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Abstract

We report on multi-frequency energy transfer from a two-mode, initially excited linear system to a multi-
degree-of-freedom (mdof) essentially nonlinear attachment. This occurs through simultaneous resonance
interactions of both linear modes with a set of nonlinear normal modes (NNMs) of the attachment, and is
studied utilizing numerical wavelet transforms. The multi-frequency nonlinear energy transfer discussed
herein differs from multi-frequency energy transfer caused by resonance capture cascading where sequential
energy transfer from a set of linear modes to single-dof nonlinear attachments takes place.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In previous works (for example, Ref. [1]) passive nonlinear and irreversible energy transfer
of broadband vibration energy from a main (linear) damped system to a damped,
see front matter r 2004 Elsevier Ltd. All rights reserved.
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single-degree-of-freedom (sdof) essentially nonlinear attachment has been studied. It was shown
that this irreversible energy transfer is caused by 1:1 resonance capture [2,3] of a mode of the linear
system and the nonlinear attachment. An interesting feature of linear systems with essentially
nonlinear sdof attachments is the possibility of resonance capture cascades, that is, of a sequence
of resonance captures involving the sdof nonlinear attachment and isolated modes of the linear
system. This results in a series of energy pumping events occurring at different frequencies, with
sudden transitions to lower frequencies between sequential events. Such resonance capture
cascades result in multi-frequency energy transfer from the linear system to the sdof nonlinear
attachment, but the energy extraction from the linear modes takes place sequentially and not
simultaneously. This note considers an alternative design based on multi-degree-of-freedom
(mdof) essentially nonlinear attachments that enable simultaneous energy absorption from
multiple modes of the linear system.
2. A new way for multi-frequency nonlinear energy transfer

It was shown previously by Vakakis et al. [1] that sdof essentially nonlinear attachments are
capable of passively absorbing energy from multiple linear modes through resonance capture

cascading. The resulting multi-frequency energy pumping takes place sequentially, as the
nonlinear attachment engages in resonance capture with a linear mode in the neighborhood of its
natural frequency, before engaging the next mode at a different frequency range. It was shown
that resonance capture cascading leads to multi-frequency irreversible energy transfer from the
modes involved to the nonlinear attachment.
An example of a resonance capture cascade is shown in Fig. 1, where the wavelet transform

(WT) of the transient response vðtÞ of an sdof essentially nonlinear attachment weakly attached to
a 2 dof impulsively forced linear oscillator is depicted:

€u1 þ u1ðo2
0 þ 2aÞ � au2 ¼ 0

€u2 þ u2ðo2
0 þ aþ �Þ � au1 � �v ¼ 0

€v þ Cv3 þ �b_v þ �ðv � u2Þ ¼ 0 ð1Þ
Fig. 1. Wavelet analysis of the transient response of an sdof nonlinear attachment engaged in a resonance capture

cascade (frequencies in Hz).
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The parameters used in this particular simulation were a ¼ 1; o0 ¼ 1; b ¼ 2; C ¼ 3 and � ¼ 0:1;
with initial conditions _u1ð0Þ ¼ 25 and all other initial conditions zero. Before we discuss the
dynamics of this system we provide a brief summary of the applied WT algorithm.
The WT can be viewed as a basis for functional representation but is at the same time a

relevant technique for time–frequency analysis. In contrast to the fast Fourier transform
(FFT) which assumes signal stationarity, the WT involves a windowing technique with
variable-sized regions. Small time intervals are considered for high-frequency components
whereas the size of the interval is increased for lower-frequency components, thereby giving
better time and frequency resolutions than the FFT. The Matlab program used for the WT
computations reported in this note was developed at the University of Liège by Dr. V. Lenaerts in
collaboration with Dr. P. Argoul from the ‘‘Ecole Nationale des Ponts et Chaussées’’
(Paris, France). Two types of mother wavelets cM(t) are considered: (a) The Morlet wavelet
which is a Gaussian-windowed complex sinusoid of frequency o0, cMðtÞ ¼ e�t2=2 ejo0t; and (b)
the Cauchy wavelet of order n; cMðtÞ ¼ j=ðt þ jÞ

� �nþ1
; where j ¼ ð�1Þ1=2: The frequency o0

for the Morlet WT and the order n for the Cauchy WT are user-specified parameters
which allow one to tune the frequency and time resolutions of the results. It should be
noted that these two mother wavelets provide similar results when applied to the signals
considered in the present study. The plots shown represent the amplitude of the WT as a
function of frequency (y-axis) and time (x-axis). Heavy shaded areas correspond to regions
where the amplitude of the WT is high whereas lightly shaded regions correspond to low
amplitudes. Such plots enable one to deduce the temporal evolutions of the dominant
frequency components of the signals analyzed. In recent works by Argoul and co-workers
[4–6], the Continuous Cauchy WT was applied to system identification of linear dynamical
systems.
Returning to the dynamics depicted in the plot of Fig. 1, we note that a resonance capture

cascade occurs, whereby, in the initial phase of the motion, the nonlinear attachment resonates
with the higher linear mode, resulting in irreversible energy transfer from this mode to the
nonlinear attachment at the neighborhood of the mode’s natural frequency [1,7]. As energy
decreases due to damping dissipation escape from this initial resonance capture the attachment
engages in resonance with the lower linear mode resulting in energy transfer to the nonlinear
attachment at a lower frequency range. In the final phase of the motion the dynamics escapes
from this second resonance capture and decays to zero due to damping dissipation. The overall
result of this resonance capture cascade is multi-frequency energy transfer from both modes of
the linear subsystem to the nonlinear attachment; however, this energy transfer takes place in a
sequential manner, since the sdof attachment is incapable of simultaneous resonance with
both linear modes.
This leads us naturally to the following question which is the focal point of this note: is it

possible by using mdof nonlinear attachments to extract simultaneously energy from multiple
linear modes, through simultaneous dynamic (resonance) interactions of multiple nonlinear
normal modes (NNMs) of the attachments with multiple modes of the linear system? In an
attempt to answer this question, we modify the attachment, linear system configuration (1), by
considering the system of Fig. 2, composed of a 2dof linear system, weakly connected to a 3dof
essentially nonlinear attachment. Assuming that the two modes of the uncoupled linear
system (for � ¼ 0) possess natural frequencies o1 and o2; the equations of motion of the
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Fig. 2. The mdof system under consideration.
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system are expressed as

€x1 þ �l _x1 þ o2
1 þ

�

2

� �
x1 � �

x2

2
þ v1

� �
¼ 0

€x2 þ �l _x2 þ o2
2 þ

�

2

� �
x2 � �

x1

2
� v1

� �
¼ 0

m€v1 þ �lð_v1 � _v2Þ þ � v1 þ
x2 � x1

2

� �
þ Cðv1 � v2Þ

3
¼ 0

m€v2 þ �lð2_v2 � _v1 � _v3Þ þ Cðv2 � v1Þ
3
þ Cðv2 � v3Þ

3
¼ 0

m€v3 þ �lð_v3 � _v2Þ þ Cðv3 � v2Þ
3
¼ 0 ð2Þ

where the variables x1 and x2 are the linear modal co-ordinates, and vi are the displacements of
the particles of the nonlinear attachment. In the following numerical simulations we consider
initial excitation of the linear part of the system, with the nonlinear attachment being initially at
rest. The aim is to study how energy gets transferred irreversibly (gets pumped) from the directly
excited linear system to the nonlinear attachment, and the frequency content of this energy
interaction.
Before considering energy interactions in the coupled system, it is instructive to discuss the

dynamics of the two degenerate systems resulting in the limit of zero coupling, e.g., as � ! 0: The
degenerate nonlinear attachment possesses three NNMs; these are synchronous free periodic
motions where all coordinates vibrate in-unison in similarity to the modes of classical linear
vibration theory [8]. The first mode possesses zero frequency and corresponds to a rigid-body
mode of the decoupled nonlinear attachment. In addition, there exist an in-phase NNM,
v2ðtÞ � v3ðtÞ½ � ¼ v1ðtÞ � v2ðtÞ½ �; and an out-of-phase NNM, ½v2ðtÞ � v3ðtÞ� ¼ �½v1ðtÞ � v2ðtÞ�: Based
on these observations, we introduce at this point the nonlinear modal coordinates z1ðtÞ; z2ðtÞ and
z3ðtÞ; defined as

z3ðtÞ ¼ ½v2ðtÞ � v3ðtÞ� þ ½v1ðtÞ � v2ðtÞ�; z2ðtÞ ¼ ½v2ðtÞ � v3ðtÞ� � ½v1ðtÞ � v2ðtÞ�

z1ðtÞ ¼ v1ðtÞ þ v2ðtÞ þ v3ðtÞ

which denote the responses of the three NNMs of the decoupled nonlinear attachment. We note at
this point that the nonlinear modal coordinates ziðtÞ cannot be used to decouple the equations of
motion of the degenerate (decoupled) nonlinear attachment, since the principle of superposition
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does not hold in the nonlinear case. These coordinates are utilized only as a means to monitor the
responses of the NNMs of the nonlinear attachment, in an effort to study the frequency content of
the energy extraction from the linear system. The corresponding backbone curves (e.g., the
frequency-energy dependences) of the modes of the two degenerate systems are depicted in Fig. 3.
At crossing points between different backbone curves (such as points A, B and C in Fig. 3)
internal resonances may occur, since at these points the frequency of one of the NNMs becomes
identical to the natural frequency of one of the linear modes.
When coupling is introduced (�40), the combined system is expected to possess NNMs that

result as perturbations of the aforementioned modes of the two degenerate linear and nonlinear
components. The resulting dynamics are expected to exhibit complicated behavior due to the
dynamic interaction of the linear and essentially nonlinear components; close to points of internal
resonances bifurcations of NNMs [1] occur that further complicate the dynamics. In Fig. 4 we
depict the transient responses of the system of Fig. 2 with parameters,

� ¼ 0:25; C ¼ 0:15; l ¼ 0:1; m ¼ 0:33; o1 ¼ 1; o2 ¼
ffiffiffi
3

p

and initial conditions, _x1ð0Þ ¼ 5; _x2ð0Þ ¼ �5 with all other initial conditions zero. This
corresponds to initial excitation of the anti-phase mode of the linear system. Comparing the
responses of the linear and nonlinear components, we observe that the nonlinear attachment
passively absorbs vibration energy from the directly excited linear system; moreover, this energy is
absorbed in multiple frequencies, an indication of the complex dynamic interaction between the
linear and nonlinear components. In Figs. 4c and d we depict the FFTs of the nonlinear modal
responses z2ðtÞ and z3ðtÞ; from which we deduce the presence of strong frequency components
close to the natural frequencies of both linear modes (e.g., the eigenfrequencies of the modes of the
degenerate linear subsystem).
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Fig. 3. Normal modes of the two uncoupled subsystems (� ¼ 0): - - - - -, linear______, nonlinear modes.
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Fig. 4. Transient responses of the coupled system: (a) x1ðtÞ; - - - - -; z2ðtÞ;
______; (b) x2ðtÞ; - - - - -; z3ðtÞ;

______; (c) FFT of

z2ðtÞ; (d) FFT of z3ðtÞ:
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The multi-frequency nature of the energy transfer to the nonlinear attachment becomes
apparent by studying the frequency–time plots depicted in Fig. 5, depicting the WTs of the
transient nonlinear responses z2ðtÞ and z3ðtÞ of Fig. 4. Considering these WTs we note the
following:
(a)
 The out-of-phase NNM of the nonlinear attachment (corresponding to coordinate z3ðtÞ)
absorbs energy at three basic frequencies, two of which are close to the natural frequencies of
the linear in-phase and out-of-phase modes (of the linear subsystem), and one is lower. Hence,
this NNM appears to resonate simultaneously with both linear modes, extracting energy
simultaneously from both. The additional lower frequency indicates the presence of an
essentially nonlinear mode that exists in the coupled system; as shown in Ref. [1] in systems of
this type, composed of weakly coupled linear and nonlinear components, there can exist
numerous branches of stable and unstable NNMs resulting from bifurcations near points of
internal resonance.
(b)
 The in-phase NNM (corresponding to coordinate z2ðtÞ) exhibits similar behavior, though
its interaction with the out-of-phase linear mode takes place after some time delay. However,
this mode also absorbs energy in a multi-frequency fashion, resonating with both linear
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Fig. 5. Wavelet analysis of the transient responses of the nonlinear subsystem of the coupled system (frequencies in Hz):

(a) z3ðtÞ; (b) z2ðtÞ:
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modes; the presence of the lower NNM is again noted in this in-phase nonlinear modal
response.
(c)
 The WTs provide important information not only on the frequency contents of the nonlinear
modal responses (compare the WT results with the FFTs of the same transient signals
presented in Fig. 4), but also on the temporal evolution of each individual frequency
component as the interaction between the linear and nonlinear subsystems progresses in time.
This underlines the usefulness of the WT in analyzing essentially nonlinear dynamical
interactions of the type considered herein.
In order to fully understand the dynamical mechanism that governs the interaction between the
linear and the essentially nonlinear components, one must perform an analytical study of the
resonance interactions (and possibly, captures) between the different linear and nonlinear modes
of the system in different frequency ranges. This analytical study could be performed using the
analytical techniques developed by Panagopoulos et al. [7] and Vakakis et al. [1].
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3. Concluding remarks

The reported results indicate that mdof essentially nonlinear attachments can extract energy
from linear systems in a multi-frequency fashion, through simultaneous dynamic interactions of
multiple modes of the nonlinear attachment with multiple modes of the linear system. This form
of multi-frequency energy exchange is different from the resonance capture cascades encountered
in previous works, where energy extraction to sdof nonlinear attachments occurs in a sequential
manner.
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