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Abstract

In this paper the homotopy perturbation method is adopted for solving a complex-valued second-order
strongly nonlinear differential equation. Homotopy with an imbedding parameter p 2 ½0; 1� is constructed.
The perturbation procedure with parameter p transforms the strongly nonlinear differential equation into a
system of linear complex-valued differential equations whose solutions give the approximate solution of the
initial differential equation. To illustrate the effectiveness and convenience of the suggested procedure, a
Duffing equation with strong cubic nonlinearity is considered. The periodic solution in the first
approximation is obtained. The solution is compared with the exact one and shows good agreement.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Many analytical procedures have been developed for solving complex-valued differential
equations with small nonlinearity. The multiple-scales method [1], the Bogolubov–Mitropolski
method [2], the Krylov–Bogolubov method i.e., the method of slow varying amplitude and phase
and also the generalized averaging method are used for solving these differential equations (see
Refs. [3–5]). All of them represent perturbation methods based on the exact closed-form analytic
see front matter r 2004 Elsevier Ltd. All rights reserved.
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solution of the corresponding linear differential equation as a generating equation. The main
assumption is that the solution of the differential equation with small nonlinearity is close to the
solution of the linear differential equation. Based on the mentioned methods the elliptic-
Krylov–Bogolubov method, the harmonic balance method with elliptic functions, elliptic
perturbation method, the Bogolubov–Mitropolski method with Jacobian elliptic functions, etc.
are developed, which are applied for solving complex-valued strong nonlinear differential
equations (see Refs. [6–9]).
The main disadvantage of the methods mentioned is that they require the exact analytic

solution of the strong nonlinear differential equation to be known before the perturbation method
is applied. To express the closed-form solution in analytical form is usually impossible. It exists
only for a few differential equations with certain strong nonlinearities and for certain initial
conditions. Besides, the traditional perturbation techniques are based on the small parameter.
Unfortunately, this requirement is too over strict and most nonlinear equations have no small
parameter at all.
Very often for applications it is not necessary to obtain the exact solution of the complex-valued

strongly nonlinear differential equation, and an approximate analytical solution is quite
satisfactory. In this paper an approximate analytic procedure for solving strong nonlinear
complex-valued differential equation is developed. For solving such differential equations the
homotopy perturbation method is adopted. The homotopy method is known in topology and
Liao [10] was the first to apply it for solving the first- and second-order strong nonlinear
differential equations. The homotopy is constructed with the imbedding parameter p 2 ½0; 1� and
due to homotopy description for the boundary values 0 and 1 the differential equation is linear
and strong nonlinear, respectively. For the so obtained differential equation He [11–13] applied
the perturbation procedure where the imbedding parameter p is considered as a small parameter.
In this paper the homotopy perturbation method is adopted for solving a complex-valued

second-order strong nonlinear differential equation

€z þ f ðz; _z; ccÞ ¼ 0 (1)

with initial conditions

zð0Þ ¼ zn0; _zð0Þ ¼ _zn0, (2)

where z is a complex function, cc is the complex conjugate function of z and zn0 and _zn0 are constant
complex values. The differential equation describes the oscillatory motion of a one-mass system
with two degrees of freedom (dof). To illustrate the method an example of a Duffing equation
with strong cubic nonlinearity is considered. The periodic solution in the first approximation is
obtained.
2. The homotopy perturbation method

On introducing an operator F, the differential equation (1) takes the simple form

FðzÞ ¼ 0; z 2 C. (3)
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The operator F is divided into two parts: L is linear and N is nonlinear and Eq. (3) is

LðzÞ þ NðzÞ ¼ 0. (4)

By homotopy technique proposed by Liao [13], the homotopy of Eq. (4) C� ½0; 1� ! C is
constructed, which satisfies

IðZ; pÞ ¼ pF ðZÞ þ ð1
 pÞðLðZÞ 
 Lðz0ÞÞ ¼ 0; z 2 C; p 2 ½0; 1� (5)

with the initial conditions

Zð0; pÞ ¼ zn0; p 2 ½0; 1�,

_Zð0; pÞ ¼ _zn0; p 2 ½0; 1�, ð6Þ

where p is the imbedding parameter and z0 is the initial approximation of Eq. (3), which satisfies
the initial conditions (2). Different values of p correspond to different differential equations and
their solutions. For p ¼ 0 it is IðZ; 0Þ ¼ LðZÞ 
 Lðz0Þ ¼ 0 and the corresponding solution of the
linear case is Zðt; 0Þ ¼ z0ðtÞ: For p ¼ 1 it is IðZ; 1Þ ¼ F ðZÞ ¼ 0 and Zðt; 1Þ ¼ zðtÞ represents the
solution of the original differential equation. So, Zðt; pÞ : z0ðtÞ ’ zðtÞ are homotopies. The solution
zðtÞ is a two frequency function as it corresponds to complex-valued second-order differential
equation (1). The frequencies of the solution zðtÞ are ao and 
ob where a and b depend on the
nonlinearity. For the linear case, it is að0Þ ¼ 1 and bð0Þ ¼ 1 and the frequencies of the linear
solution z0ðtÞ are o and 
o:
Assuming that the imbedding parameter p is a ‘‘small parameter’’, the power series solution in p

of Eq. (5) is

Zðt; pÞ ¼ z0 þ pZ1ðtÞ þ p2Z2ðtÞ þ � � � . (7)

Setting p ¼ 1 results in the approximate solution of Eq. (1)

z ¼ lim
p!1

Zðt; pÞ ¼ z0 þ Z1ðtÞ þ Z2ðtÞ þ � � � . (8)

Substituting Eq. (7) into Eqs. (5) and (6) and separating the terms with p0 and p1 following two
differential equations are obtained:

p0: LðZ0Þ 
 Lðz0Þ ¼ 0; Z0ð0Þ ¼ z0ð0Þ ¼ zn0; _Z0ð0Þ ¼ _zn0, (9)

p1: LðZ1Þ þ F ðZ0Þ ¼ 0; Z1ð0Þ ¼ 0; _Zð0Þ ¼ 0. (10)

The solution of the differential equation (9) is Z0 ¼ z0: The solution has periodical properties as
the differential equation (9) describes the vibration motion of a one-mass system with two dof.
Substituting the solution Z0 into Eq. (10) and separating the secular terms which cause the
resonant case, the correction of frequencies due to nonlinearity in the first approximation a and b
are obtained. Solving the differential equation (10) and using the obtained values for a and b the
solution in the first approximation is

zðtÞ ¼ z0 þ Z1ðtÞ. (11)
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3. Example 1

The complex-valued differential equation of Duffing type is

€z þ o2z þ bzðzz̄Þ ¼ 0, (12)

where o and b are known constant values and the initial conditions are Eq. (2). This mathematical
model describes the vibrations of a rotor with strong cubic nonlinearity [14]. To obtain the
approximate solution of Eq. (12) the homotopy perturbation is applied.
A homotopy which satisfies C� ½0; 1� ! C is constructed

LðZÞ 
 Lðz0Þ þ pLðz0Þ þ pZðZZ̄Þb ¼ 0, (13)

where LðZÞ ¼ €Z þ o2Z: The initial approximation of Eq. (13) is assumed in the form

z0 ¼ A expðiaotÞ þ B expð
ibotÞ, (14)

where A and B are complex functions that satisfy the initial conditions (2)

A þ B ¼ zn0; aA 
 bB ¼ 

i_zn0
o

. (15)

The a and b are unknown functions of nonlinearity. Using the suggested perturbation procedure
and the approximate solution (14) the differential equation (10) is

LðZ1Þ ¼ 
 fA½o2ð1
 a2Þ þ bðAĀ þ 2BB̄Þ� expðiaotÞ

þ B½o2ð1
 b2Þ þ bð2AĀ þ BB̄Þ� expðibotÞ


 bA2B̄ exp½ið2aþ bÞot� 
 bĀB2 exp½
iðaþ 2bÞot�, ð16Þ

where LðZ1Þ ¼ €Z1 þ o2Z1; and Ā and B̄ are the complex conjugate functions of A and B. Let us
eliminate the secular terms in the differential equation. Two algebraic equations are obtained
whose solutions are

a2 ¼ 1þ
bðAĀ þ 2BB̄Þ

o2
; b2 ¼ 1þ

bð2AĀ þ BB̄Þ

o2
. (17)

It is evident that for the linear case when b ¼ 0; it is að0Þ ¼ bð0Þ ¼ 1: The reduced differential
equation is

€Z1 þ o2Z1 ¼ 
bA2B̄ exp½ið2aþ bÞot� 
 bĀB2 exp½
iðaþ 2bÞ�. (18)

The differential equation (18) is a non-homogenous linear one. The solution of Eq. (18) is

Z1 ¼ C1 expðiaotÞ þ C2 expð
biotÞ

þ
bA2B̄

o2½ð2aþ bÞ2 
 1�
exp½ið2aþ bÞot�

þ
bĀB2

o2½ðaþ 2bÞ2 
 1�
exp½
iðaþ 2bÞot�, ð19Þ
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where according to the initial conditions Z1ð0Þ ¼ 0; _Z1ð0Þ ¼ 0 the complex constants C1 and C2

are

C1 ¼
bĀB2

2o2ðaþ 2bþ 1Þ



bA2B̄

2o2ð2aþ b
 1Þ
, (20)

C2 ¼
bA2B̄

2o2ð2aþ bþ 1Þ



bĀB2

2o2ðaþ 2b
 1Þ
. (21)

Using results (19)–(21) the first-order approximative solution of Eq. (12) is

z ¼ A expðiaotÞ þ B expð
ibotÞ

þ
bĀB2

2o2ðaþ 2bþ 1Þ



bA2B̄

2o2ð2aþ b
 1Þ

� �
expðiotÞ

þ
bA2B̄

2o2ð2aþ bþ 1Þ



bĀB2

2o2ðaþ 2b
 1Þ

� �
expð
iotÞ

þ
bA2B̄

o2½ð2aþ bÞ2 
 1�
exp½ið2aþ bÞot�

þ
bĀB2

o2½ðaþ 2bÞ2 
 1�
exp½
iðaþ 2bÞot�, ð22Þ

where a and b are given with Eq. (17) and A and B with Eq. (15).
The system has two eigenfrequencies

o1 ¼ o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

b

o2
ðAĀ þ 2BB̄Þ

r
; o2 ¼ o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

b

o2
ð2AĀ þ BB̄Þ

r
(23)

and the corresponding periods of vibration are

T1 ¼
2p

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb=o2ÞðAĀ þ 2BB̄Þ

p ; T2 ¼
2p

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb=o2Þð2AĀ þ BB̄Þ

p . (24)

It is evident that both the frequencies and also both the periods depend on the initial values (2).
If it is assumed that the parameter b is small, expanding functions (23) into a Maclaurin series it

is

o1 ¼ o 1þ
b

2o2
ðAĀ þ 2BB̄Þ

� �
; o2 ¼ o 1þ

b

2o2
ð2AĀ þ BB̄Þ

� �
. (25)

Comparing solutions (25) with those obtained in the paper [4] for the differential equation (12)
with small parameter b51 using the method of slowly varying amplitude and phase it is obvious
that they are the same.
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4. Example 2

Let us consider the differential equation (12) with the following initial conditions:

zð0Þ ¼ zn0; _zð0Þ ¼ 0. (26)

For these initial conditions the exact closed-form analytic solution of Eq. (12) is

z ¼ 2A cnðOt;mÞ, (27)

where cnðOt;mÞ is the Jacobi elliptic function [15], Ot is the argument and m is the modulus.
Introducing Eq. (27) and its second time derivative

€z ¼ 
2O2 cnðOt;mÞ½1
 2m þ 2m cn2ðOt;mÞ�, (28)

into Eq. (12) and separating the terms with the first and the third order of the elliptic function
cnðOt;mÞ the following system of two algebraic equations is obtained:

o2 
 O2ð1
 2mÞ ¼ 0; 2mo2 
 4bAĀ ¼ 0. (29)

Solving Eqs. (29) it is

O2 ¼ o2 þ 4bAĀ; m ¼
2bAĀ

o2 þ 4bAĀ
. (30)

Solution (27) is periodical with period

T ¼
4KðmÞ

O
, (31)

where KðmÞ is the complete elliptic integral of the first kind [15].
Applying the homotopy perturbation method the first-order approximation solution of Eq. (12)

is obtained. The approximate solution that corresponds to the linear differential equation (b ¼ 0Þ
has the form

z0 ¼ 2A cosðaotÞ, (32)

where A is a complex function which is according to the initial conditions (26) A ¼ zn0=2: Relation
(32) represents a one-frequency solution. Using the suggested procedure the value of a in the first
approximation is obtained and it is

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

3b

o2
AĀ

r
. (33)

For the initial conditions (26) the solution of Eq. (12) in the first approximation is

z ¼ 2A cosðaotÞ þ
2bA2Ā

o2ð9a2 
 1Þ
½cosð3aotÞ 
 cosðaotÞ�. (34)

The period of solution (34) is

T ¼
2p

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3b=o2ÞAĀ

p . (35)
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To illustrate the correctness of the obtained solution (34) let us compare the approximate and
the exact analytic solutions. For o2 ¼ 1; b ¼ 1 and initial condition zn0 ¼ 0:2þ 0:6i it is a ¼ 1:14;
and the approximate solution (34) is

z ¼ ð0:2þ 0:6iÞ cosð1:14tÞ þ 1
107

½cosð3:42tÞ 
 cosð1:14tÞ�
� 	

, (36)

i.e.,

xA ¼ 0:2 cosð1:14tÞ þ 1
107

½cosð3:42tÞ 
 cosð1:14tÞ�
� 	

,

yA ¼ 0:6 cosð1:14tÞ þ 1
107

½cosð3:42tÞ 
 cosð1:14tÞ�
� 	

ð37Þ

as z ¼ xA þ iyA where i ¼
ffiffiffiffiffiffiffi

1

p
is the imaginary unit, xA and yA are real functions. The period of

solution is

TA ¼
2p
1:14

¼ 5:509. (38)

For the suggested coefficients and initial conditions the exact closed-form solution is according
to Refs. (27) and (30)

z ¼ ð0:2þ 0:6iÞ cnð1:183t; 0; 143Þ, (39)

i.e.,

xN ¼ 0:2 cnð1:183t; 0; 143Þ,

yN ¼ 0:6 cnð1:183t; 0; 143Þ, ð40Þ

where z ¼ xN þ iyN : The corresponding period (30) is

T ¼
4Kð0:143Þ

1:183
¼ 5:510. (41)

Comparing periods (38) and (41) it is concluded that the difference is negligible. In Fig. 1 the
approximate xA and yA (37) and exact xN and yN (40) solutions as functions of time t are plotted.
The absolute error between approximate xA and yA and exact solution xN and yN ; respectively, is
also shown in Fig. 1. The solutions are in good agreement, the absolute error is negligibly small
for sufficient long time period (the error is less than 2% for t ¼ 50). The error has a tendency to
increase in time.
5. Conclusion

It can be concluded:
1.
 The perturbation procedure with the imbedding parameter p 2 ½0; 1� applied for the complex-
valued strong nonlinear differential equation, obtained using the homotopy method,
transforms it into a system of linear complex-valued differential equations whose solutions
give the approximate solution of the initial differential equation.
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2.
 The homotopy perturbation method has an advantage in comparison to the traditional
perturbation methods (elliptic-Krylov–Bogolubov, elliptic method, etc.) as it is based on the
linear complex-valued differential equations whose solutions are usually known.
3.
 The first-order approximative analytic solution obtained applying the homotopy perturbation
method for solving strong nonlinear complex-valued second-order differential equation is in
very good agreement with the exact closed form analytic solution.
4.
 The suggested procedure gives both the approximate frequencies and both the periods of the
solution as a function of nonlinearity and initial conditions. The periods obtained applying the
homotopy perturbation method are in good agreement with exact values.
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