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Abstract

Vibration intensity technique is used to measure vibration power transmission in thin single layer
technical orthotropic plates for flexural waves. Measurement of flexural wave power is carried out in far-
field conditions. All measurements are undertaken in the frequency domain using the cross-spectra of
acceleration signals, facilitating the use of FFT analyzer. The two-transducer technique applicable to these
plates is used for these measurements. Technical orthotropic (rectangular corrugation) plates of steel are
used for the measurements. One isotropic plate of steel is also considered for comparison. Method of elastic
equivalence technique is used. Both input power and vibration power transmission through the plates are
estimated. Far-field power is normalized with the input power for flexural wave. Influence of flexural
rigidity on vibration energy transfer is also investigated.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

It is a good practice to control vibration level at the sources. Reduction of input power in
structures and its ways to subsequent radiation into the surroundings is of practical interest.
see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.08.041

ding author. Tel.: +617 4930 9287; fax: +617 4930 6984.

ress: n.mandal@cqu.edu.au (N.K. Mandal).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

N.K. Mandal et al. / Journal of Sound and Vibration 285 (2005) 669–695670
A possible manner may be with the control of transmission of vibration waves along the
structures to remote areas. It is thus not only to quantify vibration level but also vibration energy
transported along the structures. One method of determining the vibration energy transfer
anywhere on the surface of basic structures is to use the vibration power flow concept or vibration
intensity.
Structural intensity or vibration intensity technique is a very useful tool for the measurement of

vibration power transmission in structures and for controlling of noise and vibration in industries.
This method can be successfully used for localization and characterization of sources as well as for
identification and ranking of transmission paths of vibration power flow through structures. It is
however not possible to get information by experimental modal analysis as it generally deals with
the modal parameters such as mode shapes, loss factors, and frequency. Since vibration intensity
is a vector, measurement of intensity at a number of points on the structures can be employed to
form intensity maps giving pictures of energy flow and locations of vibration source and sink. As a
result, this method can practically be used in industries for noise and vibration control
introducing proper controlling measures such as isolation of vibration sources and surface
damping treatments to the area of most energy transfer in the structures.
Vibration intensity is defined in the solid media, but its measurements can usually be carried out

on the surface of the structures. This is because of the fact that in thin structures, the waves
propagating through the structures could be reasonably assumed that propagating waves would
be parallel to the surface of the structures [1]. Therefore, it is convenient to use the concept of
wave-type estimation when addressing the experimental detection of energy flow within the
structures. Greater complexity of the mechanical wave field and limited access to the interior of
structure bodies, structural vibration implies a higher degree of measurement difficulties as
compared to acoustic intensity [2]. This restricts the application of vibration power flow
measurements mainly to relatively simple structures such as pipes, beam, and thin plates where
propagation of mechanical waves should be considered only parallel to the surface.
Vibration intensity (structural intensity) technique has a unique aspect. It is not dependent on

boundary conditions of the structures. This enables to investigate the edge effects of vibration
power transmission of pipes, plates and beams. But far-field power flow inherently contains some
limitations in selecting measurement points. The measurement points should be away from the
boundary and inhomogeneities of the plates. The effects of boundaries and inhomogeneties of
the plates are called near-field effects. The near-field effects decay exponentially as function of
position and extend to a distance of approximately half the bending wave length from the
boundaries and inhomogeneties of the plates [3]. At low frequencies, the disturbing near fields
cover a large part of the plate, and valid measurement could be made in the center region only.
Far-field concept also enables to use two sensors to determine an intensity vector at a point in the
particular direction. The distance between two sensors, called spacing, is selected with regard to
bending wave length, such that the ratio of spacing to bending wave length is 0.2 for upper
frequency limit and 0.15 for lower frequency limit [4]. The use of this spacing criterion provides an
optimal trade off between the reduced finite difference errors afforded by small sensor spacing and
reduced sensitivity to standing wave-related errors afforded by larger sensor spacing.
Most of the previous works undertaken on vibration power flow (structural intensity) were

related to simple structures, typically beams and plates in flexure using the analysis both in time
domain and frequency domain [3,5–9]. Some relevant works in composite materials using this idea
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are also available [10–14]. Structural intensity can be computed numerically when predictions of
structural behavior in various conditions are needed for complex build-up structures. Vibration
intensity, generated by the interaction of dynamic stresses and vibration velocities, for beams and
plates can be found by the finite element method [15–17], by statistical energy analysis [18].
Using power flow technique, vibration wave power was also formulated to single-layer

naturally orthotropic plates both general and far field condition by flexural wave [19] and by
quasi-longitudinal wave [20].
Despite the progress made with respect to both methods and instrumentation, scope exists for

further development as work generally had been in the areas of simple beams and thin plates. It is
seen from the literature survey that less works have been done on orthotropic materials. Vibration
power flow analysis in the area of orthotropic plates (corrugated plates) is very essential for
practical reasons. Beam stiffened plates, plate grid structures, corrugated plates are usually used in
automotive, ship, aircraft structures. This method gives a clear picture of locations of energy
sources and sinks and quantifies energy transmission paths by employing vector maps. Hence it is
essential for controlling noise and vibration in industry by incorporating proper damping
treatments. Therefore any experimental works on orthotropic plates using structural intensity
would give valuable information for noise and vibration control.
2. Basic equations

2.1. Power input to a point

The development of input power and vibration power flow was based on the imaginary part of
the cross-spectrum between two signals: between force and acceleration signals at input point for
input power and between two acceleration or velocity signals at the measurement locations on the
structure for vibration power.
Power input through a point junction either in beams or in plates, for example, could be

measured if the force and velocity signals at the point are known. It is conventionally assumed
that power injected through a point is only contributed by force. No moment could be
transmitted. The following relation of input power could be obtained if the force and motion are
in the same direction [7]:

Piðf Þ ¼ RefGvF ðf Þg; (1)

where Re is real part and GvF is the cross spectrum of velocity and force signals, and f is the
frequency. It is customary to use acceleration signals, a, instead of velocity, v, for practical
measurements. By inserting the relationship v ¼ a=jo; and using GaF ¼ G�

Fa; total active power
injected through a point junction by a point force is obtained as [7]

Pi ¼
1

o
ImfGFag; (2)

where GFa is the cross-spectrum of force and acceleration signals, Im is the imaginary part, and
oð¼ 2pf Þ is the angular frequency. If a force is applied to a point on the plate in the direction
perpendicular to the plane of plate, Eq. (2) could be valid for flexural waves. On the other hand, if
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it is applied to a point along the pane of the plate, the same Eq. (2) could also be valid for
longitudinal waves. By putting the value of o in Eq. (2), it is possible to get input power equation
in terms of frequency, f.

Pi ¼
0:159

f
ImfGFag: (3)

The imaginary part of the cross-spectrum of Eq. (3) could be achieved from the FFT analyzer and
after post-processing using Matlab or MS Excel, the input power Pi (W/Hz) could be computed.
Eqs. (2) or (3) is valid for both isotropic and orthotropic plates.

2.2. Far-field power

The idea of far-field power was first defined by Noiseux [3]. Approximately one-half of a
flexural wave length far from the edges and discontinuities of structures, the exponentially
decaying near-field components are negligible and flexural wave field consists of free propagating
waves. This idea is called far-field conditions. The far-field condition simplifies structural intensity
estimation. In isotropic plates, two components of active power from shear force ðPsÞ and moment
ðPMÞ are equal [3]. The total active power ðPT Þ could thus be obtained by estimating only one
component such as

PT ðf Þ ¼ 2RefGVQg; (4)

where GVQ is the cross-spectrum of velocity and shear force signals. The far-field power in simple
beams and isotropic plates had been established and only one cross-spectrum is sufficient to
obtain this power. This is in fact the ‘two-transducer’ method [3,5,7]. For isotropic plates, the far-
field power, also called time-averaged power or active power, could be obtained as [7]

I ¼
2

ffiffiffiffiffiffiffiffiffiffi
Dm00

p

do2
ImfG12g; (5)

where I is the intensity (far-field power, PT ) in the direction of the transducer pair from 2 to 1 as in
Fig. 1, d is spacing of the accelerometers, D is flexural rigidity of the plate, m00 is the mass per unit
d 1
2

x 

y 

Fig. 1. Coordinate system of plate along with two-point transducer array.
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area of the plate, G12 is the cross-spectrum of acceleration signals, and Im{ } is imaginary part.
Eq. (5) is applicable both in x- and y-directions of the plate (Fig. 1).
The imaginary part of the complex power, called reactive power, is defined as the standing wave

power per unit width or it can be described alternately as that portion of the energy which resides
in the stationary waves and is, essentially, stored within the medium [21].
By normalizing the power flow at the far-field conditions with respect to input power at a

point source, power ratio, R, for two transducer method could be found by taking the ratio of
Eqs. (2)–(5)

R ¼
2

ffiffiffiffiffiffiffiffiffiffi
Dm00

p

do
ImfG12g

ImfGFag
: (6)

In a logarithmic format (in decibels), the power ratio could be shown by making the difference
between the far-field power and input power [22]

RðdBÞ ¼ 20 log10ðjRjÞ ¼ 20ðlog10jI j 
 log10ðjPijÞ: (7)

The flexural wave power, in naturally orthotropic plates, can be obtained using finite difference
approximation. Recently, a measurement method for quantify power flow in naturally
orthotropic plates has been developed [19] and is presented below as

Ixðf Þ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Dxm00

p

do2
ImfG12g; (8)

where G12 is the cross-spectrum of the acceleration signals at points 1 and 2, and Dx is the flexural
rigidity of the plate in x-direction. This relation presents the flow of vibration power in
orthotropic plates in the x-direction from point 2 to 1 (Fig. 1). The y-component of this power
could be obtained by interchanging the x- and y-axis in Eq. (8).
The cross-spectrum of two acceleration signals could be measured directly by multi-channel

FFT analyzer using two accelerometers. An estimate of it can however be found using frequency
response method with one transducer technique [7], as a result phase errors are reduced. Only one
cross-spectrum of acceleration signal is required to obtain the total power. This is a new definition
of structural intensity that also illustrates the power flowing per unit width of the plate (W/m).
Normalizing power flow, R, of this plate for far-field conditions could be found similarly by
taking the ratio of Eqs. (2)–(8). The imaginary part or reactive part of complex power in flexural
wave may be obtained using auto-spectra of field signals of velocity or acceleration [19].
3. Experimental studies of flexural wave power

Estimation of time average vibration power input and far-field power in isotropic plate and
orthotropic plates has been carried out. The work as carried out in this study focuses on the flow
of energy due to flexural waves since this mode contains most of the structure-borne sound. In
solid materials, the mechanical vibration propagates by three characteristics modes or wave
types—flexural, longitudinal (compression) and shear waves [23]. Some wave types, such as
flexural exhibits dispersion where the propagation speed is not constant but varies as a function of
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frequency. Dispersion implies that the speed of the wave propagation (phase velocity) differs from
the propagation speed of energy transmitted by the wave (group velocity) [2].
In this paper, established two-transducer method (Eq. (6)) and input power (Eq. (2)) are used

first in isotropic plate for verifying test rig and method applied by comparing the results with
those established earlier by different authors. Then measurement method applicable for naturally
orthotropic plate [19] is used to quantify flexural wave energy transfer in technically orthotropic
plates using the method of elastic equivalence [24].
In the following section, estimation of far-field power and determination of other related data

in the frequency domain for isotropic plate are presented.
3.1. Methodology and verification of results in isotropic plate

Laboratory experiments are undertaken with the objectives of measuring and comparing the
flexural wave power in far-field conditions of different plates with different rigidity. Direct power
input to a point of the plates is measured with a force transducer and an accelerometer placed in a
same point opposite to the force transducer. A constant force signal was applied through out the
experiments for all plates and which was monitored constantly.
The schematic diagram and its instrumentation of the laboratory test rig for the measurement

of flexural wave power on steel isotropic plate were fabricated as in Fig. 2. At the upper end of the
plate, a mini-shaker (B&K type 4810) was used to provide random white noise excitation to the
Charge Amplifier

Power Amplifier

FFT analyser PC Plotter

Plate 

Input accelerometer 

Mini-
shaker 

Force transducer 

F
r
a
m
e

Damping area

Fig. 2. Test rig and instrumentation of a freely suspended plate excited by a mini-shaker at one end and heavily damped

at the other end, with indicating the locations of force transducer and different accelerometers (input and far field).
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plate through force transducer (B&K type 8200). Two accelerometers mounted away from the
source and boundaries were used to measure far-field power. The major components of
instrumentation were the miniature accelerometers (piezoelectric, ICP, with an effective mass of
1.7 gm) and multi-channel FFT analyzer (HP 35670A). The accelerometers were mounted on the
plate with bee wax. The mini-shaker was driven by internal noise source of the FFT analyzer. The
standard data files (SDF) of the measurement were transferred from analyzer to a PC for post
processing, and the results were plotted by a plotter.
The sides of the square isotropic plate (Fig. 3) are 0.90m and its thickness is 0.8mm. The

material properties such as Young’s modulus and Poisson’s ratio are 162.8GPa and 0.31,
respectively. With these plate dimensions and material properties, it can be expected the far-field
condition (at least half a wave length from the boundaries and source) at the center of the plate at
frequency from about 9.12Hz upwards. Upper frequency limit for flexural wave to be valid (wave
length equal to six times the thickness of the plate [23]) was 320.7 kHz. The spacing of the
accelerometer positions should be as short as possible so as to minimize finite difference error, but
too short distance causes random error. The spacing, d, was chosen rather arbitrarily to be 20mm.
The spectral bandwidth was set at 800Hz. At the upper frequency limit of 800Hz, the wavelength
was calculated to be 96.10mm (calculations of wavelength are presented in Appendix A). Thus the
accelerometer spacing is approximately 1/4.8 of the wavelength.
The plate was freely suspended vertically using steel strings at two points and the lower part was

damped heavily by the spongy-foam and sand (Fig. 3). This type of damping is usually provided
at the end of the test object to suppress the reflections. Other substances used for this purpose are
plastics, adhesive tape sheet and many similar other things. The effectiveness of damping
F

1.5 cm

x

y 

Location of 
Applied force 

90 cm

45 cm 

20 cm 
90 cm 

15 cm 

1 2 7 

8 14 

Upper line 

Lower line

Damping area

3.5 cm 

Fig. 3. Different measurement points on two measuring lines (seven on each line), indicating locations of applied force

and damping on plate.
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materials was tested by measuring the response of the plate with or without the use of damping
materials. Vibration fields without damping materials would result in a reverberant plate as
vibration energy reflects back and forth in the plates. Initially less damping area was considered
and gradually it was increased until a stable vibration field was achieved [25]. This ensures that a
reverberation condition was less obvious. If it is not so, phase mismatch would give some random
error as a result of which coherence values would be away from unity [2,7]. The coherence graphs
(Figs. 4, 13 and 14) illustrate that random error is not a problem. Such type of measurement to
ensure effectiveness of damping material could be found in the literature [25].
The suspension and force injection were carefully tested in order to minimize the generation of

vertical and torsional motion of the plates, which could disturb the true detection of lateral
horizontal motions. A calibration test of the entire measurement chain was undertaken before the
actual measurements. The key components of these measurements, such as force transducer,
accelerometer and others, were tested and calibrated separately. Repeatability was checked and
errors were less than 2% in the frequency range of interest.
In the measurements, mainly the imaginary part of cross-spectrum between two accelerometer’s

signals at the far field (as required by Eqs. (5) and (8)) and the same between force and
acceleration at the excitation point (as required by Eq. (2)) was measured. The mini-shaker,
providing random white noise, was connected to internal noise source of the FFT analyzer. White
noise commonly known as random excitation is constant in magnitude over frequency range. For
the measurements of cross-spectrum between two acceleration signals for all fourteen points in the
far fields (Fig. 3), a fixed array of transducers was used for all points rather than moving a
transducer sequentially between the array locations. Under such an arrangement, a stationary
field was made during data acquisition of cross-spectral. The FFT analyzer was used to collect
typically 200 ensemble averages of the cross-spectra, auto-spectra and coherence functions needed
in the subsequent processing.
Example of coherence functions observed during data acquisitions in steel isotropic plate is

shown in Fig. 4 with the frequency resolution of 1Hz approximately. Some lack of coherence
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Fig. 4. Coherence function between force and acceleration at the input point.
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occurred at the low frequencies, it was deemed to be acceptable on over all basis [7,22]. A more
sufficient spectral resolution may improve coherence values at those frequencies.
Fig. 5 shows the power spectrum of input force. It is observed that there is a peak

approximately at 800Hz. This peak may be due to nonlinearity and/or other extraneous noise
effective at this frequency. The linear magnitude of force signal was also measured in a lower
frequency, Fig. 6. This figure shows a stable magnitude all over the frequency range. In Fig. 7,
driving point acceleration is presented and it is observed that the lowest part of frequency is more
damped. The imaginary part of cross-spectrum of force and acceleration at input and the
imaginary parts of cross-spectrum between two acceleration signals at various measurement
locations (Fig. 3) were used to compute input power and far-field power using Excel program.
Real part of cross-spectrum between force and acceleration at input and between the acceleration
signals at far field may give useful information regarding standing energy stored in the structures.
Measurement of vibration intensity on beams can usually be performed by inserting transducers

in a four-point or two-point array in one location. But one location measurement results very raw
information of energy transmission in case of plates. It is generally considered to be point grid
random in nature or along different lines (Fig. 3) on the plates [2]. Estimates for net power
through the measurement line grid were constructed as a line integral (by calculating the average)
of the normal components of the properly scaled intensity vectors. Total power transferring
through a line grid could be obtained as

I total ¼

Z
L

~I �~ndL; (9)

where ~I is the intensity vector and ~n is the unit normal vector perpendicular to the line. Average
power could be computed from total power taking into account the number of measurement
points on each line (Fig. 3). Proper scaling of intensity vector is necessary due to the fact that the
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units of input power and intensity are W and W/m, respectively [7]. When intensity is to compare
with input power, it is necessary to make same unit of both quantities. Here the unit W was
considered for both quantities and it was managed using Excel program. There are three ways of
comparing normalized power: ratio form (Eq. (6) and Fig. 20 for example), superposition (Fig. 17
for example), and subtraction (not considered).
Normalized power of input power and far-field power for the isotropic plate is shown in

Figs. 8–10. Measurement locations were chosen such that all points in two lines (Fig. 3) were in
the far-field except at the injection point. It should be reasonably sound to expect that the far-field
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power must be less than the input power [22]. This is supported by the observations in Fig. 8–10.
Far-field power was also compared considering the energy transfer from two measurement lines
and it is shown in Fig. 11. The graphs in Figs. 8–11 show similar pattern to the results available in
the literature [2,7,8,22] and hence it can accepted and verified the measurement methodology, test
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rig, and instrumentation. Thus it can be suitable for measurement of far-field energy transfer in
orthotropic plates.

3.2. Far-field power flow through technically orthotropic plates

In this study, two rectangular corrugated plates, one small and the other big, were considered.
These plates were fabricated from isotropic steel plate. Due to the geometrical modifications, these
plates are no longer isotropic in nature, and are therefore technical orthotropic plates. If the
material properties of a plate are different in orthogonal directions, the plate is called natural
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orthotropic and its thickness is uniform. One repeating section of both corrugated plates is shown
in Fig. 12 and its characteristic dimensions are shown in Table 1. The sizes of small and big
rectangular corrugated plates were same like isotropic plate such that all sides were 0.9m and
thickness of the equivalent plate was 0.8mm.
In isotropic plates, far-field power could be estimated by two-point transducer method and

general field power by a transducer array of eight points [3,5]. In the case of orthotropic plates, a
new model is necessary. Recently, a structural intensity method for naturally orthotropic plates
has been developed [19]. This method (Eq. (8)) is used in the present study of corrugated plates
x 

y
30 
mm 

30 
mm 

30 
mm 

15 
mm 

50
mm

50 mm 50 mm 50 mm

x

y 

(a) (b) 
d1 d1

x 

y 
(c) 

Fig. 12. Physical dimensions of one repeating section of rectangular corrugated plates (a) for small, (b) for big, and (c)

for equivalent plate (all plates 0.9m� 0.90m square).

Table 1

Physical dimensions of one repeating section of small and big rectangular corrugated plate

Physical quantities/types of plates Rectangular corrugated plate

Small Big

Length of one repeating section, d1 (in mm) 90 150

Actual flat length of one repeating section, s (in mm) 120 250

Number of repeating sections 10 6
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using the method of elastic equivalence [24]. The elastic equivalence technique models corrugated
plates to a plate of uniform thickness (Fig. 12c) by defining different rigidities. Now this
equivalent uniform thickness plate is considered to be a naturally orthotropic plate and Eq. (8)
can be used.
If the spectral frequency is set at 800Hz and with the geometric dimensions and material

properties of the plates, it could be computed that the flexural wavelengths are to be 507.04mm
for small rectangular corrugated plate and 902.34mm for big rectangular corrugated plate. Both
flexural wavelengths are significantly greater than the characteristic dimension d1 of the repeating
section of the corrugated plates. This condition ensures the flexural wave transmission in
corrugated plates [23] (calculation of wavelength for all plate is given in Appendix A).
Both rectangular corrugated plates were suspended freely as in Fig. 3 such that the x-axis is

parallel to the direction of corrugation (Fig. 12). As a result the flexural rigidity in x-direction of
the plates, Dx; is greater than that of Dy: Spongy-foam and sand was provided at the lower part of
the plates, as in the case of isotropic plate, as a damping material so as to suppress the reflections
of wave and making strong energy transfer in positive x-direction or in the direction towards
damping material. In every plates, like isotropic, two measurement lines were considered where
different points were located as in Fig. 3. Only a small change was made for the measurement of
energy transfer in big rectangular corrugated plate. It is due to different characteristic dimension
d1 of it. The distance between the measurement point and the distance of extreme points to the
nearest edges of the plates are given in Table 2.
Flexural wavelengths for both small and big corrugated plates have increased significantly

compared to that of isotropic plate. It was due to increase of rigidity in one direction as a result of
corrugation. The order of increase in rigidity in these plates was expected to be approximately 103

or even more [26]. The far field, the half of the flexural wavelength away form the boundary [3],
requires larger area of the plates, resulting in a less area for measurements. For practical structural
intensity measurements, it could be possible to measure in an area as close as one-tenth of the
wavelength from the boundaries with good results [27]. Now, enough area was therefore available
for measurements. The distance between the measurement points, the spacing d, was chosen again
to be 20mm. The accelerometer spacing was thus approximately 1

25
of the flexural wavelength for

small rectangular corrugated plate and 1
45
for big rectangular corrugated plate. Due to this short

transducer spacing compared to wavelength, the possibility of finite difference errors occurring
was very small [7]. This ratio of spacing to wavelength may cause standing wave-related error to
Table 2

Different significant dimensions relating to measurement of all plates

Plates/parameters Isotropic plate Small rectangular

corrugated plate

Big rectangular

corrugated plate

Distance between measurement

points, mm

90 90 75

Distance of extreme points to the

edge, mm

180 180 225

Measurement lines 2 2 2

Number of points 14 14 14
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occur [4]. As strong damping was provided to the plates and it was found that a stable
condition occurred in vibration fields. It may be argued that as reflections and scatterings are less,
there is less chance of resulting error being sensitive to standing waves (more on ‘discussion’
section).
The measurement chain was mainly the same as it was in the case of isotropic plate illustrated in

the Section 3.1. The imaginary part of the cross-spectra between two acceleration signals in the far
field and between force and acceleration signals at injection point was measured by FFT analyzer
for subsequent calculation of far-field power and input power for rectangular corrugated plates as
required by the Eqs. (2) and (8) respectively. The mini-shaker provided same random white noise
from the internal noise source of the analyzer. A fixed array of transducer was used and the FFT
analyzer was used to collect typically 200 ensemble averages of the cross-spectra, coherence and
frequency response functions.
Typical examples of result of energy transfer and related data for small and big rectangular

corrugated plates are hereafter given. Examples of coherence functions for these plates are shown
in Figs. 13 and 14, and corresponding driving point accelerations in Figs. 15 and 16.
Input power and far-field power for both small and big corrugated plates were estimated. The

far-field power was normalized to input power to facilitate comparison of the results and the
method. This is possible because the same measurement state was used in all plate models for
input force to ensure a constant and repeatable condition. For small rectangular plate, Figs. 17
and 18 show normalized far-field power to input power, Fig. 19 for far-field power from two
measurement lines and Figs. 20 and 21 for power ratio, R.
For a big rectangular corrugated plate, on the other hand, the same method was used for data

acquisition and analysis. Spectral resolution was increased to 4Hz for calculation of energy
transfer. Figs. 22 and 23 show normalized far-field power to input power and Fig. 24 shows up the
relative energy transfer considering two measurement lines.
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Fig. 13. Coherence function between force and acceleration at input point for small rectangular corrugated plate

(SRCP), resolution of 4Hz.
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Fig. 14. Coherence function between force and acceleration at input point for Big rectangular corrugated plate

(BRCP), resolution of 4Hz.
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Fig. 15. Driving point acceleration for SRCP at input, resolution of 4Hz.
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4. Discussions

An experimental study was undertaken to verify and prove the soundness of the method
developed for measuring vibration power flow in orthotropic plates for flexural waves.
Corrugated plates were considered for this purpose. Three plate models are considered. Of
them, one is an isotropic plate and the other two are rectangular corrugated plates, one small and
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Fig. 16. Driving point acceleration for BRCP at input, resolution of 4Hz.
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the other big. Shape and size of the plates are described in the last section. The isotropic plate was
used to verify the measurement methodology and test rig used for subsequent measurement on
orthotropic plates. In this study, input power and far-field power are measured along with other
frequency response functions such as power spectrum, coherence function and driving point
acceleration. The corrugated plates are considered in this study because these types of plate are
widely used in industries. They are in the category of technically orthotropic plate [24]. The
measurement model [19] considered here was applicable to naturally orthotropic plates of uniform
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Fig. 18. Normalized far-field power and input power form SRCP from lower measurement line, frequency resolution of

1Hz.
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Fig. 19. Far-field power for SRCP from both upper and lower measurement lines, frequency resolution of 1Hz.
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thickness. Method of elastic equivalence [24,28–31] was applied to corrugated plates to get an
equivalent plate of uniform thickness by defining proper rigidity constants. Power flow model as
applicable for naturally orthotropic plates could be used on technically orthotropic plates with
reasonable accuracy [31].
Coupling of different waves are a major problem especially in complex structures. Structural

intensity can be computed numerically when predictions of structural behavior in various
conditions are needed for complex build-up structures. But in this paper, an alternate way was
considered. Using the method of elastic equivalence, the corrugated plate was transferred to a
plate of uniform thickness that behaves like a simple structure. As a result, coupling does not
create a problem.
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of 1Hz.
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The standard way of providing the soundness of any method and technique in structural
intensity is to normalize vibration power transmission in structures to input power injected in it
[7,8]. Under all conditions, it is expected that input power must be greater than the vibration
power flowing [22] for identical conditions on same structure. In some cases, vibration power
may however exceed the input power and power ratio between far-field power and input
power on the same plate is greater than unity [7,8,22]. In Figs. 8 and 9, the normalized
far-field power (W) to input power in isotropic plate is plotted. In all respects, it is observed
that the input power to the plate has a higher value than that of the far-field power.
This is confirmed from Fig. 10 for example. Power ratio in this figure shows that it does
not exceed the value of unity, but have some negative values in some frequencies. The
far-field power in these frequencies has negative amplitudes and thereby yields negative
power ratio.
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Fig. 22. Normalized far-field power to input power for BRCP from upper measurement line, frequency resolution

of 4Hz.
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Fig. 23. Normalized far-field power to input power for BRCP from lower measurement line, frequency resolution

of 4Hz.
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Three types of power flow pattern [32] are observed: straight type, S-shaped type and vortex
type. Among them, S-shaped type and vortex type flow pattern may play important roles for
energy transfer especially in making negatives loops. These patterns are also applicable to in-plane
waves. Even it is true for acoustic intensity [32]. Due to this effect and reflections from edges,
negative structural intensity values do occur especially in two-dimensional structures. The
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N.K. Mandal et al. / Journal of Sound and Vibration 285 (2005) 669–695 689
magnitude of the negative peaks could be reduced by introducing more damping area not only in
lower side but also to the other vertical sides (Fig. 3).
In the case of orthotropic plates, far-field power was normalized to the input power injected to

these plates for facilitating comparison of the results. Figs. 17, 18, 20 and 21 show this comparison
for small rectangular corrugated plate and Figs. 22 and 23 for big rectangular corrugated plate.
The graphs of all figures confirm that the input power always exceeds the far-field power, with
some exceptions. In some frequency range, typically at higher range, far-field power has a higher
value than input power. The use of more measurement points on a measurement line may resolve
this anomaly. Reflections and scatterings of waves from edges of the plates (only lower side of the
plates is damped) and rotational (vortex) characteristics of power flow field create additional
influence on far-field power to be greater than input power and yielding negative values. However,
the characteristics of the results are consistent with the result reported in the literature [7,8,22].
The plots of power ratio of these plates (Figs. 20 and 21) ensure this nature in a more convenient
way. In the region closer to damping area, reflections of wave are less, with strong power flow as
expected occurring in the direction towards damping area (Figs. 11,19 and 24).
The errors in measurements are quite inherent. Good measurement method and instrumenta-

tion give results of higher accuracy. The spacing between the sensors was chosen rather arbitrary.
A spacing of 20mm was used, representing approximately 1

45
wavelength for one plate, stated

before. The smaller is the spacing of the sensors, the lower will be the finite difference error of the
measurements [4]. The finite difference errors start to appear if the spacing is greater than 1

5
of

wavelength [7]. The ratio of spacing and wavelength of this study ensures a good accuracy in
terms of finite difference errors. On the other hand, this ratio between the spacing and the
wavelength may give some phase mismatch of the sensors which provides some random errors.
Random errors may further occur due to amplitude and imperfect positioning of sensors. The
random error could be quite large if the coherence values are not close to unity and/or not a
large number of averages are taken [2]. In this work, it was observed that all the coherence values
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(Figs. 4, 13 and 14) are very close to unity except in some initial frequencies. On the other hand,
quite large number of averages (200) was considered. It could therefore be expected that random
error due to phase mismatch would be marginal. The investigation of finite difference, random
and bias error is beyond the scope of this study. Useful suggestions in this direction are given by
Shibata [33]. It was stated before that the end damping ensured the plates with fully propagating
waves, suggesting the reactive and reverberant energy was not disturbing. Considering all of the
above points, It may reasonably be argued that phase error does not play a significant role. If
the reverse is true, phase error cancellation property of the frequency response technique would be
employed [2]. In addition, Hanning window was considered for data acquisition so as to get better
solution of leakage.
In this research, both vibration power and vibration amplitude of corrugated plates are

compared with that of the isotropic plate. The far-field power, compared for different plate
models, is shown in Figs. 25 and 26. This would ensure the effects of rigidity on energy transfer as
same input excitation was provided to all plates. The case of designing of any engineering
structures under dynamic load, peak response value should be considered. In this paper,
consideration should be based on the average value of energy transfer. Depending on this
criterion and considering the information in these figures, it is shown that vibration power flow is
reduced in the case of corrugated plate in comparison to isotropic plate. A more fruitful
comparison would however be possible by plotting the values of far-field power ratio for different
plates (Fig. 27). The value of flexural rigidity for isotropic plate (7.684Nm) was less than the
rigidities of corrugated plates (7606.775Nm for SRCP and 94.424� 103Nm for BRCP). From
these figures, it is observed that with the increase of flexural rigidity, vibration power flow reduces.
This outcome is supported by the results of the graphs of Fig. 28. Frequency response function of
acceleration of small rectangular corrugated plate is reduced to that of isotropic plate. Higher
stiffness enhances more damping, thereby reducing the amplitude of vibration (Fig. 28) and
structural intensity (Fig. 27). Surface treatment on the surface of the plate also reduces the
vibration amplitude, Fig. 29. This research directs this distinct way of controlling flexural waves in
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structures. Other than controlling of vibration sources by isolating it from the structure, a passive
method of controlling it by increasing flexural rigidity of the structure gives a way not only to
reduce vibration amplitude but also reduce vibration energy transfer through plates. As higher
rigidity of plates ensures more damping, more vibration energy is absorbed in the plates thereby
less acoustic power radiation to the surroundings.
The outcome of reducing vibration power flow and vibration amplitude with the increase of

flexural rigidity could ensure an efficient way, a passive means, to control noise and vibration in
industries. The increase of flexural rigidity by corrugation of the plates does not result in any
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major increase in mass of the plate. To increase same amount of stiffness by increasing the
thickness of the plate or stiffening with other beams would surely yield more mass of the plate
than that of the corrugation. Corrugation of plate is therefore an effective controlling method of
vibration power and vibration amplitude for flexural waves. Effects of rigidity by sinusoidal
corrugation and trapezoidal corrugation create more attention now to investigate its influence on
vibration energy transfer.
Through the literature search on vibration power flow, it is evident that measurement model

has been developed mainly to simple structures. Structural intensity is however available to
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naturally orthotropic plates [19]. But no method has been noticed so far which is useful for
experimental investigation in technically orthotropic plates. Therefore, a method of elastic
equivalence was used to use the method [19] to corrugated plates. This is another objective of this
study to investigate the effectiveness of method of elastic equivalence. The similarity of far-field
power transmission, input power and their comparison in isotropic plate (without elastic
equivalence) and orthotropic plates (with elastic equivalence) would certainly ensure the
soundness of the method [7,8]. This ensures its creativity and is considered to be an extension
of related works of structural intensity in the literature.
5. Conclusions

In this study, two-transducer method applicable for naturally orthotropic plates is used for
estimating vibration energy transfer in technically orthotropic plates. As a result, method of
elastic equivalence is used. First the measurements were carried out in an isotropic plate to verify
and prove the soundness of methodology and instrumentation and thereby it extends to
corrugated plates. The research not only illustrates the usability of two-transducer method [19] to
corrugated plates, but also shows how effective is the usage of corrugated plates in controlling
flexural waves. It is confirmed that the method of elastic equivalence is an effective way to model
corrugated plates. It also ensures that the higher the rigidity of the plate, the lower the vibration
energy transmission. As rigidity of the plates increases, vibration amplitudes of it also decreases,
thereby acoustic radiation reduces. This is a wonderful way of controlling structure-borne sound
without any major weight penalty.
Appendix A. Calculation of flexural wave lengths for different plates

Calculation of flexural wave length for plates requires values of material properties such as
Young’s Modulus, Poisson’s ratio and other dimensions such as thickness, length of repeating
section (d1), mass per unit area (m

00), flexural rigidity of the plate and frequency. The basic
equations for calculation of flexural wave length are given below:

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
o2m00

Dx

4

s
; (A.1)

l ¼
2p
k
; (A.2)

where k is the flexural wavenumber, o is the angular frequency, l is the flexural wave length and
Dx is the flexural rigidity of the corrugated plates in the x-direction. If Dx is replaced by D,
the flexural rigidity of the isotropic plate, the Eq. (A.1) could be useful for isotropic plates. From
Eqs. (A.1) and (A.2), the final form of flexural wave length equation could be manipulated as

l2 ¼
2p
f

ffiffiffiffiffiffi
Dx

m00

r
; (A.3)
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Table 3

Table for flexural wave lengths for different plates, one isotropic plate and other two rectangular corrugated plates

Types of plate Neutral axis (mm) Dx or D (Nm) l for 800Hz (mm) d=l

Isotropic plate — 7.684 96.10 0.2

SRCP 6.125 7606.775 507.04 0.04

BRCP 20.56 94.424� 103 902.34 0.02

y

y 

z 

d1

Position of neutral axis 

Fig. 30. Position of neutral axis of one repeating section of rectangular corrugated plate, indicating coordinate system.
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where f is the frequency of the analysis. To calculate Dx for corrugated plates, it is necessary to
evaluate the position of neutral axis (Fig. 30) and moment of inertia about its neutral axis [26].
Above table (Table 3) shows the related information for flexural wave length of the plates.
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