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Abstract

The thermoelastic, geometrically nonlinear vibrations of isotropic, straight and curved beams are studied
using p-version, hierarchical finite elements. First-order shear deformation theory is followed, and both the
longitudinal displacements and inertia are taken into account. The nonlinear equations of motion are
solved in the time domain by Newmark’s method. The influence of parameters like the temperature
variation, the thickness and the ratio of curvature on the beams nonlinear dynamics is studied. Periodic and
non-periodic motions are found.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Large amplitude vibrations introduce a geometrical type of nonlinearity that influences the
dynamic behaviour of a structure. In fact, the structure’s stiffness, and consequently the resonance
frequencies and mode shapes, are amplitude dependent [1]. It is also well known that temperature
variations from a reference temperature may cause quite significant changes in the dynamic
behaviour of a structure, as temperature fields introduce stresses due to thermal expansion or
contraction, and can cause buckling of structures with fixed ends [2]. Therefore, the problem of
see front matter r 2004 Elsevier Ltd. All rights reserved.
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geometrically nonlinear vibration with temperature effects is an interesting one, with wide
applicability in engineering.
Beams, straight or curved, are fundamental elements in machines and structures, and one can

find several publications devoted to the study of their linear and nonlinear vibrations. As far as
the linear vibrations of curved beams are concerned, one of the main motives of research is the
alleviation of the shear locking phenomenon in finite elements [3,4]. The nonlinear vibration of
curved beams is a particularly interesting problem, which has been investigated, for example, in
Refs. [5–7]. In the first Ref. [5], a two-mode model was applied, which has the advantage of being
small, but might not be accurate enough for some investigations. In Ref. [6], nonlinear steady-
state vibration of beams, frames and shallow arches were analysed in the frequency domain, using
a h-version straight beam finite element. Undamped, free vibrations of curved Timoshenko beams
were analysed in [7] by the Galerkin method, which was applied both in the space and time
domains. In these references the temperature effects were not considered.
Although the temperature and elastic behaviours are in fact coupled [2,8], for thin structures—

beams, plates or shells—it is often reasonable to assume that the temperature distribution is
independent from the deformation of the structure. This gives rise to uncoupled problems, which
were investigated, for example, in [9–15]. Chang et al. [9] performed an analytical analysis of
heated plates using one term Galerkin approximation and Berger’s simplified theory. Locke [10]
studied the large deflection of thin, in the Kirchhoff sense, laminated composite plates subjected
to static, temperature and acoustic loads. A single mode Galerkin approximation was followed. In
[11] a finite element method (FEM) for large amplitude oscillation of panels with the influence of
temperature is presented. In [12] a FEM time domain modal formulation for the nonlinear flutter
of panels at elevated temperatures is introduced. Limit-cycle and chaotic oscillations are found. A
preliminary given distribution of the temperature field is accepted as well in [13], where
geometrically nonlinear vibrations of thermally buckled slender panels are investigated using a FE
model. In [14] governing equations for geometrically nonlinear vibrations of shells under linear
and parabolic temperature distributions are derived. The equations are solved assuming that the
deflection is given by one term and applying Galerkin’s method. In [15], a formulation based on
the FEM and modal analysis is applied to analyse thermal post-buckling of thin simply supported
plates.
In the p-version of the FEM, the accuracy of the approximation is improved by increasing the

number of shape functions over the elements. Several works demonstrate that, in general, the p-
version of the FEM gives accurate results with fewer degrees of freedom than the h-version, which
is a big advantage in nonlinear analysis [1,16,17]. Moreover, p-elements are not prone to shear
locking [17] and, if orthogonal shape functions are chosen, the linear matrices are diagonal. A p-
version of the FEM where the set of functions corresponding to an approximation of lower order
p, constitutes a subset of the set of functions corresponding to the approximation of order p+1, is
called the ‘‘hierarchical finite element method’’ (HFEM) [16]. This has additional advantages, like
the fact that linear matrices of different orders of approximation are embedded.
An analysis of the current state of the art in thermoelastic geometrically nonlinear vibrations of

structures reveals that the highly efficient p-version, hierarchical FEM has not been used to study
this problem. In the following pages, a p-version, hierarchical finite element for isotropic, linear
elastic, curved beams is applied to study thermoelastic geometrically nonlinear vibrations. First-
order shear deformation theory is followed; the longitudinal displacements and the longitudinal
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inertia are not neglected. The nonlinear equations of motion are solved in the time domain. The
influence on the beam nonlinear dynamics of parameters like the temperature variation, the
thickness and the ratio of curvature are investigated.
2. Finite element model

A curved beam of thickness h, whose undeformed geometry is defined from a reference straight
line by introducing a curvature radius R, is considered. Therefore, the centroidal axis is initially
located at a distance from the x-axis given by

wiðxÞ ¼ �
1

2

x2

R

� �
: (1)

The axial displacement, u, is a function of the longitudinal displacement along the centroidal
axis u0 and of the rotation about the y-axis, which is denoted by y0y: The superscript ‘‘0’’ represents
the centroidal axis and the rotations follow the right-hand rule. Using a first-order shear
deformation model, the displacements are given by

uðx; z; tÞ ¼ u0ðx; tÞ þ zy0yðx; tÞ; (2)

wðx; z; tÞ ¼ w0ðx; tÞ þ wiðxÞ; (3)

where w is the displacement along the z direction and w0 is the deformation in relation to the
initial configuration. The longitudinal strains of curved beams are given by

�x ¼ 1 z
� � �p

0

�b
0

( )
þ

�I

0

� �
þ

�p
L

0

( ) !
; (4)

where the linear longitudinal and bending strains, �p
0 and �b

0; and the geometrically nonlinear
longitudinal strain, �p

L; are defined as

�p
0 ¼ u0

;x; �b
0 ¼ y0y;x; �p

L ¼
ðw0

;xÞ
2

2
: (5)

The following strain is due to the initial curvature of the arch and to the transverse displacement:

�I ¼
w0

R
: (6)

The transverse shear strain is

g0zx ¼ w0
;x þ y0y: (7)

The other strains are zero. Naturally, the strains and displacements in Eqs. (4)–(7) depend on the
position x and on time t, but in order to simplify the notation �xðx; tÞ is represented as �x; etc.
When a beam is heated and the temperature distribution is uniform, its dimensions tend to

change due to a thermal deformation that can be expressed as �T ¼ aðT � T ref Þ ¼ aDT : The letter
T represents the actual temperature, and Tref is a reference temperature for zero thermal strain. If
the beam is constrained by boundary conditions that do not allow an axial deformation to occur,
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then an axial compressive stress will result and the following stress–strain relation holds:

sx ¼ Eð�p
0 þ �p

L þ �I � �T � zkxÞ: (8)

The relation between the average shear stress and the shear strain is the usual

txz ¼ lGgxz: (9)

In the former equations, E represents the modulus of elasticity and G is the shear modulus of
elasticity, given by E=ð2ð1þ nÞÞ; where n is the Poisson ratio. The shear correction factor, l,
depends on the beam’s cross-section, and different values have been suggested. According to [18],
the expression l ¼ ð5þ 5nÞ=ð6þ 5nÞ; which will be used in this paper, gives an appropriate value
for rectangular beams. Material properties, like E, G and a; may vary appreciably when the
temperature changes a few hundred degrees [2], but in this work the temperature changes will be
moderate, and constant material properties will be assumed.
In the FEM, the middle surface elemental displacements are expressed in the form:

u0

w0

y0y

8>><
>>:

9>>=
>>; ¼

Nuf g
T 0 0
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T 0

0 0 Nyy
� �T

2
664

3
775
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qyy

8><
>:

9>=
>;; (10)

where fqug is the vector of generalised longitudinal displacements, fqwg is the vector of generalised
transverse displacements, and fqyy

g is the vector of generalised rotations. The complete matrix of
shape functions is constituted by the row vectors of longitudinal, transverse and rotational shape
functions, which are, respectively, fNugT; fNwgT and fNyygT: In the HFEM the number of shape
functions can vary as deemed necessary by the user. The sets of shape functions used here are
given in [1].
The stress and couple resultants and the shear stress resultant per unit length are, respectively,

defined by Tx ¼
R h=2
�h=2 sx dz; M ¼

R h=2
�h=2 sx zdz and Qz ¼

R h=2
�h=2 txz dz: Substituting the stresses by

their relations with the strains, Eqs. (8) and (9), one arrives at the thermoelastic constitutive
relations of the curved beam. Because beams of symmetric cross section are considered, there are
no coupling terms between extension and bending and the following relation holds:

T

M

� �
¼

A 0

0 D
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0
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þ

�I

0
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0

� � !
; (11)

Qx ¼ lGhgxz (12)

with

A ¼ Eh; D ¼
Eh3

12
:
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The equations of motion are derived by equating the sum of the virtual work of the inertia
forces and of the elastic restoring forces to zero. The virtual work of the internal forces is

dW in ¼ � b

Z
L

d�p
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dgzxlGhgzx dx: ð13Þ

The linear stiffness matrices are defined from the products involving only linear strains. These
are: the longitudinal stiffness matrix ½K

p
1
; which is equal to the straight beam one [1]; the bending

matrix ½Kb
1
; the matrices due to coupling between the transverse response and the longitudinal

response ½Kb
1
 and ½K

ps
1 
 and the matrix ½Kss

1 
; due to the beam’s initial curvature. The former
matrices and the linear shear stiffness matrix ½K

g
1
 are given in Appendix A.

There are three nonlinear stiffness matrices—[K2], [K3] and [K4]—which are functions of the
transverse generalised displacements {qw}, and are equal to the thin straight beam ones [1]. Two
nonlinear stiffness matrices due to the beams’ initial curvature also appear. These are matrix ½Ks

2
;
given in Appendix A, and matrix ½Ks

3
 ¼ 2½Ks
2

T: The integrals that appear in the calculation of

these matrices are computed symbolically only once for each model, and stored in a file in Fortran
format. These matrices are updated in each iteration.
The temperature variations originate two force vectors. One is the vector of longitudinal

thermal forces, which for beams of constant cross section is

FTuf g ¼ bAaDT

Z
L

Nu
;x

n o
dx: (14)

The other is a vector of thermal forces in the transverse direction, which appears due to the beam’s
initial curvature and to the thermal expansion. This vector is given by

FTSf g ¼
bAaDT

R

Z
L

fNwgdx: (15)

The two former expressions are valid as long as neither DT ; nor A depend on the longitudinal
coordinate x.
The nonlinear deformation and the thermal strain generate the following matrix:

½KDT 
 ¼ bAaDT

Z
L

Nw
;x

n o
Nw

;x

n oT

dx: (16)

The virtual work of the inertia forces is

dW j ¼ �b

Z h=2

�h=2

Z
L

rðdu €u þ dw €wÞdxdz: (17)

Hence, the mass matrix [M] will include the sub-matrices [Mp] and [Mb], which are the
longitudinal and transverse inertia matrices, and the sub-matrix [MR], which is due to the rotatory
inertia. In this work none of these matrices is neglected.
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The principle of the virtual work is applied to compute the vector of generalised forces due to
external mechanical actions. Considering as an example the point load, Pw

j ðtÞ; and the distributed
transverse load, Pw

d ðx; tÞ; the following expression applies:

dW ex ¼

Z
L

Pw
j ðtÞdðx � xjÞ þ Pw

d

h i
dwðx; tÞdL

3 dW ex ¼ 0 dqw 0
n oT

0

FE
w

0

8>><
>>:

9>>=
>>;; ð18Þ

where dðx � xjÞ represents a spatial Dirac delta function. A similar procedure is followed to obtain
the vectors of generalised externally applied longitudinal forces FE

u

� �
and moments ME

� �
:

For simplicity’s sake, stiffness proportional damping will be assumed, and the following time
domain equations of motion in generalised coordinates are obtained:
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3. Numerical studies and discussions

All beams analysed are in aluminium with elasticity modulus E ¼ 7� 1010 N=m2; mass density
r ¼ 2778kg=m3; and Poisson coefficient n ¼ 0:34: The thermal expansion coefficient is a ¼

23:90� 10�6=K and the shear correction factor is, as already stated, l ¼ ð5þ 5nÞ=ð6þ 5nÞ: In the
first series of examples it will be assumed that the damping coefficient is c ¼ 10�3; afterwards, the
value c ¼ 10�4 will be employed. Only one hierarchical finite element is used to model each beam.
The boundaries are clamped–clamped.
First, a straight beam with the following geometric properties is analysed: b ¼ 0:02m;

h=0.002m, L=0.5m. Using a finite element with 9 transverse shape functions, 9 longitudinal
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shape functions and 9 rotational shape functions, that is, 27 dof, the values calculated for the first
four natural frequencies (rad/s) are: 259.338, 714.774, 1401.00, 2315.64. These agree with the
analytical results [19].
In Fig. 1, the displacements of the beam’s middle point are displayed. The beam is excited at its

first natural frequency by a harmonic excitation with 1N, applied transversely at midspan and
different variations in temperature are implemented. When negative variations of temperature are
considered, one verifies, as expected, that a straight beam becomes stiffer, and that, therefore, the
displacements amplitudes are smaller. On the other hand, as the temperature increases the beam
softens, and its vibration amplitudes increase.
With DT equal to �5, 0 or 1K the motions are periodic and symmetric around the

corresponding equilibrium position, which is the original straight configuration. For DT equal or
higher than 4K, the beam oscillates again with periodic motions, but around a new, buckled,
equilibrium configuration.
With this 1N point excitation, a very interesting motion occurs DT ¼ 3K; as the time, phase

and Poincaré plots in Fig. 2 demonstrate. In this far from periodic motion, the beam moves
around three equilibrium positions, one unstable and two stable. The two buckled equilibrium
positions appear because the critical buckling temperature—determined as approximately DT ¼

2:2K; employing a Bernoulli–Euler model [2]—was passed. The Poincaré plots, represented in this
and in the following pictures, were constructed by sampling the velocity and displacements at
periods of the excitation force [20].
In Fig. 3, the time history of the displacement and the phase plot of the middle point of

the same straight beam is portrayed, but when DT ¼ 5K and the excitation amplitude is 5N. The
temperature is larger than the critical buckling temperature and the force is quite large, so that the
beam should pass through its three equilibrium positions. It is thus interesting to find out that
the motion became periodic again.
From this simple examination, we verify that the dynamic behaviour of thin beams suffers

important changes with temperature. This brings some difficulties when one carries out
experimental analyses of beams with fixed boundaries, in a laboratory without a rigorous
temperature control [21].
-1.5

-1

-0.5

0

0.5

1

1.5

-3

-2

-1

0

1

2

3

w
/h

w
/h

0  0.1  0.2

t (s) t (s)

∆T=1 K ∆T=0 K ∆T=-5 K ∆T=5 K ∆T=10 K ∆T=4 K

∆T=3 K 

0 0.1   0.2   0.3  

Fig. 1. Time histories of thin straight beam at different temperatures.
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Now, let us study the effects of the beam’s thickness by analysing straight beams with the
properties previously defined, except the thickness, which will be varied. Two finite elements are
applied: the previously used 27 dof element and a hierarchical finite element with 7 shape
functions of each type, i.e., 21 dof in total. Compared with the 27 dof element, the 21 dof still
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provides very accurate results—if the 5th mode is not important in the motion’s definition—with
computational time savings. With this 21 dof element, the fourth linear natural frequency is
computed with a relative error lower than 0.63%.
Fig. 4 shows the time plots of responses when the excitation frequency is the first natural

frequency of the beam under analysis, the temperature variation is either 0K or 10K, and the
force is distributed with amplitude 50(h/h1)

3N/m, where h1 is the thickness of the thinner beam
(h1 ¼ 0:002m). The other beams thicknesses are h2 ¼ 0:01m and h3 ¼ 0:02m; that is h2=L ¼ 0:02
and h3=L ¼ 0:04:
In spite of the increasing force amplitude, the amplitude of the displacements decreased

significantly as the thickness of the beam augmented. Also, as confirmed by the 0K examples, the
thin beam response changes dramatically with the temperature variation, whilst for the medium
beam the effects of the temperature are smaller and the thicker beam has a similar response at
both temperatures. In fact, at 10K, the dynamic response to a harmonic excitation changed from
a not periodic motion, in the thinner beam case, to a harmonic one in the thicker beams.
By analysing the deformed shapes of the thin beam, it was verified that its motion is affected by

higher order modes, in both temperature cases. Nevertheless, these higher modes are much more
important when DT ¼ 10K; where the motion is not at all periodic, as the phase and Poincaré
plots—Figs. 5 and 6—demonstrate. In this case of non-periodic motions, and because high order
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0:002; (b) h=L ¼ 0:03; and (c) h=L ¼ 0:04:
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nonlinear modes are present in the response, slightly different time, Poincaré and phase plots were
obtained with the 21 dof and with the 27 dof models. Thus, the results from the more accurate 27
dof model are the ones shown.
In the following examples the thermoelastic vibrations of curved beams, with length L ¼ 0:5m

and square cross-section, being b ¼ h ¼ 0:02m; are analysed. The 21 dof finite element is used for
this purpose.
Let us start by changing the beams’ curvature radius, analysing beams where R obeys one of the

following relations: R1 ¼ 1; L=R2 ¼ 0:1; L=R3 ¼ 0:2 and L=R4 ¼ 0:3: The responses of these
beams to distributed harmonic excitations with frequency equal to their first natural frequency,
and with amplitude 10 kN/m, were computed. The results when the temperature variation is 100K
are shown in Fig. 7.
As the initial curvature radius decreases, the beam becomes stiffer; consequently, the vibration

amplitude decreases as L/R increases. However, the transverse thermal force—given by
expression (15)—also increases with the curvature of the beam, and, unlike straight beams prior
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to buckling, curved beams always vibrate around an equilibrium position which is displaced
relatively to the one of the unheated beam.
Fig. 8 displays the responses of the beam where L=R ¼ 0:2; with a mechanical excitation due to

a distributed harmonic load with 10 kN/m, but with different temperature changes. In this case, all
the motions are periodic, but the temperature variation DT alters the equilibrium configuration.
For negative temperature variations, the curvature of the beam decreases, and the opposite occurs
for positive DT :
So far the damping parameter has always been c ¼ 0:001: Now, to attain very large amplitude

vibrations, this will be reduced to c ¼ 0:0001 and the distributed force increased to 40 kN/m. Our
goal here is to shown the importance of the curvature in the very large displacement, high
temperature, elastic vibrations. One sees in Figs. 9 and 10 that, for this larger excitation force, the
motions at the different temperature variations are periodic and do not vary so strongly with the
temperature as in other cases. Nevertheless, the amplitudes of vibration and the phase plots
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change with the temperature.1 The non-harmonic response to a harmonic excitation is due to the
curvature and nonlinear effects, since it also occurs when DT ¼ 0K:
4. Conclusions

The geometrically nonlinear thermoelastic vibrations of straight and curved beams were
analysed with a reduced computational cost, using p-version, hierarchical finite elements. In the
case of straight beams, it was verified that thicker beams are less influenced by temperature
variations. On the other hand, thin beams are very sensitive to quite small temperature variations,
and may rather easily experience a bifurcation from a motion where there is only one equilibrium
configuration, to one where three equilibrium configurations coexist.
Curved beams are influenced in a different way by temperature then straight beams. For

positive temperature variations, the curvature and temperature effects result in forces that
increase the stiffness and the curvature. On the other hand, if the temperature is reduced, the
curvature of the beam tends to decrease. As a result, and unlike straight beams, curved beams
always oscillate around an equilibrium position that differs from the equilibrium position at the
reference temperature.
Thus, when the temperature increases, strongly non-harmonic and even non-periodic motions

are more likely in straight beams that in curved ones. The probable reason behind this is that
1For the larger vibration amplitudes shown in the picture, one can doubt if the elastic model employed is still valid.
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straight beams with fixed ends easily buckle when they are heated, and therefore they will have
one unstable and two stable equilibrium positions. If the mechanical excitation has a large enough
amplitude to force the beam to oscillate around these three positions, a rich dynamic behaviour is
expected. On the other hand, a heated curved beam will expand and become more curved, and
therefore has even more tendency to oscillate around only one equilibrium position. To make this
heated curved beam buckle, a larger mechanical external force is required.
Acknowledgments

The authors wish to thank the support of ICCTI/GRICES, Portugal trough the NATO Science
fellowship program, as well as the support of the Science and Technology Foundation, Portugal,
through grant FEDER POCTI/EME/32641/2000 and of the Bulgarian Research Fund trough
grant TH 1103/01.
Appendix A. Stiffness and mass matrices
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