnÞ
	

quðn � kÞ

qwijðn � kÞ
: (15)

Noting that according to Fig. 3, the weights in the output layer vjðn � kÞ is in no way a function
of the weights in the hidden layer, so

quðn � kÞ

qwijðnÞ
	

quðn � kÞ

qwijðn � kÞ
¼

q½V0ðn � kÞQðn � kÞ�

qwijðn � kÞ
¼ vjðn � kÞ

qqjðn � kÞ

qwijðn � kÞ
: (16)

Recalling that qjðnÞ ¼ f j½netjðnÞ� then

qqjðn � kÞ

qwijðn � kÞ
¼ f 0

jðnetjðn � kÞÞ
qnetjðn � kÞ

qwijðn � kÞ
; (17)

qnetjðn � kÞ

qwijðn � kÞ
¼ xðn � i � kÞ: (18)
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Substituting Eqs. (16), (17) and (18) into Eq. (14) results in

qyðnÞ

qwijðnÞ
¼

XM�1

k¼0

hkvjðn � kÞf 0
jðnetjðn � kÞÞxðn � i � kÞ: (19)

Thus the adaptation algorithm of the weights in the hidden layer can be written as

wijðn þ 1Þ ¼ wijðnÞ � meðnÞ
XM�1

k¼0

hkvjðn � kÞf 0
jðnetjðn � kÞÞxðn � i � kÞ;

i ¼ 0; 1; . . . ; I � 1; j ¼ 0; 1; . . . ; J � 2: (20)

From Eqs. (13) and (20), it can be seen that in the feedforward ANC system, the reference
signal (for the hidden layer, the reference signal is xðn � iÞ; for the output layer, the reference
signal is qjðnÞ) is filtered by the estimate of the secondary path transfer function H (i.e., the
reference signal is convolved with hj). Therefore, this algorithm is called the filtered-reference
BPNN algorithm, or the FXBPNN algorithm.

2.2. FEBPNN algorithm

In contrast to the FXBPNN algorithm, the FEBPNN algorithm takes into account of the
presence of the plant response in the feedforward control problem by filtering the error signal,
instead of filtering the reference signal. The filtered-error LMS algorithm for a linear system has
been derived by Elliott [5], on the basis of this, the FEBPNN algorithm is derived in the following
analysis. Since only the formulae that are used to update the weights are different between the
FXBPNN algorithm and the FEBPNN algorithm, so only the weight-updating equations of the
FEBPNN algorithm are given here.

Step (1): Update the weights in the output layer of the NN vjðnÞ:
Using Eqs. (8), (12), then

DvjðnÞ ¼ eðnÞ
XM�1

i¼0

hiqjðn � iÞ: (21)

Recalling Eq. (1), then the derivative of the time-averaged square error with respect to the jth
weight in the output layer can be written as

lim
N!1

1

2N

XN

n¼�N

qJðnÞ

qvjðnÞ
¼ lim

N!1

1

2N

XN

n¼�N

eðnÞ
XM�1

i¼0

hiqjðn � iÞ

" #
: (22)

It is also possible to rewritten Eq. (22) in an alternative form by defining a dummy time variable

k ¼ n � i so that n ¼ k þ i: (23)

Eq. (22) can now be expressed as

lim
N!1

1

2N

XN

n¼�N

qJðnÞ

qvjðnÞ
¼ lim

N!1

1

2N

XM�1

i¼0

XN

kþi¼�N

qjðkÞhieðk þ iÞ: (24)
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The signal f ðkÞ that would be obtained by noncausally filtering the error signal with the time-
reversed impulse response of the plant is now defined to be

f ðkÞ ¼
XM�1

i¼0

hieðk þ iÞ: (25)

It is also noted that because i is always finite, the summation from �N to N as N tends to1 on
the right-hand side of Eq. (24) will be the same for k ¼ �1 to 1 as for k þ i ¼ �1 to 1: The
time-averaged derivative in Eq. (24) can thus be written as

lim
N!1

1

2N

XN

n¼�N

qJðnÞ

qvjðnÞ
¼ lim

N!1

1

2N

XN

n¼�N

f ðnÞqjðnÞ: (26)

The problem with using Eq. (26) in a real-time algorithm is that an instantaneous estimate of
f ðnÞ in Eq. (25) cannot be implemented with a causal system. This problem can be overcome by
delaying both f ðnÞ and qjðnÞ in Eq. (26) by M � 1 samples. The final form of the FEBPNN
algorithm for the output layer is obtained by adapting the controller’s coefficients with an
instantaneous version of the derivative given by Eq. (26) delayed by M � 1 samples, which can be
written as

vjðn þ 1Þ ¼ vjðnÞ � mf ðn � M þ 1Þqjðn � M þ 1Þ: (27)

The delayed filtered-error signal, which would be used in practice, is equal to

f ðn � M þ 1Þ ¼
XM�1

i¼0

hieðn þ i � M þ 1Þ: (28)

Let i0 ¼ M � 1� i; then

f ðn � M þ 1Þ ¼
XM�1

i0¼0

hM�1�i0eðn � i0Þ: (29)

The error signal is now causally filtered using a time-reversed version of the secondary path
impulse response. Therefore, the weights in the output layer of the FEBPNN algorithm can be
updated as shown:

vjðn þ 1Þ ¼ vjðnÞ � mqjðn � M þ 1Þ
XM�1

i¼0

hM�1�ieðn � iÞ; j ¼ 0; 1; . . . ; J � 1: (30)

Step (2): Update the weights in the hidden layer of the NN W IJðnÞ:
Using the similar method as in Eq. (20), we can derive the formula for updating the weights in

the hidden layer of the NN W IJðnÞ as

wijðn þ 1Þ ¼ wijðnÞ � mvjðn � M þ 1Þf 0
jðnetjðn � M þ 1ÞÞxðn � i � M þ 1Þ

XM�1

k¼0

hM�1�keðn � kÞ;

i ¼ 0; 1; . . . ; I � 1; j ¼ 0; 1; . . . ; J � 2: (31)

Then the weights in the hidden layer of the FEBPNN algorithm can be updated by using Eq. (31).
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If the z-transform of the secondary path model is written as

HðzÞ ¼
XM�1

i¼0

hiz
�i: (32)

Then the transfer function of the filter required to generate the delayed filtered error signal
f ðn � M þ 1Þ from the error signal eðnÞ can be written as

z�Mþ1Hðz�1Þ ¼
XM�1

i¼0

hiz
i�1�M : (33)

Fig. 4 shows the block diagram of the complete FEBPNN algorithm.
2.3. Comparison of the two algorithms

It is necessary to compare the two algorithms to show that the FEBPNN algorithm offer
computational advantage over the FXBPNN algorithm. It is obvious that for the FEBPNN
algorithm, the M (the length of the secondary path) filtered error signals are involved in Eqs. (30)
and (31). Considering the case with I input layer nodes and the J hidden layer nodes, the number
of the multiplication operations required per sample to update the weights in the output layer is
about M þ J; and the number of the multiplication operations required per sample to update the
weights in the hidden layer is about M þ ð2þ IÞðJ � 1Þ: In contrast, for the FXBPNN algorithm
using Eqs. (13) and (20), the number of the multiplication operations required per sample to
update the weights in the output layer is about JM þ J; and the number of the multiplication
operations required per sample to update the weights in hidden layer is about ð3M þ 1ÞðJ � 1ÞI :
For example when using M=256, J=15 and I=25, the FXBPNN and FEBPNN algorithms
require about 2 73 005 and 905 multiplications per sample for its implementation, respectively. So
in terms of their computational efficiency, the FEBPNN algorithm is far superior to the FXBPNN
algorithm.
In the limit of very slow adaptation, the conditions to ensure stability for the FEBPNN are

similar to that of the FXBPNN algorithm [5]. The details were reported in Ref. [9], and only the
result is given here.
P(Z)

S(Z)

x(n)

y(n)

e(n)d(n)

u(n)

+

+

Z-M+1 Z-M+1H(Z-1)

neural network
controller

Fig. 4. Block diagram of the FEBPNN algorithm.
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Theorem. Let m be the learning rate for the weights of the FEBPNN, we define gmax ¼ maxnkGðnÞk;
g0 ¼ kHk; where k � k is the norm of matrix or vector, H ¼ ½h0; h1; . . . ; hM�1� is the coefficients of the
secondary path model, GðnÞ ¼ qUðnÞ=qW ðnÞ; W ¼ ½WT;VT� is weight matrix. If the learning rate m
is chosen as 0omo2=ðg0gmaxÞ

2; then the local stability of closed-loop control system based on the

FEBPNN is guaranteed.

It is obvious that the weights are updated along negative gradient direction of the error, so if the
learning rate is small enough, the error would descend.

3. Simulation examples

Some simulations are presented to illustrate the properties of the FEBPNN algorithm, and at
the same time, a comparison between the FXBPNN algorithm, the FEBPNN algorithm, and the
FXLMS algorithm is made. The sampling rate used in this simulation is 1000Hz. A 50Hz
sinusoidal signal is superimposed onto a white noise signal, which is used to generate the primary
disturbance signal via second-order low-pass filter, with a cutoff frequency of 350Hz, and also to
generate the reference signal available to the control algorithm. A 16-tap FIR filter is used in the
FXLMS algorithm, the number of neurons in the FEBPNN algorithm and the FXBPNN
algorithm is set as 10-4-1.

Case 1: A linear ANC example is first considered to illustrate the FEBPNN algorithm
effectiveness by comparison with the results given by others. The acoustic paths are chosen as
follows:
The primary acoustic path from noise source to error microphone is [9]

dðn þ 1Þ ¼ 0:8xðn � 6Þ þ 0:6xðn � 7Þ � 0:2xðn � 8Þ � 0:5xðn � 9Þ

� 0:1xðn � 10Þ þ 0:4xðn � 11Þ � 0:05xðn � 12Þ:

The secondary acoustic path from secondary source to error microphone is [9]

yðn þ 1Þ ¼ 0:9uðn � 2Þ þ 0:6uðn � 3Þ þ 0:1uðn � 4Þ � 0:4uðn � 5Þ � 0:1uðn � 6Þ

þ 0:2uðn � 7Þ þ 0:1uðn � 8Þ þ 0:01uðn � 9Þ þ 0:001uðn � 10Þ:

Fig. 5 gives the simulation result of the canceling errors in the frequency domain. The upper
curve shows the power spectrum of active noise canceling error when the ANC system turns off,
and the dashed-line curve shows the power spectrum of active noise canceling error when the
FXLMS algorithm is used to adapt the coefficients of the controller. The thin solid line shows the
power spectrum of active noise canceling error when the FXBPNN algorithm is used to adapt the
coefficients of the controller, while the thick solid line shows the power spectrum of active noise
canceling error when the FEBPNN algorithm is used to adapt the coefficients of the controller.
From the results shown in Fig. 5, it can be seen that the three algorithms have a similar
performance for a linear control problem. But, to achieve the similar canceling error, the number
of iterations required by the FEBPNN and the FXBPNN algorithms is twice as long as in the
FXLMS algorithm (in this case, the number of iterations for the FEBPNN algorithm and the
FXBPNN algorithm is 20 000, while the number of iterations for the FXLMS algorithm is
10 000).
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Case 2: An ANC example with nonlinear primary acoustic path is selected to illustrate the
effectiveness of the three algorithms. The acoustic path is chosen as follows:
The primary acoustic path from noise source to error microphone is

dðn þ 1Þ ¼ 0:8xðn � 6Þ þ 0:6xðn � 7Þ � 0:2xðn � 8Þ � 0:5xðn � 9Þ � 0:1xðn � 10Þ

þ 0:4xðn � 11Þ � 0:05xðn � 12Þ þ 2:5x3ðn � 6Þ:

The secondary acoustic path from secondary source to error microphone is the same as that for
linear case.
Fig. 6 gives the simulation result of the canceling errors in the frequency domain. The number

of iterations is 18 000. The same line notations as in the previous case are used here. From the
results shown in Fig. 6, it can be seen that all the three algorithms can reduce the 50Hz pure tone
sinusoidal signal and white noise signal. But only the FXBPNN and the FEBPNN algorithms are
effective on the harmonic noise signal caused by nonlinearity. Simulations of the two algorithms
also suggest that the two algorithms have a similar performance. Considering the computational
load shown in the previous section, the FEBPNN algorithm is a more practical method. Fig. 7
shows the mean square error in error microphone versus the number of iterations, from the result
shown in Fig. 7, it can be seen that the converge rate of the FEBPNN is acceptable. Other
simulations are followed to illustrate the performance of the FEBPNN.

Case 3: On the basis of case 2, the primary signal is changed after the system has entered into
steady-state phase. Fig. 8 shows the mean square error in error microphone versus the number of
iterations. When the number of iterations is equal to 3000, the primary signal is changed from a
50Hz sinusoidal signal superimposed onto a white noise signal to a 75Hz sinusoidal signal
superimposed onto a white noise signal.

Case 4: To continue with this line of simulation, after the system has entered into steady-state
phase, the secondary path is regulated by increasing a delay of 2 unit samples. Fig. 9 shows the
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Fig. 6. Power spectrum of active noise canceling errors for nonlinear case.

Fig. 7. The mean square error in error microphone versus the number of iterations.
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mean square error in error microphone versus the number of iterations. When the number of
iterations is equal to 2000, the secondary path is changed.

Case 5: On the basis of case 2, after the system has entered into steady-state phase, the primary
path is regulated by letting dðnÞ ¼ �dðnÞ: Fig. 10 shows the mean square error in error
microphone versus the number of iterations. When the number of iterations is equal to 3000, the
primary path is changed.
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Fig. 8. The mean square error in error microphone versus the number of iterations when the primary signal is changed.

Fig. 9. The mean square error in error microphone versus the number of iterations when the second path is changed.

Y.-L. Zhou et al. / Journal of Sound and Vibration 285 (2005) 1–25 13
From the results shown in Figs. 8–10, it can be seen that the system has better tracking ability
under changes of the primary signal, the primary path, the secondary path. Based on the
simulation results, the FEBPNN algorithm is employed to reduce the harmonic noise signal
caused by nonlinearity in the following experimental implementation.
4. Experimental implementation

4.1. Experimental setup

Now that the FEBPNN algorithm used in feedforward ANC system has been derived and
verified by simulations, the next step is to verify the performance in an experimental setup. The
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Fig. 10. The mean square error in error microphone versus the number of iterations when the primary path is changed.
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test-bed chosen for this was a simple one-dimensional duct made of wood, with two loudspeakers
whose resistance is 8O and diameter is 16 cm. And two PZM86 microphones. The primary
loudspeaker was used to generate the primary disturbance signal, and the canceling loudspeaker
was used to generate the anti-noise signal. The reference microphone was used to measure the
reference input signal, and the error microphone was used to measure the residual error signal.
Fig. 11 shows the overall block diagram of the ANC system. Fig. 12A shows the photos of the
duct used, Fig. 12B is the DSP platform in which the A/D converter AD7865 and the D/A
converter AD7840 are included, and Fig. 12C is the signal processing board in which the filter
MAX296, the amplifier MAX422 and the switched-mode power supply HAD2.5-5-N are
included. The noise propagating down the duct was sampled by the upstream reference
microphone and adaptively altered in the electronic feedforward path to produce the anti-noise
signal to minimize the acoustic energy at the downstream error microphone. The length of the
duct is 210 cm, and the cross-section is 20 cm� 18 cm; the distance between the reference
microphone and the canceling loudspeaker is set to be 135 cm, such that the causality constraint is
met [10]. The cutoff frequency of the duct for ð1; 0Þ mode is about 858Hz [11], in order to ensure
that the acoustic wave propagates in the duct in the form of the plane-wave, the control
bandwidth was limited to 800Hz. The controller was implemented on a TI floating-point DSP
TMS320VC33 and the TI C-language was used to implement the algorithm. The reference signal
and the error signal measured by the corresponding microphone were first amplified by a amplifier
MAX422, then filtered by a eighth-order Bessel low-pass filters MAX296 with cutoff frequency of
800Hz and then converted from analog to digital by a AD7865, and finally processed by the DSP.
The primary disturbance signal and the anti-noise signal outputted from DSP were first converted
from digital to analog signal by AD7840, then smoothed by a eighth-order Bessel low-pass filters
MAX296 with cutoff frequency of 800Hz, then amplified by the HY5885B power amplifier, which
was used to drive the corresponding loudspeakers. The gain level of the preamplifier could be fine-
tuned to improve its performance.The sampling rate for the implementation was chosen to be
2 kHz, which satisfied the Nyquist criterion for sampling signals.
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Fig. 12. The experimental duct system of active noise attenuation. (A) The duct, (B) the DSP platform, (C) signal

processing board.
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Fig. 11. The schematic diagram of ANC system.
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This experimental setup was selected both for convenience and simplicity. The aim of the
experiments was purely to verify that the FEBPNN algorithm was capable of minimizing the
harmonic noise signal caused by nonlinearity.
The frequency response characteristics of the duct are shown in Figs. 13 and 14, where Fig. 13

gives the frequency response of the primary path, and Fig. 14 gives the frequency response of the
secondary path.

4.2. Secondary path identification

As mentioned above, the secondary path must be identified off-line during a training stage prior
to the start of the ANC operation. The block diagram of the off-line secondary path modeling is
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Fig. 13. Frequency response of primary path PðZÞ:

Fig. 14. Frequency response of secondary path SðZÞ:
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shown in Fig. 15. The secondary path SðzÞ comprises the D/A converter, reconstruction filter,
power amplifier, canceling loudspeaker, acoustic path from the canceling loudspeaker to error
microphone, error microphone, anti-aliasing filter, and A/D converter. The secondary path
transfer function was modeled as a 256-tap FIR filter, the entire off-line modeling took about 20 s.
Fig. 16 gives the amplitude of the practical output of the system eðnÞ; the output of the adaptive
filter rðnÞ and the residual error signal e0ðnÞ for the last 200 sampling periods. Fig. 17 gives the
power spectrum of the secondary path estimate, and the impulse response of the secondary path is
shown in Fig. 18. From the results shown in Figs. 16 and 17, it can be seen that the transfer
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Fig. 16. Amplitude of secondary path output. (a) The amplitude of eðnÞ; (b) the amplitude of rðnÞ; (c) the amplitude of
e0ðnÞ:
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Fig. 15. The block diagram of the off-line secondary path identification.
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function HðzÞ is almost the same as the unknown transfer function SðzÞ: From the result shown in
Fig. 18, it can be seen that the secondary path can be modeled using an FIR filter having 256
coefficients operating at a sampling rate of 2 kHz, and it is obvious that a delay of 5 unit samples
exists in the secondary path.
4.3. Active noise cancelation

Once the secondary path has been identified exactly, the FEBPNN algorithm is used to
attenuate the primary noise. The number of neurons used in the NN is 25-15-1. Two types of
nodal output function were used. For the output node, the function was linear, providing the
control signals with the capacity to vary over the positive/negative range required for control. For
the hidden node, a sigmoidal nonlinear output function was used:

f ðxÞ ¼
1� e�x

1þ e�x
: (34)
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Fig. 17. Power spectrum of secondary path SðZÞ:

Fig. 18. Impulse response of secondary path SðZÞ:
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For comparative purposes, a 32-tap FIR filter controller adapted using the FXLMS algorithm
was also implemented. The variable step size mðnÞ was used for both the FEBPNN algorithm and
the FXLMS algorithm, and was given by the following equation [2]:

mðnÞ ¼
a

PxðL þ DÞ
; (35)

where 0oao1; Px is the normalized power of the input signal. For the FEBPNN algorithm, L is
the length of the tap-delay line in the reference input signal, whereas, for the FXLMS algorithm, L
is the order of the filter. D is the number of samples corresponding to the overall delay in the
secondary path. In this experiment, a was selected as 0.0198 and 0.0118 for the FEBPNN and the
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Fig. 19. The output signal of the error microphone.

Fig. 20. Error signal spectrum for linear case.
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FXLMS algorithm, respectively. It was found from the experiments that the system itself exhibits
nonlinear characteristics when the amplitude of the primary noise is increased to a certain degree,
so the nonlinearity was introduced into the experimental arrangement by increasing the amplitude
of the primary noise, to further strengthen the relative intensity of the nonlinearity, the
preamplifier of the error microphone was adjusted to ensure that it is driven to saturation. Fig. 19
shows the error microphone output signal when a 200Hz pure tone sinusoidal signal is used as the
input noise signal.

Case 1: The first case to consider is a simple linear one, the error signal spectrum during
primary excitation and under control with a 200Hz pure tone sinusoidal signal disturbance is
shown in Fig. 20. From the results shown in Fig. 20, it can be seen that the control achieved by
using the NN controller looks identical to the linear control case.
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Although the NN algorithm is mainly used in nonlinear systems, it is important that how
effective it works on linear case for two reasons: first, it demonstrates that the architecture/
algorithm combination works, at least for a linear case. Second, if the NN is used to supplant
linear filters in adaptive feedforward active control systems, it must be able to handle linear
control problems effectively [4].

Case 2: The second case investigates the nonlinear performance of the linear and FEBPNN-
based controller. The nonlinearity was introduced into the experimental arrangement by
increasing the amplitude of the primary noise, and the preamplifier of the error microphone was
driven to saturation. The resultant error signal spectrum for nonlinear case is shown in Fig. 21.
From the results shown in Fig. 21, it can be seen that the NN controller performance is vastly
superior to that of the linear controller. Not only was the primary tone level reduced, but also the
harmonic noise in the spectrum was reduced. Fig. 22 shows the error signal in error microphone
versus the number of iterations, from the result shown in Fig. 22, it can be seen that the
convergence rate of the FEBPNN is acceptable.

Case 3: The third case investigates the tracking ability of the FEBPNN-based controller. The
primary signal was changed after the system had entered into steady-state phase. Fig. 23 shows
the error signal in error microphone versus the number of iterations. Due to being limited by the
memory space of the DSP, it is not possible to record the entire change procedure of the error
signal, so in Fig. 23, the number of iterations is not continuous, the curve between 0 and 100
iterations shows the error signal when the ANC system turns off, the curve between 25 000 and
25 750 iterations shows the error signal when the ANC system turns on and has entered into
steady-state phase, at this time, the disturbance signal is a 200Hz sinusoidal signal. When the
number of iterations is equal to 25 750, the disturbance signal was changed from a 200Hz
sinusoidal signal to a 55Hz sinusoidal signal, the curve between 25 750 and 26 000 iterations
shows the error signal during first 250 iterations after the disturbance signal was changed, the
Fig. 21. Error signal spectrum for nonlinear case.
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Fig. 23. Error signal versus number of iterations when the primary signal is changed.

Fig. 22. Error signal versus number of iterations.
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curve between 51 000 and 51 500 iterations shows the error signal after the system had entered into
steady-state phase again. From the results shown in Fig. 23, it can be seen that the system has
better robust performance under change of the primary signal.

Case 4: As discussed in previous sections, the secondary path is estimated off-line prior to the
operation of the ANC system. For some applications, the secondary path may be time varying,
and it is desirable to estimate the secondary path on-line when the ANC system is in operation.
So, the fourth case investigates the self-adaptive ability of the FEBPNN-based controller when
the secondary path is time varying.
An on-line secondary path modeling technique using additive random noise is illustrated in

Fig. 24 [2], a zero-mean white noise vðnÞ is internally generated and is added to the secondary
signal uðnÞ to drive the secondary source. The adaptive filter HðZÞ using LMS algorithm is
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connected in parallel with the secondary path SðZÞ; however, the input signal used for HðZÞ is the
random noise vðnÞ only.
The FEBPNN algorithm with an on-line secondary path modeling (OSPM) using additive

random noise is as follows:

Step (1): Input the reference signal X ðnÞ and the error signal eðnÞ:
Step (2): Calculate the output of the FEBPNN-based controller uðnÞ:
Step (3): Calculate the summation of the output of the FEBPNN-based controller uðnÞ and the

additive random noise vðnÞ:
Step (4): Output the signal uðnÞ þ vðnÞ to drive the secondary source.

hiðn þ 1Þ ¼ hiðnÞ þ mf ðnÞvðnÞ

¼ hiðnÞ þ mvðnÞ½dðnÞ þ yðnÞ þ cðnÞ � rðnÞ�

¼ hiðnÞ þ mvðnÞ½cðnÞ � rðnÞ� þ mvðnÞbðnÞ; ð36Þ

where bðnÞ ¼ dðnÞ þ yðnÞ ¼ dðnÞ þ uðnÞsðnÞ; indicate the component of the error due to the original
noise .

Step (5): Update the weights of the adaptive filter HðZÞ using LMS algorithm.
Step (6): Update the weights in the output layer of the FEBPNN-based controller using Eq.

(30).
Step (7): Update the weights in the hidden layer of the FEBPNN-based controller using Eq.

(31).
Step (8): Repeat the procedure for the next iteration.

Fig. 25 shows the error signal in error microphone versus the number of iterations. Similar to
case 3, due to being limited by the memory space of the DSP, the number of iterations is not
continuous; the curve between 0 and 100 iterations shows the error signal when the ANC system
turns off, the curve between 1 80 000 and 1 80 500 iterations shows the error signal when the ANC
system turns on and has entered into steady-state phase, at this time, the distance between the
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Fig. 24. Block diagram of ANC system based on FEBPNN with on-line secondary path modeling using additive

random noise.



ARTICLE IN PRESS

Fig. 25. Error signal versus number of iterations when the secondary path is changed.
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error microphone and the canceling loudspeaker is set to be 50 cm. When the number of iterations
is equal to 1 80 500, move the error microphone such that the distance between the error
microphone and the canceling loudspeaker is 10 cm, the curve between 1 80 500 and 1 80 750
iterations shows the error signal during first 250 iterations after the secondary path was changed,
the curve between 4 30 000 and 4 30 400 iterations shows the error signal after the system has
entered into steady-state phase again. From the results shown in Fig. 25, it can be seen that the
system can resist disturbance and has better robust performance under change of the secondary
path. However compared to the results using the off-line secondary path estimation, it was found
that the convergence rate of the FEBPNN with OSPM is slower than that of the FEBPNN with
off-line secondary path modeling, the reason is that for on-line modeling, bðnÞ acts like an
uncorrelated plant noise, after convergence, this residual noise due to bðnÞ will perturb the
adaptive weights ofHðZÞ; resulting in a misalignment. In most ANC applications, the interference
bðnÞ is much larger than the excitation signal vðnÞ and the convergence rate of filter HðZÞ is
therefore very slow. In other words, it is obvious that the undesired term m vðnÞbðnÞ in Eq. (36) is a
disturbance that is frustrating convergence of the LMS algorithm and therefore degrade the
performance of the adaptive filter HðZÞ:
5. Discussion of results

The experimental results presented in the previous section clearly demonstrated the ability of
the NN based on the FEBPNN algorithm to provide significant levels of noise attenuation in a
feedforward active control scheme. From the experimental results shown in Figs. 20 and 21,
attenuation of the FEBPNN algorithm was seen to be equal in performance to the linear control
scheme for a linear control problem, and to be superior to the linear control scheme when the
control problem has some inherent nonlinearity.
Although the NN based on the FEBPNN algorithm has aforementioned advantages, there are

many theoretical and practical problems needed to be resolved. First of all, the principle problem
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is a lack of predictability and consistency of the NN. For a given set of conditions, and due to the
local minimum in the error criterion, the levels of noise control obtained may not be consistent.
The random initial weights were not sufficient to enable the algorithm to avoid getting trapped in
it. Next, in spite of the universal approximation theorem which states that a continuous
feedforward NN with a single hidden layer can approximate nonlinear mappings arbitrarily well
[12,13], many theoretical issues are still not fully resolved for multilayer NN: for example, the
number of neurons needed in a single hidden layer to achieve a given accuracy of approximation
to a nonlinear function, the number of layers needed to give the most efficient approximation to a
nonlinear function, or how the weights in these neurons should be optimally determined [5].
Therefore, based on the experimental work conducted and presented in this paper, the following
can be said: the NN based on the FEBPNN algorithm for feedforward ANC shows the potential
to equal in performance to the linear control scheme for a linear control problem and to have
superior performance for nonlinear problems.
6. Conclusions

The NN controller based on the FEBPNN algorithm has been developed for use in feedforward
ANC schemes. Some simulations were presented to compare the FXBPNN algorithm, the
FEBPNN algorithm, and the FXLMS algorithm. Following this, the NN controller based on the
FEBPNN algorithm was implemented on a Texas Instruments DSP TMS320VC33. For
comparison, a FIR filter controller adapted using the FXLMS algorithm was also implemented
on the same DSP platform, two approaches of implementing the controller are verified
experimentally with a model of a duct system. The simulations and the experimental verification
tests indicated that the NN controller was equal in performance for a linear control problem and
superior for a nonlinear one compared to a linear control scheme. For this to be fully realized,
however, a great deal of work needs to be done. Efforts are being carried out to improve on the
predictability and consistency in using the nonlinear NN controller, and these approaches will be
presented in future papers.
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