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Abstract

The complex frequencies of a viscous spherical drop where part of the free surface is embedded in a rigid
spherical cap of the same radius have been determined as a function of the cap angle and the free surface
tension parameter. With increasing cap angle a; the oscillation frequencies and decay magnitudes increase.
This is also true for liquid drops of larger surface tension parameters. It also could be found, as has been
found previously for a free floating sphere of viscous liquid, that the oscillations may cease to exist for
certain diameters and low surface tension parameters, a fact not present in the treatment of frictionless
liquid. In such cases, the captured liquid globule performs just an aperiodic motion. Three different liquid
systems have been considered. In addition, the response of a captured spherical drop due to harmonically
forced vertical translational excitation of the cap has been determined. Only a liquid sphere embedded in a
spherical cap of the same radius has been evaluated numerically. The results reveal that for the mode n ¼ 1
the geometry of a liquid sphere in a spherical cap of equal radius represents—depending on the magnitude a
of the cap—for small surface tension parameters sn � sar=Z2; a stable configuration, while for large sn-
values the spherical geometry is unstable, indicating that for those large cases the free liquid surface
assumes a different geometry.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

Ān � D̄n coefficients of Eq. (9)
An � Dn coefficients of Eqs. (10) and (11), An �

Ān=a2

a radius of drop
b radius of core or center sphere
Ēn; F̄ n coefficients of Eq. (8)
In;Kn modified Bessel functions
i imaginary unit
k radius ratio for annular drop � b=a

m angular mode number
Oh Ohnesorge-number
p pressure
~Res capillary Reynolds-number

r;W;j coordinate system
s complex frequency (¼ s̄þ iō), S ¼ sa2=n
t time
Pm

n ðcos WÞ associated Legendre function

u; u;w velocity components of drop
(~u ¼ u~er þ u~eW þ w~ej) in radial-, meridio-
nal- and angular direction, respectively

V0 drop volume
x; y; z coordinate system
Z0 amplitude of excitation force in z direc-

tion ðZ̄0 � Z0n=a2Þ

a cap area of drop: 0oaop ðā ¼ a=pÞ
z free surface displacement from equili-

brium position r ¼ a

Z dynamic viscosity
n kinematic viscosity ð¼ Z=rÞ
r density of drop
s surface tension ðs� � sa=rn2 ¼ ð ~ResÞ

2
¼

ðOhÞ�2Þ

trW; trj shear stresses
c stream function
O circular forcing frequency ðO� ¼ iOa2=nÞ
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1. Introduction

The drastically reduced gravity force in a microgravity environment makes surface tension the
major force influencing the motion of liquids. As the force of gravity approaches zero, the
equilibrium position of a liquid drop assumes a perfect spherical geometry. The behavior of a
freely floating or captured liquid system finds application not only in mechanical sciences and
metallurgy but also in chemical engineering, nuclear fission as well as in geological and
astrophysical engineering. In recent years, fluid dynamics problems concerning the sphere and the
so-called liquid bridge, i.e. cylindrical liquid column attached to a top- and bottom disc of the
same diameter as the liquid column have been subject to intense investigations in zero gravity. The
liquid in such studies was always considered incompressible and was either frictionless, viscous or
visco-elastic. In addition, some investigations treated spinning columns that rotated about the
longitudinal axis in order to find a reduced wave pattern on the cylindrical free liquid surface.
A viscous drop partially embedded in a spherical cap has not been treated and attracts already

by its sheer existence some intellectual curiosity. A captured liquid drop is described here by a
spherical globule where part of the free surface is embedded in a rigid spherical part of the same
radius. The dynamical behavior of such a system is important to solidification processes of a
molten material or just to a liquid drop, of which part of the free liquid surface is replaced by a
solid spherical cap. The paper treats the vibrational behavior of a liquid globule in partial contact
with a spherical cap. It investigates the prerequisites for some prospects that will be offered by
future Spacelab- and Space station-Missions, where the growing and possibly manufacturing of
crystals of high pureness and homogeneity in a zero- or micro-gravity environment may be
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attempted. Such crystal growth experiments have previously already been performed for
cylindrical configurations, i.e. liquid bridges in some Skylab and Spacelab flights and seem to
promise a successful manufacturing procedure for mono-crystals. To grow and produce, however,
pure crystals of high quality, it is necessary to investigate the vibrational behavior and its
detrimental effects on a growing crystal and estimate a more favorable vibrational environment
for the growth procedure, that has to be observed for proper manufacturing. The embedded liquid
sphere exhibits, due to the reduced free surface area of the liquid, increased natural frequencies as
well as drastically changed mode shapes.
A remarkable series of experiments on these and related problems have been performed by

Plateau [1] in the years from 1843 to 1869. In 1879, Lord Rayleigh [2,3] investigated the vibrations
of a liquid mass of spherical configuration and determined the natural frequencies of modes being
symmetric to an axis of the sphere. Later Lamb [4] gave a slightly generalized result by assuming
that the sphere with density r2 is surrounded by an infinite liquid medium of density r1: For a
small viscosity of the liquid, Lamb [5] presented its influence upon the frequency of oscillations.
Immersed freely floating viscous drops have been treated in Refs. [6,7]. A large variety of spherical
configurations has been treated for frictionless liquid by Bauer [8]. The natural frequencies and
stability of some basic spherical liquid systems have also been presented for inviscid and viscous
liquids in Ref. [9], in which in addition to Ref. [10] a few cases of immiscible spherical liquid
arrangement have been considered.
But in addition, results for nonlinear motion of capillary surface waves have been presented in

Refs. [11,12] and in 1973 a numerical treatment of the problem has been performed [13] for large
amplitude vibrations. Some investigations have also been performed for freely floating liquid
spheres consisting of visco-elastic material [14–16]. Including viscosity in the treatment shows that
some configurations, i.e., the magnitude of the liquid surface tension parameter s� � sa=rn2 and
the magnitude of the diameter 2a of the liquid sphere yield only aperiodic motion for the liquid
system. For liquid spheres partly captured and embedded in a rigid spherical cap exhibiting the
same radius as the drop, the oscillatory behavior of an inviscid liquid has been investigated for
various configurations in Ref. [17]. It was found that with increasing cap angle a the natural
frequencies increase, exhibiting also larger increases for higher modes. In addition the mode
shapes are drastically changed. A new mode shape in the presence of a cap was detected. It is the
mode corresponding to the mode shape of zero frequency in a freely floating drop, where the
motion describes the rigid body motion of the sphere without change of the free surface area of
the drop. For a liquid sphere embedded in a spherical cap, this mode n ¼ 1 definitely exhibits
during oscillation a change of the free surface area. In addition, the response of the captured
sphere due to harmonically forced translational excitation of the cap in two major directions has
been investigated in that paper [17].
The behavior of a viscous liquid sphere in partial contact with a solid spherical cap of the same

radius has not been studied yet. Therefore the following paper investigates the oscillatory- and
decay behavior of a viscous and partly embedded liquid sphere in a cap of the same radius under
zero-gravity condition. The complex natural frequencies are determined as a function of the
magnitude of the rigid cap angle a and the free surface tension s�; where s� could also be
considered as the square of the capillary Reynolds number s� ¼ ð ~ResÞ

2 or as the often used
Ohnesorge number s� ¼ ðOhÞ�2: The results are compared with the results of the frictionless case
as well as with the freely floating viscous sphere ða ¼ 0Þ:
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2. Basic equations

A spherical drop of volume V0 ¼
4p
3

a3 or an annular drop of volume V0 ¼
4p
3

a3ð1� k3Þ ðk ¼

b=aÞ is in a zero-gravity environment and is partly captured by a spherical wall of the same radius
a, covering a certain given range in the meridian coordinate W (Fig. 1). If subjected to a
disturbance, the captured liquid globule will perform damped oscillations. The following shall
investigate axisymmetric oscillations of such systems for a viscous liquid. No assumption is made
with respect to the contact angle, i.e., whether the liquid is hydrophilic (wetting) or hydrophobic
(non-wetting). We assume that the liquid is anchored at the rim of the cap.
If the liquid is incompressible and viscous, exhibiting the density r and performing oscillations

with small free surface displacements z ðjz=aj51Þ and small velocities, the motion of such a
captured liquid globule system is described by the Stokes equation

q~u
qt

þ
1

r
grad p þ n curl curl~u ¼ 0 (1)

and the continuity equation

div~u ¼ 0: (2)

These equations have to be solved with the appropriate boundary conditions of vanishing
velocities (adhesive conditions) at the spherical walls, and vanishing shear stress trW ¼ trj ¼ 0 at
the free surface ranges, as well as the combined free surface condition

qp

qt
� 2Z

q2u
qrqt

þ
s
a2

2u þ
1

sin W
q
qW

sin W
qu

qW

� �
þ

1

sin2 W

q2u
qj2

� �
¼ 0; (3)

at the ranges of the free liquid surface areas. The solutions of these equations constitute the free
oscillation problem of a given captured liquid globule system. They will reveal the damped natural
frequencies of the oscillation modes as a function of the size of the rigid cap (in which the liquid
globule is embedded) and shall present the course of these complex frequencies with the increase
of the surface tension parameter or capillary Reynolds number.
Fig. 1. Captured spherical viscous drop system: (a) simple liquid sphere; (b) spherical drop captured at both poles; (c)

annular spherical liquid system.
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In addition, the goal is a closer investigation of the newly appearing fundamental mode, which
is in a freely floating liquid sphere represented with the frequency zero, i.e., a rigid body motion
without change of the free surface, expressing a vanishing capillary restoring force. Depending on
the magnitude of the surface tension parameter and the cap angle, the liquid may not oscillate at
all, but perform just an aperiodic motion if disturbed.
3. Method of solution

In the following, we shall investigate first the damped natural frequencies (complex frequencies)
of captured viscous liquid drops. The geometry and coordinate system used are presented in Fig.
1. The results are based on axisymmetric motion of the system (q=qj � 0;w � 0) and shall yield
the approximate lower damped natural frequencies for systems of various magnitudes of a:
For axisymmetric motion ðq=qj � 0;w � 0Þ; we introduce the stream function cðr; W; tÞ; such

that the continuity equation (2) is satisfied identically, i.e.,

u ¼ �
1

r2 sin W
qc
qW

and u ¼
1

r sin W
qc
qr

(4)

and obtain, after eliminating the pressure p; the partial differential equation of the stream function

D̄ D̄c�
1

n
qc
qt

� �
¼ 0; (5)

where the operator is

D̄ �
q2

qr2
þ
sin W

r2
q
qW

1

sin W
q
qW

� �
: (6)

Applying the vector operation ‘‘divergence’’ to the Stokes equation (1) yields the Laplace equation
for the pressure

Dp ¼ 0; (7)

which exhibits the solution

pðr; W; tÞ ¼
X1
n¼1

Ēn
r

a

� 	n

þ F̄ n
r

a

� 	�ðnþ1Þ
� �

P0nðcos WÞe
st þ

2s
a
; (8)

where s ¼ s̄þ iō represents the complex frequency which has to be determined. The solution of
Eq. (5) is given by

cðr; W; tÞ ¼
X1
n¼1

Ān

r

a

� 	nþ1

þ B̄n

r

a

� 	�n

þ C̄n

r

a

� 	1=2
Inþ1=2

ffiffiffiffi
S

p r

a

� 	
þ D̄n

r

a

� 	1=2
Knþ1=2

ffiffiffiffi
S

p r

a

� 	� �

� sin WP1nðcos WÞe
st; ð9Þ
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where S � sa2=n and Inþ1=2 and Knþ1=2 are modified Bessel functions and P0nðcos WÞ and P1n ðcos WÞ
are the associated Legendre functions. The velocity distribution is given by

uðr; W; tÞ ¼
X1
n¼1

An
r

a

� 	n�1

þ Bn
r

a

� 	�ðnþ2Þ

þ Cn
r

a

� 	�3=2
Inþ1=2

ffiffiffiffi
S

p r

a

� 	
þ Dn

r

a

� 	�3=2
Knþ1=2

ffiffiffiffi
S

p r

a

� 	� �

�nðn þ 1ÞP0nðcos WÞe
st ð10Þ

and

uðr; W; tÞ ¼
X1
n¼1

Anðn þ 1Þ
r

a

� 	n�1

� Bnn
r

a

� 	�ðnþ2Þ

þ Cn

r

a

ffiffiffiffi
S

p
In�1=2

ffiffiffiffi
S

p r

a

� 	
� nInþ1=2

ffiffiffiffi
S

p r

a

� 	h i�

�
r

a

� 	�3=2
� Dn

r

a

ffiffiffiffi
S

p
Kn�1=2

ffiffiffiffi
S

p r

a

� 	
þ nKnþ1=2

ffiffiffiffi
S

p r

a

� 	h i r

a

� 	�3=2
�

P1nðcos WÞe
st:

ð11Þ

From the Stokes equations, we obtain for the integration constants of the pressure

sarðn þ 1ÞAn þ En ¼ 0 and sar nBn � Fn ¼ 0:

3.1. Simple viscous liquid sphere

For a simple viscous liquid sphere (Fig. 1(a)), of which the range 0pWpa is considered to be a
rigid wall on r ¼ a; the integration constant Bn and Dn vanish together with Fn: The boundary
conditions are then given at the rigid cap by

u ¼ u ¼ 0 at r ¼ a in the range 0pWpa; (12)

at the free liquid surface by

trW ¼ Z r
q
qr

u
r

� 	
þ
1

r

qu

qW

� �
¼ 0 at r ¼ a in the range aoWpp (13)

and

qp

qt
� 2Z

q2u
qrqt

þ
s
a2

2u þ
1

sin W
q
qW

sin W
qu

qW

� �� �
¼ 0 at r ¼ a in the range aoWpp: (14)

These yield (Eq. (12))

X1
n¼1

An þ CnInþ1=2ð
ffiffiffiffi
S

p
Þ

n o
nðn þ 1ÞP0nðcos WÞ ¼ 0 in the range 0pWpa (15)

and

X1
n¼1

Anðn þ 1Þ þ Cn

ffiffiffiffi
S

p
In�1=2ð

ffiffiffiffi
S

p
Þ � nInþ1=2ð

ffiffiffiffi
S

p
Þ

h in o
P1nðcos WÞ ¼ 0 in the range 0pWpa; (16)
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while the shear stress-(13) and free surface condition (14) render the results

X1
n¼1

2Anðn
2 � 1Þ þ Cn ðS þ 2nðn þ 2ÞÞInþ1=2ð

ffiffiffiffi
S

p
Þ � 2

ffiffiffiffi
S

p
In�1=2ð

ffiffiffiffi
S

p
Þ

h in o
P1nðcos WÞ ¼ 0

in the range aoWpp ð17Þ

and

X1
n¼1

An½S
2 þ 2Snðn � 1Þ þ s�nðn � 1Þðn þ 2Þ�

�

þCn s�nðn � 1Þðn þ 2ÞInþ1=2ð
ffiffiffiffi
S

p
Þ þ 2Sn

ffiffiffiffi
S

p
I0nþ1=2ð

ffiffiffiffi
S

p
Þ �
3

2
Inþ1=2ð

ffiffiffiffi
S

p
Þ

� �� ��

�P0nðcos WÞ ¼ 0 in the range apWpp: ð18Þ

In these equations, s� � sa=rn2 is the surface tension parameter. Satisfying these four equations
in their respective ranges, yields

XN1þN2þ1

n¼1

fAn þ CnInþ1=2ð
ffiffiffiffi
S

p
Þgnðn þ 1ÞP0n cos

n1

N1
a

� �� �
¼ 0 for n1 ¼ 0; 1; 2; . . . ;N1; (19)

XN1þN2þ1

n¼1

fAnðn þ 1Þ þ Cn½
ffiffiffiffi
S

p
In�1=2ð

ffiffiffiffi
S

p
Þ � nInþ1=2ð

ffiffiffiffi
S

p
Þ�gP1n cos

n1

N1
a

� �� �
¼ 0

for n1 ¼ 0; 1; 2; . . . ;N1 ð20Þ

and in the second range

XN1þN2þ1

n¼1

f2Anðn
2 � 1Þ þ Cn½ðS þ 2nðn þ 2ÞÞInþ1=2ð

ffiffiffiffi
S

p
Þ � 2

ffiffiffiffi
S

p
In�1=2ð

ffiffiffiffi
S

p
Þ�g

�P1n cos aþ
ðp� aÞn2

N2

� �� �
¼ 0 for n2 ¼ 1; 2; . . . ;N2; ð21Þ

XN1þN2þ1

n¼1

An½S
2 þ 2Snðn � 1Þ þ s�nðn � 1Þðn þ 2Þ� þ Cn s�nðn � 1Þðn þ 2ÞInþ1=2ð

ffiffiffiffi
S

p
Þ

��

þ2Sn
ffiffiffiffi
S

p
I0nþ1=2ð

ffiffiffiffi
S

p
Þ �
3

2
Inþ1=2ð

ffiffiffiffi
S

p
Þ

� ���
P0n cos aþ

ðp� aÞn2
N2

� �� �
¼ 0

for n2 ¼ 1; 2; . . . ;N2: ð22Þ

These are 2ðN1 þ N2 þ 1Þ homogeneous algebraic equations in the unknowns
A1;A2; . . . ;AN1þN2þ1 and C1;C2; . . . ;CN1þN2þ1; of which the vanishing coefficient determinant
represents the frequency equation for the determination of the lower approximate damped
(complex) natural frequencies SoN : In the process to find the zero determinant, we are able to
obtain the values of damping s̄ and frequency ō as complex values of S ¼ sa2=n ¼ s̄� iō which
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are contained in the matrix components. To find Ssol which makes the determinant zero, we
represent diagrams of real part and imaginary part of the determinant with contour lines in a
predicted S space where Ssol is assumed to exist. From these two diagrams, we can find a solution
Ssol as a cross-point of zero contour lines of the real and imaginary part of the determinant.
For a simple spherical drop, not being captured in a spherical cap ða ¼ 0Þ; the complex

frequency equation is given by [10]

2ðn2 � 1Þ ½2nðn þ 2ÞS � s�nðn � 1Þðn þ 2Þ�Inþ1=2ð
ffiffiffiffi
S

p
Þ � 2S3=2nIn�1=2ð

ffiffiffiffi
S

p
Þ

n o

þ fS2 þ 2nðn � 1ÞS þ s�nðn � 1Þðn þ 2Þgf½2nðn þ 2Þ þ S�Inþ1=2ð
ffiffiffiffi
S

p
Þ � 2

ffiffiffiffi
S

p
In�1=2ð

ffiffiffiffi
S

p
Þg ¼ 0;

which yields for vanishing viscosity n ! 0; the result for a frictionless liquid drop, i.e.,

s2 ¼ �o2n ¼ �
snðn � 1Þðn þ 2Þ

ra3

and for very large viscosity n ! 1 ðs ! 0Þ; the two real negative roots

s1 ¼ �
o2nð2n þ 1Þ

2ðn � 1Þðn þ 3Þn=a2
;

s2 ¼ �
2ðn � 1Þðn þ 3Þð2n þ 5Þ

n½2n2 þ 5n þ 9�

n
a2

þ
o2nð2n þ 1Þ

2ðn � 1Þðn þ 3Þn=a2
;

indicating a strong decay of the liquid motion.
3.2. Spherical viscous drop captured at both poles

For such a system, as shown in Fig. 1(b), the boundary conditions are at the rigid caps

u ¼ u ¼ 0 at r ¼ a in the range 0pWpa;p� apWpp; (23)

while the shear stress condition and free liquid surface condition have to be satisfied at r ¼ a in the
range apWpp� a: This yields for the determination of the approximate complex frequencies
from Eq. (23).

XN1þN2þN3þ1

n¼1

fAn þ CnInþ1=2ð
ffiffiffiffi
S

p
Þgnðn þ 1ÞP0n cos

n1

N1
a

� �� �
¼ 0 for n1 ¼ 0; 1; 2; . . . ;N1; (24)

XN1þN2þN3þ1

n¼1

Anðn þ 1Þ þ Cn

ffiffiffiffi
S

p
In�1=2ð

ffiffiffiffi
S

p
Þ � nInþ1=2ð

ffiffiffiffi
S

p
Þ

h in o
P1n cos

n1

N1
a

� �� �
¼ 0

for n1 ¼ 0; 1; 2; . . . ;N1; ð25Þ

XN1þN2þN3þ1

n¼1

fAn þ CnInþ1=2ð
ffiffiffiffi
S

p
Þgnðn þ 1ÞP0n cos p�

n2

N2
a

� �� �
¼ 0 for n2 ¼ 0; 1; 2; . . . ;N2; (26)
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XN1þN2þN3þ1

n¼1

fAnðn þ 1Þ þ Cn½
ffiffiffiffi
S

p
In�1=2ð

ffiffiffiffi
S

p
Þ � nInþ1=2ð

ffiffiffiffi
S

p
Þ�gP1n cos p�

n2

N2
a

� �� �
¼ 0

for n2 ¼ 0; 1; 2; . . . ;N2 ð27Þ

and for the shear stress and free surface condition from Eqs. (13) and (14)

XN1þN2þN3þ1

n¼1

f2Anðn
2 � 1Þ þ Cn½ðS þ 2nðn þ 2ÞÞInþ1=2ð

ffiffiffiffi
S

p
Þ � 2

ffiffiffiffi
S

p
In�1=2ð

ffiffiffiffi
S

p
Þ�g

�P1n cos aþ
ðp� 2aÞn3

N3

� �� �
¼ 0 for n3 ¼ 1; 2; . . . ;N3 � 1; ð28Þ

XN1þN2þN3þ1

n¼1

An½S
2 þ 2Snðn � 1Þ þ s�nðn � 1Þðn þ 2Þ� þ Cn s�nðn � 1Þðn þ 2ÞInþ1=2ð

ffiffiffiffi
S

p
Þ

��

þ2Sn
ffiffiffiffi
S

p
I0nþ1=2ð

ffiffiffiffi
S

p
Þ �
3

2
Inþ1=2ð

ffiffiffiffi
S

p
Þ

� ���
P0n cos aþ

ðp� 2aÞn3
N3

� �� �
¼ 0

for n3 ¼ 1; 2; . . . ;N3 � 1: ð29Þ

These are 2ðN1 þ N2 þ N3 þ 1Þ homogeneous algebraic equations for the determination of the
lower approximate complex frequencies, being obtained from the vanishing coefficients
determinant of order 2ðN1 þ N2 þ N3 þ 1Þ: Mode shapes and natural frequencies of a system
of frictionless liquid may be found in Ref. [17].
3.3. Annular viscous spherical liquid system

If an annular liquid of volume V0 ¼ 4pa3=3ð1� k3Þ ðk � b=aÞ is placed around a spherical
center core of radius b and in addition captured at r ¼ a in the range 0pWpa (Fig. 1(c)), the
boundary conditions are given for the rigid center core by

u ¼ u ¼ 0 at r ¼ b and all W ðFig: 1ðcÞ; 0pWppÞ (30)

and for the rigid cap by

u ¼ u ¼ 0 at r ¼ a in the range 0pWpa: (31)

The shear stress condition at the free surface is (13), i.e.,

trW ¼ 0 at r ¼ a in the range aoWpp (32)

and the free surface condition is Eq. (14). We obtain with the velocity distribution

uðr; W; tÞ ¼
X1
n¼1

nðn þ 1Þ An

r

a

� 	n�1

þ Bn

r

a

� 	�ðnþ2Þ

þ Cn

r

a

� 	�3=2
Inþ1=2

ffiffiffiffi
S

p r

a

� 	�

þDn

r

a

� 	�3=2
Knþ1=2

ffiffiffiffi
S

p r

a

� 	�
P0nðcos WÞe

st
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and

uðr;W; tÞ ¼
X1
n¼1

Anðn þ 1Þ
r

a

� 	n�1

� Bnn
r

a

� 	�ðnþ2Þ
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r
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ffiffiffiffi
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p
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p r
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S
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S

p r

a

� 	
þ nKnþ1=2

ffiffiffiffi
S

p r

a

� 	h i

�
r

a

� 	�3=2
�

P1nðcos WÞe
st;

from u ¼ u ¼ 0 at r ¼ b; the expressions

Anknþ1=2
þ Bnk�ðnþ1=2Þ

þ CnInþ1=2ðk
ffiffiffiffi
S

p
Þ þ DnKnþ1=2ðk

ffiffiffiffi
S

p
Þ ¼ 0; (33)

Anðn þ 1Þknþ1=2
� Bnnk�ðnþ1=2Þ

þ Cn k
ffiffiffiffi
S

p
In�1=2ðk

ffiffiffiffi
S

p
Þ � nInþ1=2ðk

ffiffiffiffi
S

p
Þ

h i

� Dn k
ffiffiffiffi
S

p
Kn�1=2ðk

ffiffiffiffi
S

p
Þ þ nKnþ1=2ðk

ffiffiffiffi
S

p
Þ

h i
¼ 0; ð34Þ

from which Cn and Dn may be obtained as functions of An and Bn: At the free surface, we obtain
for the range 0pWpa from Eq. (31) in the range 0pWpa:

XN1þN2þ1

n¼1

nðn þ 1ÞfAn þ Bn þ CnInþ1=2ð
ffiffiffiffi
S

p
Þ þ DnKnþ1=2ð

ffiffiffiffi
S

p
ÞgP0n cos

n1

N1
a

� �� �
¼ 0

for n1 ¼ 0; 1; 2; . . . ;N1; ð35Þ

XN1þN2þ1

n¼1

fAnðn þ 1Þ � Bnn þ Cn½
ffiffiffiffi
S

p
In�1=2ð

ffiffiffiffi
S

p
Þ � nInþ1=2ð

ffiffiffiffi
S
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Þ�

� Dn½
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S
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S

p
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ffiffiffiffi
S

p
Þ�gP1n cos
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N1
a

� �� �
¼ 0

for n1 ¼ 0; 1; 2; . . . ;N1 ð36Þ

and for the range apWpp from Eq. (32):

XN1þN2þ1
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and from Eq. (14):

XN1þN2þ1

n¼1

fAn½ðn þ 1ÞS2 þ 2nðn2 � 1ÞS þ s�nðn2 � 1Þðn þ 2Þ�

þ Bn½s�nðn2 � 1Þðn þ 2Þ � S2n � 2Snðn þ 1Þðn þ 2Þ�

þ Cn½2S
ffiffiffiffi
S

p
nðn þ 1ÞI0nþ1=2ð

ffiffiffiffi
S

p
Þ � 3Snðn þ 1ÞInþ1=2ð

ffiffiffiffi
S

p
Þ þ s�nðn2 � 1Þðn þ 2ÞInþ1=2ð

ffiffiffiffi
S

p
Þ�

þ Dn½2S
ffiffiffiffi
S

p
nðn þ 1ÞK0

nþ1=2ð
ffiffiffiffi
S

p
Þ � 3Snðn þ 1ÞKnþ1=2ð

ffiffiffiffi
S

p
Þ þ s�nðn2 � 1Þðn þ 2Þ

�Knþ1=2ð
ffiffiffiffi
S

p
Þ�g � P0n cos aþ

ðp� aÞn2
N2

� �� �
¼ 0 for n2 ¼ 1; 2; . . . ;N2: ð38Þ

These are 2ðN1 þ N2 þ 1Þ homogeneous algebraic equations, which after the determination of Cn

and Dn from Eqs. (33) and (34) exhibit the unknowns An and Bn: The vanishing of the determinant
represents the complex frequency equation for the determination of SoN : Mode shapes and
natural frequencies of a system of frictionless liquid may be found in Ref. [17].
4. Translational excitation

If the spherical wall is harmonically excited with Z0e
iOt in z direction, the captured liquid drop

(Fig. 1(a)) will respond in axisymmetric motion (q=qj ¼ 0;w ¼ 0). The pressure distribution is
then given by

pðr; W; tÞ ¼ p0 � rO2Z0eiOtr cos Wþ p̄ðr;W; tÞ: (39)

With the solution (9) of the differential equation of the stream function, we obtain with the
boundary condition u ¼ 0 (Eq. (15)), v ¼ 0 (Eq. (16)), and the shear stress condition trW ¼ 0
(Eq. (17)) together with combined free surface equation (iOa2=n � On),

XN1þN2þ1

n¼1

Anðn þ 1Þ½On2 þ 2On2nðn � 1Þ þ snnðn � 1Þðn þ 2Þ�

�

þCnnðn þ 1Þ snðn � 1Þðn þ 2ÞInþ1=2ð
ffiffiffiffiffiffi
On

p
Þ þ 2O�

ffiffiffiffiffiffi
On

p
I0nþ1=2ð

ffiffiffiffiffiffi
On

p
Þ �
3

2
Inþ1=2ð

ffiffiffiffiffiffi
On

p
Þ

� �� ��

� P0n cos aþ
ðp� aÞn2

N2

� �� �
¼ On3Z̄0 cos aþ

ðp� aÞn2
N2

� �

in the range apWpp; n2 ¼ 1; 2; . . . ;N2; ð40Þ

the equations of response, where sn � sa=rn2 and Z̄0 � Z0n=a2: Eqs. (19)–(21) and (40) represent
an algebraic inhomogeneous system of 2ðN1 þ N2 þ 1Þ equations for the determination of the
response values AjðOn

1Þ and CjðOn

1Þ; j ¼ 1; 2; . . . ;N1 þ N2 þ 1: The free surface response is
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obtained from

z
Z̄0

����
���� ¼ 1

OnZ̄0

X1
n¼1

fAn þ CnInþ1=2ð
ffiffiffiffiffiffi
On

p
Þgnðn þ 1ÞP0nðcos WÞ (41)

where z represents the free surface displacement.
5. Numerical evaluations and conclusions

Some of the above-obtained analytical results have been evaluated numerically. Only the
configuration of a captured drop in a simple rigid cap (Fig. 1(a)) of 0pWpa has been treated
numerically here with āð� a=pÞ ¼ 0; 0:1; 0:3 and 0.5 for various liquid surface tensions s� ¼
sa=rn2: Instead of the surface parameter s�; we could either write the capillary Reynolds number
~Res ¼

ffiffiffiffiffi
s�

p
or the Ohnesorge number Oh, often used by the scientific community of zero- or

microgravity research. The Ohnesorge number is Oh ¼ 1=
ffiffiffiffiffi
s�

p
or the reciprocal of the capillary

Reynolds number, i.e. Oh ¼ ð ~ResÞ
�1

¼ ðrn2=saÞ1=2: In the numerical calculations, the numbers of
unknown parameters, An and Bn; were taken to be 70, i.e., n ¼ N1 þ N2 þ 1 ¼ 70; respectively, to
obtain reliable engineering data. And numbers of ðN1 þ 1Þ and N2 were taken to be proportional
to the ratio of the captured and uncaptured regions, ā and ð1� āÞ:
For reference, the vibration modes of a simple captured liquid system for various ā and mode

numbers n [17] are shown in Fig. 2. First of all, we find in Table 1 the damped natural frequencies
for the modes n ¼ 1; 2 and 3, for s� ¼ 100 ð ~Res ¼ 10Þ and 500 ð ~Res ¼ 22:36Þ; comparing the
inviscid and viscous results. It may be noticed that the viscous results nearly always exhibit smaller
magnitude than the inviscid cases. In addition, the difference of them is increasing with increasing
ā ¼ a=p for the presented small s� (s� ¼ 100; 500; or ~Res ¼ 10; 22:36).
In Fig. 3, we exhibit the complex frequency of the liquid of the simple-sphere-cap case for

surface tension parameters s� ¼ 100 ð ~Res ¼ 10Þ; 500 ð ~Res ¼ 22:36Þ and 1000 ð ~Res ¼ 31:62Þ:With
increasing rigid cap magnitude ā; the natural damped oscillation frequency ImS � ōa2=n
increases. The decay magnitude of the oscillation jReSj � s̄a2=n increases as ā increases,
indicating that with larger cap ā the damped oscillations decay more rapidly. This is true for the
modes n ¼ 2 and 3, as shown in Fig. 3. For n ¼ 1 we notice at certain ā-values an instability,
where ReS assumes positive values. It may be seen in Fig. 3(a) that for s� ¼ 100 ð ~Res ¼ 10Þ
stability is preserved in the here presented total ā-range. For increased s�; i.e., s� ¼ 500 ð ~Res ¼
22:36Þ; the range 0:113oāo0:367 exhibits for n ¼ 1 instability (see Fig. 3(b)), while a further
increased surface tension parameter s� ¼ 1000 ð ~Res ¼ 31:62Þ shows for the mode n ¼ 1 instability
in the ā-range 0:122oāo0:475 (Fig. 3(c)). With these results, we notice that with increasing
surface tension parameter s� or increasing capillary Reynolds number ~Res; the range of instability
increases, exhibiting for the lower values a small increase of the cap angle and a larger increase of
the cap angle for larger values. The limits of the instability region show for the lower limit with the
increase of s� a much smaller regional increase than for the upper limit. This indicates that for
large s� � sar=Z2; i.e. for large surface tension s; large radius a and/or large density r and small
dynamic viscosity Zð� Z2Þ; the here chosen equilibrium position of spherical geometry no longer
represents a stable configuration of the liquid. This has also been detected in some unpublished
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Fig. 2. Vibration modes for simple captured liquid system for various ā and mode number n [17].

Table 1

Comparison of the damped natural frequency with that of a frictionless drop

s� ð ~ResÞ 100 (10) 500 (22.36)

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 1 n ¼ 2 n ¼ 3

ā Viscous Inviscid Viscous Inviscid Viscous Inviscid Viscous Inviscid Viscous Inviscid Viscous Inviscid

0 0 0 27.5 28.3 51.9 54.8 0 0 62.7 63.2 120.4 122.5

0.1 6.97 4.04 32.9 30.8 60.8 59.9 16.9 9.03 76.4 68.9 142.0 134.0

0.3 21.7 11.9 56.8 45.2 96.0 87.0 46.6 26.7 128.0 101.2 223.0 194.6

0.5 40.1 25.9 96.6 78.7 156.0 148.5 88.0 57.8 223.0 175.9 372.0 332.2
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Fig. 3. Complex frequencies of a simple sphere with cap angle ā; n ¼ 1; 2; 3: - - -, inviscid drop; (a) s� ¼ 100 ( ~Res ¼ 10),

all n: always stable; (b) s� ¼ 500 ( ~Res ¼ 22:36), n ¼ 1 : 0:113oāo0:367 unstable; (c) s� ¼ 1000 ( ~Res ¼ 31:62),
n ¼ 1 : 0122oāo0:475 unstable.
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experiments with water where the Bond numbers exhibited the magnitude Bo ¼ 0:54 and where
the liquid could not maintain a spherical geometry. For smaller s�-values, however, the totally
embedded configuration is possible and exhibits the oscillatory- and decay behavior presented in
the shown Fig. 3. The dashed line represents the non-viscous case, as presented in Ref. [17]. We
notice that for small s�ð ~ResÞ (here s� ¼ 100Þ the oscillation frequency of the viscous case is for
small ā; i.e., small cap size, slightly smaller than that for inviscid liquid. For larger magnitudes of
ā; the inviscid frequencies are always smaller than those of the viscous liquid. This phenomenon
disappears for larger liquid surface tension parameter s�; here case (b) s� ¼ 500 ð ~Res ¼ 22:36Þ
and (c) s� ¼ 1000 ð ~Res ¼ 31:62Þ: In addition, we may notice that the case ā ¼ 0 results in the same
values as obtained in Ref. [10]. The results presented in Fig. 3 show that the oscillation frequencies
increase with increasing liquid surface tension s� or increasing capillary Reynolds number ~Res;
while the decay magnitude exhibits only a slight decrease with the increase of s�: This may also be
found in Ref. [10] for ā ¼ 0; i.e., the free liquid sphere without a cap. For the mode n ¼ 1; the
value of Re S fluctuates in a range of small magnitude around the stability boundary ReS ¼ 0
and exhibits slightly increasing decay magnitude for increasing ā-values, as soon as the instability
region has been passed.
In Fig. 4, we exhibit the change of the complex frequencies as a function of the variation of the

liquid surface tension s� or capillary Reynolds number ~Res for various captured drops, i.e., for
ā ¼ 0 (no cap, Fig. 4(a)) and ā ¼ 0:1 (Fig. 4(b)), 0.3 (Fig. 4(c)) and 0.5 (Fig. 4(d)). The case
ā ¼ a=p ¼ 1

2
represents a liquid sphere of which only half of the surface is free to oscillate. For a
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free liquid drop ā ¼ 0 (Fig. 4(a)), we notice that with increasing liquid surface tension s� (or ~ResÞ;
an increase of the oscillation frequencies ōa2=n and a slight increase of the decay magnitude
js̄a2=nj occurs. This is more pronounced for higher oscillation modes ðn ¼ 3; 4Þ: The origin 0
represents the mode n ¼ 1; i.e., s̄a2=n ¼ ōa2=n ¼ 0; representing nothing but the rigid body
motion of the spherical drop with unchanged free liquid surface area. This was found in Ref. [17]
for ā ¼ 0 Ref. [17, Figs. 3 and 4]. In Fig. 4(b), the complex frequencies are presented for a small
cap area ā ¼ 0:1ða ¼ p=10Þ:We detect similar behavior as for a free spherical drop, i.e., increasing
oscillation frequency and increasing decay magnitude as the liquid surface tension s� increases
from s� ¼ 100 to 1000. The difference to the case ā ¼ 0 is that the mode n ¼ 1 appears and shows,
for its oscillation- and decay, behavior the dependency of the surface tension parameter s� or
capillary Reynolds number ~Res: In the evaluated s�-range, the frequency and the decay increase
with s� and remain in the stable region. For ā ¼ 0:3; the complex frequencies are presented in Fig.
4(c). Here we notice a change of the course for increasing s�: In the oscillation mode n ¼ 2; the
increase of the liquid surface tension results as before in an increase of the oscillation frequency,
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but a decrease of the decay magnitude. For a larger oscillation mode n ¼ 3; we note first an
increase and then a decrease of the decay magnitude as s� increases. The mode n ¼ 1 becomes
unstable, as it moves for increased s� into the region ReS40: A closer look at the numerical
evaluation also reveals that for very small s�-values a loop appears in the curves, indicating that
an increase of s� yields first an increase of the damped frequency, as well as the decay magnitude,
while a further increase of s� renders smaller damped frequencies and smaller decay. This
phenomenon disappears as ā decreases, i.e., for cap values becoming smaller. Whether this
phenomenon is based on a physical or numerical effect could not be cleared. This is also exhibited
for ā ¼ 0:5; where half of the spherical surface is permitted to oscillate. The mode n ¼ 1 shows
with increasing liquid surface tension or increasing capillary Reynolds number ~Res; also an
increase of the oscillation frequency and a decrease of the decay magnitude js̄a2=nj in the given
range of s�; i.e., 50ps�p1000: Only in the very low s�-range, the decay magnitude decreases
rapidly with a slight increase of s� (Fig. 4(d)).



ARTICLE IN PRESS

H.F. Bauer, M. Chiba / Journal of Sound and Vibration 285 (2005) 51–71 67
It may be noticed, that according to Refs. [9,10], the oscillation for the case ā ¼ 0 ceased to exist
at ōa2=n ¼ ImS ¼ 0 (double root) for s̄a2=n ¼ �3:57 and s� ¼ sa=rn2 ¼ 1:70 (i.e. ~Res ¼ 1:3Þ for
n ¼ 2 (see A2 in Fig. 4(a)), s̄a2=n ¼ �8:15 and s� ¼ 2:59 (i.e. ~Res ¼ 1:61Þ for n ¼ 3 (see A3 in Fig.
4(a)) and s̄a2=n ¼ �13:74 and s� ¼ 3:31 (i.e. ~Res ¼ 1:82Þ for n ¼ 4 (see A4 in Fig. 4(a)), thus
indicating only the possibility for an aperiodic motion. There shall exist similar values for āa0 as
the trend and the indicated points Ajðj ¼ 1; 2; 3Þ of the curves in the results of Fig. 4 exhibit.
In Table 2, we represent the critical surface tension parameter s� together with the decay

magnitude s̄a2=n for the modes n ¼ 1; 2; 3: The first line for ā ¼ 0 (i.e. no cap) confirms the
previous results [10]. The remaining results for ceasing oscillations, i.e. an aperiodic motion,
represent in the first column the magnitude of the decay at A1; while the second column shows the
s�1-value at that location. Similar results are given in the third and fourth column for n ¼ 2 and in
the fifth and sixth column for n ¼ 3 (see also Fig. 4).
In Fig. 5, we show the change of the complex frequencies as a function of the cap angle ā as a

parameter for n ¼ 1; 2 and 3, where the changes of s� are marked by points. In this figure, the
variation of the complex frequencies for the modes n ¼ 1; 2; 3 with the change of the cap angle ā are
presented. The results for the mode n ¼ 1 is shown in Fig. 5(a), where we notice for various ā- and
s�-value the penetration into the instability region. The modes n ¼ 2 and 3 remain for the presented
s�-range in the stable area. We notice that the increase of the cap angle ā from ā ¼ 0:1 to 0.3, the
spherical liquid shape remains stable until the surface tension parameter s� reaches the value of
s�X235 (i.e. ~Res ¼ 15:33). If the cap angle is such that half of the globule is embedded in the cap,
i.e., ā ¼ 1=2; the spherical shape remains stable until s� reaches the magnitude of about s�X1094
(i.e. ~Res ¼ 33:07).Thus, with increasing cap angle ā; the range of stability of a spherical drop is
guaranteed for relatively large s� or ~Res: It is, in the here treated ā- and s�-range, always the mode
n ¼ 1 that makes the system for some values ā and s� unstable. For the modes n ¼ 2 and 3, the
captured drop remains for the investigated s� or ~Res-values in the stable region (see Fig. 5(b)).
To exhibit for the mode n ¼ 1; for which the captured liquid sphere becomes unstable, the

region of instability we show in Fig. 6 the values s� and the imaginary part ImScrit at which
instability sets in, i.e., ReS ¼ 0: The marked area represents the domain of instability for ā and
s�critð ~RescritÞ; while the dashed curve is the critical imaginary part as a function of s�crit and ā:
Finally, Fig. 7 represents the critical surface tension parameter s�crit together with the critical decay
value ReScrit for these modes n ¼ 1; 2; 3 as functions of the cap angle ā for the aperiodic motion
ðImS ¼ 0Þ of the captured spherical drop. This behavior has already been detected in a freely
floating sphere [10] and appears also here in a restrained drop. Each mode exhibits, in comparison
with the unrestrained drop, increased decay magnitude as the cap angle ā increase and also
increased decay as the mode number becomes higher. The corresponding surface tension
Table 2

Critical surface tension parameter

ā s̄1a2=n s�1 s̄2a2=n s�2 s̄3a2=n s�3

0 — — �3.57 1.70 �8.15 2.59

0.1 �0.094 0.0094 �6.48 0.769 �13.8 1.60

0.3 �1.49 0.043 �10.5 0.31 �22.2 0.649

0.5 �6.73 0.172 �25.0 0.71 �37.5 1.05



ARTICLE IN PRESS

–10 –8 –6 –4 –2 0 2 4

50

100

150

–10 –8 –6 –4 –2 0 2 4

10

20

30

40

50

Re(S)

Im
(S

)
50

1000

_
� =0.5

0.3

0.1

� *

� *

n=1

0.2

0.157
100

250

500

750

0.143

0.114
0.128

Re(S)

Im
(S

)

 _
 =0.5 0.3

0.1� * =50

n=1
0.2

0.157
100

1000
750

500

250
100
50

0.143

0.128

0.114

–25 –20 –15 –10 –5 0
0

100

200

300

–50 –40 –30 –20 –10 0
0

100

200

300

400

500

600

Re(S)

Im
(S

)

50

1000

_
 � =0.5

0.3

0.1
0

n=2

Re(S)

Im
(S

)

1000

 _
� 

� 

=0.5

0.3

0.1
0 �*=50

n=3

(a) (b)

Fig. 5. Variations of complex frequencies of a simple liquid sphere with cap angle ā (capillary Reynolds number ranges
up to ~Res ¼ 31:62): (a) n ¼ 1; (b) n ¼ 2; 3:
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parameter is also presented in Fig. 7. It may be mentioned that an experimental attempt for small
captured drop of water, exhibiting a Bond number Bo ¼ rga2=s ¼ 0:54 failed, since the liquid
could not assume the spherical equilibrium geometry. This is caused by the large s�4104 of the
test fluid water. Similar experiments have shown the same phenomena, the results of which were
reported in Ref. [18], where the natural frequency of a constrained drop of density r1 immersed in
another liquid of density r2 (close to r1) could only be measured for lower ā-values, and where
instability occurred in the other cases.
6. Conclusions

Under the assumption of small liquid surface deformations and of zero gravity, the
axisymmetric oscillations of a captured viscous liquid sphere have been treated. The liquid
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behavior—being partially in contact with a spherical cap of equal diameter—is determined for
engineering estimates, yielding oscillation frequencies and decay magnitudes for various liquid
modes, as functions of the cap angle ā and the surface tension parameter s� � sa=rn2 or capillary
Reynolds number ~Res ¼

ffiffiffiffiffi
s�

p
:
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The following results have been obtained:
1.
 The solid cap support changes, with increasing cap angle ā; the damped oscillation frequencies
and decay values to larger magnitudes. This is also valid for higher modes.
2.
 While the unrestrained spherical liquid globule exhibits for n ¼ 1 zero natural frequency,
describing a rigid body motion of the liquid sphere without change of the free liquid surface
area, the captured drop shows a new low-frequency mode. This is valid for frictionless and
viscous liquid as well.
This mode n ¼ 1 approaches for vanishing cap angle the rigid body mode with vanishing
oscillation frequency, while the higher modes n^2 assume those mode shapes previously
obtained by Lamb.
3.
 It was detected that, in contrast to the unrestrained drop, the drop embedded in a spherical cap
ceases to be stable for the new low-frequency mode n ¼ 1; depending on the magnitude of the
cap angle ā and the liquid surface tension or capillary Reynolds number. This indicates that the
assumed spherical shape is no longer a valid geometry of equilibrium for some captured drops.
With the increase of the surface tension s� or ~Res; the instability region of the mode n ¼ 1
increases. As the cap angle ā increases, the range of s� of stability for a spherical equilibrium
shape increase too. For small ā; stability is only guaranteed for small s�-values ðā40:1Þ; while
for ā ¼ 0:1 stability appears in the total range presented here.
4.
 It was also found that for certain low surface tension parameters s�; the viscous liquid sphere
ceases to oscillate, just performing an aperiodic motion. This is valid for an unrestrained liquid
globule and a captured liquid drop as well. With the increase of the cap angle ā; the critical
decay magnitude shifts to larger values for each mode. This is also true for fixed mode numbers,
where with the increase of the cap angle ā; the critical decay magnitude increases, indicating for
larger ā-values and higher modes a rapid decay, if disturbed.
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