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Abstract

Many papers have already been presented about identification of 2D in plane elastic engineering
constants E1, E2, v12 and G12 by inverse methods. Most of the described methods are based on measured
resonance frequencies on plate specimens. Less attention has been paid to the identification of transverse
shear moduli. Especially, validation of the obtained results and error bound estimations are often lacking.
This paper presents an inverse method for the identification of the transverse moduli of test beams by
measured flexural resonance frequencies. The procedure is first illustrated with numerically generated test
data and next applied on experimentally measured results. The sensitivity of the flexural resonance
frequencies for variations of the shear modulus is discussed as well as an estimation of the uncertainty
intervals on the obtained moduli. The results are validated by using the obtained shear moduli for the
prediction of torsional resonance frequencies.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Elastic engineering constants are usually determined by static test methods like tensile, bending,
torsion and shear testing. Many standard tests are described in literature and have proven their
see front matter r 2004 Elsevier Ltd. All rights reserved.
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validity through engineering history. Standard static test methods, however, show some
drawbacks, among which the following:
�
 Uniform stress/strain fields are assumed for the computation of the elastic moduli. Due to
boundary conditions (like clamps and supports), misalignments, geometrical imperfections and
anisotropic coupling effects, the real stress/strain fields are far from perfectly uniform.
�
 Many methods are based on locally measured strains and thus are vulnerable to material
heterogeneities. Test results on fiber-reinforced composite materials for example often exhibit
large scatter for this reason.

Methods based on measured resonance frequencies of free–free specimens do not suffer from
the above-mentioned disadvantages. Resonance frequencies are global properties of the specimens
and wavelengths of the considered modes are usually much larger than the scale of material
heterogeneities in the specimen. Resonance frequency methods hence provide results averaged
over the whole volume of the specimen. By measuring several frequencies associated with different
mode shapes, homogenization is enhanced and redundancy is created.
The principle of inverse methods for material identification is to update iteratively the

engineering constants in a finite element model of the test specimens in such a way that the
computed frequencies match the measured frequencies (see Fig. 1).
The engineering constants that minimize an output residual are considered as the solution of

the procedure. The minimization of the output residual is realized by optimization methods that
minimize a scalar value called ‘‘the objective function’’. A typical objective function is the sum of
the squared residual components.
The underlying idea of inverse methods that are based on measurement of resonance

frequencies originates from the observation that all constructions made with elastic materials have
a characteristic set of resonance frequencies. The value of these frequencies is determined by the
geometry, boundary conditions, the elastic moduli and the density of the used materials. Thus,
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Fig. 1. Principle of an inverse method using measured frequencies.
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inversely, these resonance frequencies can be used as tools to determine the elastic moduli if the
geometry, boundary conditions and the density are assumed to be known.
The first attempt of identification of material properties by an inverse method using vibration

data was proposed by Wolf and Carne in 1979 [1]. They used an empirical plate model of an
isotropic plate specimen with free edges. In 1982, De Wilde and Sol [2–4] used finite element
models and measured resonance frequencies to identify plate rigidities of anisotropic thin plates.
In 1985, Deobald [5,6] used a modal analysis/Rayleigh–Ritz technique of an orthotropic
rectangular plate to obtain estimated values of plates rigidities from measured resonance
frequencies. Frederiksen also applied the same method on identification of material parameters [7]
from thin plates. In 1991, Carne and Martinez identified the elastic material constants of shell
structures [8]. In 1993, Moussu and Nivoit [9] used a modal analysis/method of superposition to
determine the elastic engineering constants of orthotropic thin plates from measured frequencies.
They claimed that the proposed superposition method provided fast and accurate eigenvalues of
orthotropic plates. In 1999, T. C. Lai and Ip [10] used Bayesian sensitivity analysis/Rayleigh–Ritz
method to identify the material properties of orthotropic rectangular thin plate with completely
free boundary conditions.
All the above methods are based on the classical Kirchhoff thin plate theory. The influence of

the transverse shear moduli (G13, G23) was ignored. In order to identify the shear moduli, Hua [11]
studied several models of thick plates and statistical updating methods. In 1995, Frederiksen [12]
extended his work from thin plates to thick plates. He used a high-order shear deformation theory
[13]. In 1996, Marchand, and Authesserre [14] used a statistical analysis method to identify
Young’s moduli and Poisson’s ratio of metals based on a Mindlin theory applied on a circular
plate. They also investigated the influence of temperature on the value of Young’s modulus. In
1996, Grédiac and Paris [15] proposed a virtual displacement method to determine material
constants from measured frequencies and modal shapes of a plate. The proposed method needed
no initial values and no iterations. In 2000, Wang and Kam [16] used a first-order shear
deformation theory and an optimization program to identify transverse shear moduli. In 2000,
Hwang and Chang [17] used Kirchhoff thin plate elements and Mindlin moderate thick plate
elements to build a numerical plate model and used a derivation-based optimization procedure to
identify the transverse shear modulus. In 2001, Rikards et al. [18] combined a finite element
method with model reduction to obtain a mathematical model of a moderate thick plate. The
response surface method was used to optimize the identification function. In 2002, Liu et al. [19]
used a progressive neutral network (NN) to derive material constants from measured
displacements. The method seemed very interesting, but it appeared to be very difficult to train
an NN model for the complex relationship between material properties and dynamic responses in
a wide range of parameters.
A major problem for the identification of transverse shear modulus is the fact that the

frequencies are not sensitive to variations of the transverse shear modulus in plates. Even for a
relatively thick plate, it appeared to be very difficult to identify accurately the shear modulus from
a set of measured frequencies. Therefore, some people tended to use beam specimens for the
identification of the transverse shear modulus. The ASME standard [20] proposes a procedure to
determine material parameters from test beams, but unfortunately, it is only suitable for isotropic
material with an assumed relation between Young’s modulus, Poisson’s ratio and the shear
modulus.
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In 1990, Larsson [21] proposed a procedure to determine the transverse shear modulus of beams
by a kind of diagram method. However, this method appeared to be not convenient for shear
modulus identification. Wanner and Kromp [22] used five flexural frequencies to identify Young’s
modulus and the shear modulus based on approximate Timoshenko beam formulas. The obtained
Young’s modulus was accurate, but the accuracy of the shear modulus was not so good. In 1999,
Lins [23] built a new equipment to identify G at up to a temperature of 20001C. This method was
based on solving the Timoshenko beam characteristic equation with a free–free boundary
equation. Since this characteristic equation is a transcendental equation, it is not so easy and
convenient to find the correct roots. Using numerical methods to solve the transcendental
equation, the accuracy of the obtained shear modulus is in the same order of magnitude as the
results found by Wanner [22].
The goal of this paper is to find a convenient, accurate and simple way to identify the shear

modulus. Therefore an inverse method is selected as the identification tool. The shear modulus
identified from formulas based on Timoshenko beam theory is used as initial value. The used finite
element model is based on Timoshenko beam theory and the Nelder–Mead Simplex (NMSPX)
optimization method [24] is selected as optimization algorithm. Some numerical examples and
experiments are given to illustrate and validate the method. At the end of the paper an error
discussion is given. The first paragraph starts with an overview of the influence of the shear
modulus on flexural beam resonance frequencies.
2. Transverse shear modulus identification by an inverse method

In order to find the transverse shear modulus using an inverse method, several items must be
selected: an accurate numerical model, good initial values, a suitable objective function and a
performing optimization program. The next paragraphs will describe these items one by one in
some detail.

2.1. The finite element model

The correct identification of the material properties with an inverse method requires an accurate
mathematical model. In this section, a finite element model based on the Timoshenko beam
theory is developed. The Timoshenko beam theory takes deformations due to transverse shear
into account in a linearized way. Fig. 2 presents the selected 3 node element.
The column of nodal displacements becomes:

de
¼ ½w1 y1 w2 y2 w3 y3�T. (1)

The shape functions associated to these 3 nodes are expressed in reduced coordinates:

N1 ¼ � 1
2
xð1� xÞ;

N2 ¼ ð1� xÞxð1þ xÞ;

N3 ¼ � 1
2
xð1þ xÞ:

(2)
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Fig. 2. Parabolic (3 node) Timoshenko beam element.
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The displacement and the rotation at any point within the element can be evaluated with

w ¼
X3
i¼1

Niwi, (3)

y ¼
X3
i¼1

Niyi. (4)

The x coordinates can be found by isoparametrical mapping of the reduced coordinates:

x ¼
X3
i¼1

Nixi. (5)

The potential energy equation is

Ep ¼
1

2

ZL=2
L=2

Z
A

Ez2
qy
qx

� �2

dA þ

Z
A

sxz �yþ
qw

qx

� �
dA

2
4

3
5dx. (6)

In order to account for the fact that shear stress is a parabolic distribution on a cross-section, it
is common to introduce a cross-section reduction factor K0 in such a way thatZ

A

sxzdA ¼ K 0AGgxz,

where A is the cross-section area and G is the shear moduli of the material. Eq. (6) becomes

Ep ¼
1

2

ZL=2
L=2

EI
qy
qx

� �2

þ K 0AG �yþ
qw

qx

� �2
" #

dx. (7)

where E is Young’s modulus. I is the moment of area. K0 is 5
6
for beams with rectangle cross-

section. The kinetic energy is

Ek ¼
1

2

ZL=2
L=2

Z
A

rð _u2 þ _w2ÞdA

2
4

3
5dx

¼
1

2

ZL=2
L=2

rI _y
2
þ rA _w2

h i
dx.
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The stiffness matrix K and mass matrix M can be derived from the above formulas with
standard finite element procedures. The above-described finite element model was programmed
on the cryptic platform MATLAB.

2.2. Initial values

For beams with rectangular cross-sections, formulas [22] proposed by Wanner and Kromp can
be used to calculate good initial values of Young’s modulus E and transverse shear modulus G:

ETIM ¼ An þ Bn

ETIM

G
(8)

with

An ¼ EBE 1þ an

t2

L2

� �
,

Bn ¼ EBE bn

t2

L2
� cn

t4

L4

� �
,

EBE ¼
48rp2L4

t2m4
n

f 2
n.

Table 1 lists the constants in the above formulas for the first six flexural mode shape numbers.
Eq. (8) is used to obtain Young’s modulus ETIM and transverse shear modulus G. Eq. (8) must

be evaluated for at least two different sets of values. Different sets can be generated by varying the
length-to-thickness ratio for the same mode number or by selecting other mode shape numbers.

2.3. Optimization process

Optimization methods can minimize the output residual in an inverse method by the selection
of an adequate scalar objective function that contains the residual as a variable. The objective
function selected in this paper can be written as

Objective Function ¼
XN

i¼1

1�
f iA

f iE

� �2

. (9)
Table 1

Constants of free–free Timoshenko beam formulas

Mode No. n Mn An Bn Cn

1 4.7300 4.12 1.23 4.20

2 7.8532 9.08 4.60 32.0

3 10.996 15.6 9.89 122

4 14.137 23.7 17.2 333

5 17.279 33.5 26.4 746

6 20.420 45.0 37.6 1449
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Y. Shi et al. / Journal of Sound and Vibration 285 (2005) 425–442 431
fiA are the ith calculated frequencies with the finite element program and fiE are the experimentally
measured ith frequencies. N is the total number of considered frequencies.
A direct search method called the NM SPX optimization method [24] is selected in this paper.

Fig. 3 shows the flowchart for the complete identification process.
3. Error estimation

3.1. Theoretical derivation of the uncertainty bounds

Consider a numerical model of a test specimen with a relationship between n frequencies, r

target parameters (such as Young’s moduli, shear moduli) and s test specimen parameters (such as
lengths, thicknesses, widths and masses). At given target and test specimen parameter values,
finite uncertainty intervals of frequency valves due to finite target and test specimen uncertainty
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intervals can be approximated as
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The input parameters for the inverse method are the n frequencies and s test specimen
parameters. The relative uncertainties Dp on the r target parameters due to the uncertainties on
the n þ s input parameters can be computed as [25–28]

Dp ¼ sþp �sþp 
 sg

h i Df

Dg

( )
, (11)

where

sþp is the pseudo inverse of sp
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The uncertainty intervals of the input parameters can be stored in a global column Dmf g ¼ Df
Dg

n o
:

The relative contribution of the uncertainty of the jth input parameter on the uncertainty of the
ith identified material parameter can be computed [25–28]:

rij ¼
sij

�� �� 
 DmjPnþs

j¼1

sij

�� �� 
 Dmj

; i ¼ 1; 2; . . . ; r, (13)

with

s½ � ¼ sþp �sþp 
 sg

h i
. (14)
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The relation (13) satisfies the consistency condition:

Xnþs

j¼1

rij ¼ 1; i ¼ 1; 2; . . . ; r. (15)

3.2. Numerical simulations of the uncertainty bounds

In this section, a group of beams is used to map graphically the uncertainty of the identified
material parameters E and G due to uncertainties of measured frequencies, length, width,
thickness and mass. The uncertainty of the identified parameters is numerically studied in the
function of dimensionless parameters E/G (Young’s modulus divided by the shear modulus) and
L/t (Length-to-thickness ratio). The reference properties of the studied beams are arbitrary
selected: a thickness of 0.005m, a width of 0.01m, a Young’s modulus of 2.7E+10Pa and a
density of 1500 kg/m3. The studied beams have all the same reference thickness, width, Young’s
modulus and density, but they have varying lengths and transverse shear moduli. The ratio
between the length and thickness has been varied from 10 to 150. The ratio between Young’s
modulus and the transverse shear modulus varied from 2 to 50. The assumed uncertainties of the
input parameters are listed in Table 2. According to formulas (11) and (13) in Section 3.1, the
relative errors between the uncertainties of material properties and their corresponding identified
values are calculated. Figs. 4 and 5 show the obtained results.
It can be seen from Fig. 4 that, even for a relatively small uncertainty of the input parameters,

the uncertainty of G for beams with a big L/T ratio and a low E/G ratio can be considerable. For
those slender beams, the influence of G on the frequencies is little and consequently the
uncertainty on the obtained G-value becomes high. On the contrary, the obtained uncertainty of G

for the beams with a small L/T ratio and a high E/G ratio is quite small. For those short beams,
the influence of G on the resonance frequencies is obvious. It can be concluded that a sufficient
influence of G on the frequencies is necessary to obtain acceptable small uncertainties on the
identified G-values.
It can be seen from Fig. 5 that the uncertainties on the identified Young’s modulus are much

more constant and low. The relative errors are smaller than 1.5%. The smallest relative errors are
obtained from beams, whose L/T is about 50. For slender beams (L/T is bigger than 50), the
frequencies are low and the uncertainties on the measured frequencies become dominant. On the
contrary, for short beams (L/T is much smaller than 50), the frequencies are higher and this time
the uncertainties of measured geometric parameters such as thickness, length, width and weight
become dominant.
Table 2

The assumed uncertainties on the ‘‘measured’’ input parameters

Parameters Freq-1

(Hz)

Freq-2

(Hz)

Freq-3

(Hz)

Freq-4

(Hz)

Freq-5

(Hz)

Freq-6

(Hz)

Freq-7

(Hz)

Length

(mm)

Width

(mm)

Thickness

(mm)

Mass

(g)

Uncertainties 70.1 70.1 70.1 70.5 70.5 71 71 70.01 70.01 70.01 70.01
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4. Numerical examples

4.1. Numerical example 1

A first step in checking the performance of the inverse method is using ‘‘virtual experimental
frequencies’’ generated with its own numerical model. Hence all experimental errors and model errors
are eliminated. In the first example, the following arbitrary beam information is used for identification:
Length: 0.09090m
 Density: 1464.5 kg/m3
Thickness: 0.00303m
 ‘‘True’’ Young’s modulus: 2.724 E+10Pa

Width: 0.0151m
 ‘‘True’’ Shear modulus: 1.978 E+09Pa
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The initial values for Young’s and shear modulus are obtained with formula (8) as described

in Section 2.2. The frequencies calculated in MATLAB from the above-mentioned beam
information are used as ‘‘virtual experimental frequencies’’:

f1 1606.6Hz f5 18 047Hz
f2 4307.5Hz f6 23 748Hz
f3 8116.1Hz f7 29 726Hz
f4 12 773Hz

From the above ‘‘virtual experimental frequencies’’, the identified results are listed in Table 3.
With different initial values, the identified results appeared to be the same (Table 4):

4.1.1. Discussion

This simple numerical example shows that the inverse method is capable to reproduce exactly
the virtual experiments. With different initial values, as long as the same Timoshenko beam model
is used, the same correct identification results can be derived.

4.2. Numerical example 2

In this example, six beams with almost the same properties except the slight changes of the
transverse shear modulus are used. The properties of those beams are listed in Table 5.
The ‘‘virtual experimental frequencies’’ are calculated from the Timoshenko beam model by

using the properties in Table 5. All results are listed in Table 6. In all the six cases, the identified
values are identical to the theoretical value.

4.2.1. Discussion

From Table 6, it can be seen that even small changes of the shear modulus can be identified by
the Simplex algorithm. The condition of ‘‘virtual experimental frequencies’’ with the correct
numerical model of course remains necessary for this conclusion.
Table 3

Identified results from the frequencies of Timoshenko model

Initial value (Pa) Identified value (Pa) True value (Pa) Relative error (%)

E 2.924e10 2.724e10 2.724e10 0

G 1.518e9 1.978e9 1.978e9 0

Table 4

Identified results from the frequencies of Timoshenko model

Initial value (Pa) Identified value (Pa) True value (Pa) Relative error (%)

E 3.01e10 2.724e10 2.724e10 0

G 2.518e9 1.978e9 1.978e9 0
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Table 5

Six beams with slightly different shear modulus

Beam number Shear modulus (Pa) Other properties

0 1.918 e9 Length: 0.09090m

1 1.918e9�(1+1%) Thickness: 0.00303m

2 1.918e9�(1+2%) Width: 0.01515m

3 1.918e9�(1+3%) Density: 1464.5 kg/m3

4 1.918e9�(1+4%) Young’s modulus: 2.724e10 pa

5 1.918e9�(1+5%)

6 1.918e9�(1+6%)

Table 6

Results from the six beams

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5 Beam 6

Virtual first 7 experimental frequencies (Hz) 1.6063e3 1.6064e3 1.6066e3 1.6067e3 1.6068e3 1.6070e3

4.3077e3 4.3091e3 4.3105e3 4.3118e3 4.3132e3 4.3145e3

8.1194e3 8.1246e3 8.1297e3 8.1347e3 8.1397e3 8.1445e3

1.2783e4 1.2796e4 1.2808e4 1.2821e4 1.2833e4 1.2845e4

1.8069e4 1.8094e4 1.8119e4 1.8143e4 1.8167e4 1.8190e4

2.3785e4 2.3827e4 2.3868e4 2.3908e4 2.3948e4 2.3988e4

2.9785e4 2.9847e4 2.9908e4 2.9969e4 3.0028e4 3.0087e4

Shear modulus changesa (%) 1 2 3 4 5 6

Theoretical E and G (Pa) 2.7224e10 2.7224e10 2.7224e10 2.7224e10 2.7224e 10 2.7224e10

1.9372e9 1.9564e9 1.9755e9 1.9947e9 2.0139e9 2.0330e9

Identified E and G (Pa) 2.7225e10 2.7224e10 2.7225e10 2.7224e10 2.7224e10 2.7225e10

1.9371e9 1.9565e9 1.9754e9 1.9948e9 2.0139e9 2.0331e9

aCompared with beam 0 in Table 5.
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5. Experimental verification

In this section, experimentally measured frequencies of a glass beam are used to identify
Young’s modulus and transverse shear modulus. The error estimation is also performed so as to
find the main source of errors.

5.1. Experimental test on a glass beam specimen

In this section, a real glass beam specimen is used for the experimental validation of the
procedure. An error discussion is followed. Table 7 shows the geometrical and mass properties of
the used beam specimen.
A glass test beam coated with reflective paint is suspended on two thin threads. This

configuration simulates free–free boundary conditions. A loudspeaker and a signal generator are
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used for non-contact excitation with a multisine signal. A Polytec Scanning laser Vibrometer
(PSV) is used to pick up the vibration amplitudes (see Fig. 6). An experimental modal analysis
is next performed using the PSV 7.1 modal analysis package to obtain mode shapes and
resonance frequencies. The first seven flexural frequencies and the first four torsional fre-
quencies are measured. The first seven flexural frequencies are used to identify the Young’s
modulus and the shear modulus of the glass beam test specimen with the inverse method.
The consumed run time for the identification in MATLAB on a Intel Pentium III 863MHz PC
was 95.297.
The results are shown in Table 8. The measured flexural frequencies and the calculated flexural

frequencies (by using the identified Young’s modulus and shear modulus) are listed in Table 9.
It can be seen that in Table 9, the measured and the calculated flexural frequencies match each

other very well. Their relative errors are below 0.08%. The measured torsional frequencies, the
calculated torsional frequencies by using the identified material parameters in ANSYS and their
relative errors are listed in Table 10. In ANSYS, the glass beam is meshed as 5�10�50 by using 20
nodes 3D elements (element type number 95). There are totally 12 531 nodes.
The first torsional frequency could not be identified with the PSV 7.1 software. Probably the

excitation signal was not put in an optimal position for sufficient excitation of this mode shape.
Table 10 shows that, although the material parameters are identified only from the first seven
Table 7

Geometrical and mass properties of the glass beam

Parameters Values

Length (m) 0.30083

Width (m) 0.02993

Thickness (m) 0.00973

Mass (kg) 0.22093

Loudspeaker  Beam specimen

Polytech Scanning Vibrometer 

Fig. 6. Experimental setup.
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Table 8

Identified parameters

Identified parameters Values (Pa)

Young’s modulus E 7.61143E+10

Transverse shear modulus G 3.50319E+10

Table 9

The first seven flexural frequencies

Mode order Measured frequencies (Hz) Calculated frequencies using

identified parameters (Hz)

Relative error (%)

1 605.0 604.6330 0.0607

2 1655.0 1656.1633 �0.0703

3 3215.0 3217.4019 �0.0747

4 5260.0 5256.4159 0.0681

5 7745.0 7741.9060 0.0399

6 10 640.0 10 638.6702 0.0125

7 13 905.0 13 909.9864 �0.0359

Table 10

The first four torsional frequencies

Mode order Measured torsional

frequencies (Hz)

Calculated torsional

frequencies using identified

parameters (Hz) in ANSYS

Relative error (%)

1 — 3.39598E+03 —

2 6.4675E+03 6.81149E+03 �5.3188%

3 9.7400E+03 1.02652E+04 �5.3924%

4 1.3095E+04 1.37743E+04 �5.1877%
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flexural frequencies, the measured and calculated torsional frequencies match also in an
acceptable way. Their relative errors are smaller than 5.5%. This shows that the identified
material parameters are reliable. The layer of reflective paint and the suspension threads probably
contributed to discrepancies between the measured and computed values.

5.2. Error estimation for the moduli obtained with the glass beam test

The proposed method in Section 3.1 is applied to the tested glass beam in Section 5.1. The
values and the uncertainties on the input parameters are listed in Table 11.
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In Table 11, the uncertainty interval of the length, width and thickness is determined by the
used electronic vernier calliper with an accuracy of 0.01mm; the uncertainty interval of mass
is determined by the used electronic balance with an accuracy of 0.01 g; the uncertainty interval
of frequencies is determined by the following facts: (1) the test specimen has good homo-
geneous material properties; (2) machined with proper care; (3) the non-contact excitation
with the loudspeaker and the non-contact measurement with the laser vibrometer on the freely
suspended glass beam; (4) last, but not least, the long-time repeated testing with careful
observation.
It can be remarked that the selected error intervals in Table 11 are taken very small. This is only

allowed if the test specimen has good homogeneous material properties and if it is machined with
proper care. Also, the non-contact excitation with the loudspeaker and the non-contact
measurement with the laser vibrometer on the freely suspended glass beam justify the assumed
small error intervals on the measured frequencies. Based on these intervals and the computed
sensitivities, it is possible to estimate uncertainty intervals on the obtained material properties by
formulas (11) and (13).
The computed uncertainty intervals for the identified material properties are listed in Table 12.
According to Eq. (13) in Section 3.1, the relative contributions of the computed uncertainty of

the input parameters are listed in Table 13.
Table 11

The values and the uncertainty on the input parameters

Value Uncertainty interval Absolute error

Freq-1 (Hz) 605.0 604.9–605.1 70.1

Freq-2 (Hz) 1655.0 1654.9–1655.1 70.1

Freq-3 (Hz) 3215.0 3214.9–3215.1 70.1

Freq-4 (Hz) 5260.0 5259.5–5260.5 70.5

Freq-5 (Hz) 7745.0 7744.5–7745.5 70.5

Freq-6 (Hz) 10 640.0 10 639–10 641 71

Freq-7 (Hz) 13 905.0 13 904–13 906 71

Length (mm) 300.83 300.82–300.84 70.01

Width (mm) 29.93 29.92–29.94 70.01

Thickness (mm) 9.73 9.72–9.74 70.01

Mass (g) 220.93 220.92–220.94 70.01

Table 12

The uncertainty interval for the identified material property

Value Uncertainty interval Abs. error Rel. error (%)

E (GPa) 76.0872 75.8856–76.2888 70.201600 0.2650

G (Gpa) 34.5621 34.364217–34.75998 70.197883 0.5725
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Table 13

The relative contributions of the uncertainty of the input parameters

Freq-1

(%)

Freq-2

(%)

Freq-3

(%)

Freq-4

(%)

Freq-5

(%)

Freq-6

(%)

Freq-7

(%)

Length

(%)

Thickness

(%)

Width

(%)

Mass

(%)

E 0.13981 0.3478 0.5738 3.5823 3.3395 3.2070 5.2247 5.0210 76.8397 0.0036 1.7207

G 0.6931 1.7079 2.7650 16.5899 13.9237 5.8602 43.5292 0.4872 13.7333 0.0246 0.6859
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From the above results, it can be seen that (1) the relative error on G is more than two times the
relative error on E for the same assumed levels of uncertainty; (2) the accuracy of the thickness is
crucial for the uncertainty levels on Young’s modulus; (3) the accuracy of the measured four
highest frequencies is very important for the accuracy on the transverse shear modulus. This
stresses the fact that it is necessary to measure the higher-order flexural frequencies with high
accuracy; (4) the accuracy of the thickness measurement has also considerable influence on the
identified shear modulus.
6. Conclusion

In this paper, it was shown that relatively short beams (low length-to-thickness ratio) with a low
value of the transverse shear modulus G (as compared with Young’s modulus), have a
considerable influence of the transverse shear modulus on their flexural resonance values. This is
especially true for high mode shape numbers.
The paper also showed that it is possible to identify Young’s modulus and transverse shear

modulus with an inverse method, based on measured flexural resonance frequencies. The
proposed procedure can identify the transverse shear modulus and Young’s modulus from the
flexural vibration frequencies of beams with rectangular cross-section with an acceptable
uncertainty interval. The proposed procedure was illustrated with numerically simulated ‘‘virtual
measurements’’ and next applied to a real experiment. Formulas to assess the uncertainty
estimation were derived and graphically illustrated.
It appeared that the accuracy of the measured specimen thickness has a large influence on

the identical material to Young’s modulus. It also appeared that the accuracy of the measured
high-order frequencies is crucial to the uncertainty interval on the identified transverse shear
modulus.
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