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Abstract

The free vibrations of uniform and homogeneous circular plates with translational springs have been
studied in the literature for some time; although exact solutions have been found, no closed-form solution
has been reported yet.
In this study, using the semi-inverse method we derive a closed-form solution for the natural frequency

via postulating the vibration mode of the plate as a polynomial of the radial coordinate.
r 2004 Published by Elsevier Ltd.
1. Introduction

The free vibrations of circular plates with the translational springs was studied by Leissa [1]. He
derived the transcendental equations yielding the natural frequency of both axisymmetric and
non-symmetric vibrations for the plate with both translational and rotational springs. The
uniform plate was considered, with attendant transverse displacement expressed in terms of the
Bessel functions. The Bubnov–Galerkin method to this problem was applied by Laura et al. [2].
see front matter r 2004 Published by Elsevier Ltd.
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They approximated the transverse displacement as

W ðrÞ � W N1
ðrÞ ¼

XN1

j¼0

Ajðajr
4 þ bjr

2 þ 1Þr2j, (1)

where N1 denotes the number of terms retained, aj and bj are constants chosen so as to satisfy the
boundary conditions. Note that the related paper on vibrations of circular plates with supports
along the circumference is by Laura et al. [3]. To the best of our knowledge, there is no closed-
form solutions reported to this problem. It may even seem at the first glance that there would be
no closed-form solutions. This ambitious goal is addressed in this study.
We consider an inhomogeneous plate, with inhomogeneity in the form of the variable flexural

rigidity. We pose and solve an inverse problem: we postulate the mode shape to be fourth-order
polynomial, corresponding to the zero value of N1 in Eq. (1). Then we find the flexural rigidity’s
variation along the radial coordinate, so as the inhomogeneous plate to have a postulated closed-
form solution.
2. Basic equations

The differential equation governing free small axisymmetric vibrations of circular plates reads

DðrÞr3r2r2W þ
dD

dr
2r3

d3W

dr3
þ r2ð2þ vÞ

d2W

dr2
� r

dW

dr

� �

þ
d2D

dr2
r3
d2W

dr2
þ nr2

dW

dr

� �
� rho2r3W ¼ 0, ð2Þ

where h is the thickness of the plate, r the material density, n the coefficient of Poisson, r the radial
coordinate, D the flexural rigidity, W the mode shape and r2 the Laplace operator in polar
coordinates,

r2 ¼
d

dr2
þ
1

r

d

dr
. (3)

The transverse displacement W is postulated to be in the form

W ðrÞ ¼ a0 þ a2r2 þ r4. (4)

We set

rh ¼ dðrÞ (5)

that we suppose to vary along the radial coordinate r as

dðrÞ ¼
Xm

i¼0

air
i. (6)

Since W is a fourth-order polynomial expression in terms of r; in view of Eq. (6), the last term in
the differential equation (2) is a polynomial expression of degree m þ 7: Moreover, the operator
r2r2 in Eq. (2) involves the four-fold differentiation with respect to r: In order for the highest
degree of the first term’s polynomial expression in Dr3r2r2W to be of order m þ 7; it is necessary
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and sufficient for the flexural rigidity to be represented as a polynomial of degree m þ 4: Thus, the
sought flexural rigidity can be put in the form

DðrÞ ¼
Xmþ4

i¼0

biðr � RÞ
i. (7)
3. Boundary conditions

The boundary conditions at the outer boundary r ¼ R consist of the bending moment Mr

acting along the circumference sections to vanish, and the shearing force per unit length to be
proportional to the deflection of the plate:

MrðRÞ ¼ 0; QrðRÞ þ kW W ðRÞ ¼ 0, (8,9)

where

MrðrÞ ¼ �DðrÞ
d2W

dr2
þ

n
r

dW

dr

� �
, (10)

and kW is the stiffness per unit of length of the translational spring. The shearing force per unit of
length QrðrÞ is obtained from the equilibrium equations (see Ref. [4, Eq. (53)]):

QrðrÞ ¼
1

r
MtðrÞ � MrðrÞ � r

dMrðrÞ

dr

� �
, (11)

where Mt denotes the bending moment per unit of length acting along the diametrical section rz of
the plate

MtðrÞ ¼ �DðrÞ
1

r

dW

dr
þ n

d2W

dr2

� �
. (12)

The problem is posed as follows: Determine the variation of the flexural rigidity DðrÞ so that a plate
with such DðrÞ will possess the vibration mode defined in Eq. (4).
4. Method of solution

The application of the boundary conditions given in Eqs. (8) and (9) permits the determination
of the coefficients a0 and a2 of the mode shape polynomial expression defined in Eq. (4). Indeed,
Eqs. (8) and (9) read

ð12þ 4nÞR2 þ 2a2ð1þ nÞ ¼ 0, (13)

kW R4 þ ka2R2 � 32b0kWa0R ¼ 0. (14)

From Eqs. (13) and (14) we get

a0 ¼ �32
Rb0

kW

þ
5þ n
1þ n

R4, (15)
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a2 ¼ �2
ð3þ nÞ
ð1þ nÞ

R2. (16)

So that the shape mode is written as

W ðrÞ ¼ �32
Rb0

kW

þ
5þ n
1þ n

R4 � 2
ð3þ nÞ
ð1þ nÞ

R2r2 þ r4. (17)

Here it must be noted that the mode shape depends both upon the coefficient b0 of the flexural
rigidity and the stiffness of the translational spring kW : Yet, it can be argued that it ought be
anticipated that the closed-form solution would only be attainable for specific values and
combinations of the system parameters, and for specific relationships between the mode shape and
the system’s characteristics.
Further steps involve the substitution of Eqs. (6), (7) and (17) into the governing differential

equation (2) and demanding the so-obtained polynomial expression to vanish. This implies that all
the coefficients in front of power ri must be zero. This requirement is leading, in turn, to a set of
algebraic equations inn terms of bi; and o2: We consider various case for the inertial term dðrÞ in
Eq. (6).
5. Constant inertial term ðm ¼ 0Þ

As seen from Eq. (7), in this particular case, the flexural rigidity is sought as a fourth-order
polynomial

DðrÞ ¼ b0 þ b1ðr � RÞ þ b2ðr � RÞ
2
þ b3ðr � RÞ

3
þ b4ðr � RÞ

4. (18)

The differential equation (2) becomes

X7
i¼0

cir
i ¼ 0, (19)

where

c0 ¼ c1 ¼ 0,

c2 ¼ � 4ð3þ nÞðR2b1 � 2R3b2 þ 3R4b3 � 4R5b4Þ,

c3 ¼ 64b0 � 64Rb1 þ 16ð1� nÞR2b2 þ 16ð5þ 3nÞR3b3

� 32ð7þ 3nÞR4b4 �
5þ n
1þ n

a0R
4o2 þ 32

a0R

kW

b0o2,

c4 ¼ 12ð11þ nÞb1 � 24ð11þ nÞb2 þ 288R2b3 � 96ð1� nÞR3b4,

c5 ¼ 32ð7þ nÞb2 � 96ð7þ nÞb3 þ 128ð9þ nÞR2b4 þ 2
3þ n
1þ n

a0R
2o2,

c6 ¼ 20ð17þ 3nÞb3 � 80ð17þ 3nÞRb4,

c7 ¼ 96ð5þ nÞb4 � a0o2. ð20Þ
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Since the left-hand side of the differential equation (18) must vanish for any r within ½0;R	; we
demand that all the coefficients ci to be zero. This leads to a homogeneous set of six non-linear
algebraic equations for six unknowns. From the requirement c7 ¼ 0; the natural frequency
squared is obtained as

o2 ¼
96b4ð5þ nÞ

a0
(21)

in the desired closed-form solution. Upon substitution of Eq. (20) into Eq. (19), the remaining
equations yield the coefficient in the flexural rigidity

b0 ¼
b4R

4kW ð5þ nÞð7þ nÞ
2ð1þ nÞ½48Rb4ð5þ nÞ þ k	

,

b1 ¼ � 4b4
5þ n
1þ n

R3; b2 ¼ �2b4
3� n
1þ n

R2; b3 ¼ 4b4R. ð22Þ

Hence, the flexural rigidity reads

DðrÞ ¼
R4kW ð5þ nÞð7þ nÞ

2ð1þ nÞ½48Rb4ð5þ nÞ þ kW 	
� 4

5þ n
1þ n

R3r � 2
3� n
1þ n

R2r2 þ 4Rr3 þ r4
� �

b4. (23)

It must be stressed that the determined flexural rigidity of the plate depends on the stiffness kW of
the translational spring in a nonlinear manner. Only when there is a relation between DðrÞ and kW

is the closed-form polynomial solution for the mode shape possible.
Substituting the expression for b0 from Eq. (21) into the mode shape given by Eq. (17), the latter

becomes

W ðrÞ ¼
5þ n
1þ n

1�
7þ n

3ð5þ nÞ þ kW=b4R

� �
R4 � 2

ð3þ nÞ
ð1þ nÞ

R2r2 þ r4. (24)

We introduce the non-dimensional constant

b ¼ kW=b4R. (25)

The flexural rigidity and the mode shape are then expressed as

DðrÞ ¼
R4bð5þ nÞð7þ nÞ

2ð1þ nÞ½48ð5þ nÞ þ b	
� 4

5þ n
1þ n

R3ðr � RÞ

�

� 2
3� n
1þ n

R2ðr � RÞ
2
þ 4Rðr � RÞ

3
þ ðr � RÞ

4

�
b4, ð26Þ

W ðrÞ ¼
5þ n
1þ n

1�
7þ n

3ð5þ nÞ þ b

� �
R4 � 2

ð3þ nÞ
ð1þ nÞ

R2r2 þ r4. (27)

Let

r ¼
r

R
. (28)
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We have

DðrÞ
R4b4

¼
ð57þ 18nþ n2Þbþ 96ð5þ nÞð11þ 3nÞ

2ð1þ nÞ½48ð5þ nÞ þ b	
� 4

3þ n
1þ n

r2 þ r4, (29)

W ðrÞ
R4

¼
5þ n
1þ n

4ð2þ nÞ þ b
3ð5þ nÞ þ b

� 2
3þ n
1þ n

r2 þ r4. (30)

As is seen, the coefficient b4 can be chosen arbitrarily. Thus there are infinite amounts of closed-
form solutions. Once one specifies b47; a specific solution is obtained. The Figs. 1 and 2 represent
the graph of DðrÞ and W ðrÞ for different values of b with the coefficient of Poison n fixed to
n ¼ 0:3 and b4 ¼ 1:
Fig. 1. Variation of the flexural rigidity of an inhomogeneous plate with translational spring on the border, a constant

inertial term and a coefficient of Poison fixed to n ¼ 0:3; when the non-dimensional coefficient b varies: —, b ¼ 0; - - - -,
b ¼ 10; - - -, b ¼ 100; , b ¼ 1000:

Fig. 2. Mode shape of an inhomogeneous plate with translational spring on the border, a constant inertial term and a

coefficient of Poison fixed to n ¼ 0:3 when the non-dimensional coefficient b varies: —, b ¼ 0; - - - -, b ¼ 10; - - -,
b ¼ 100; , b ¼ 1000:
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6. Linearly varying inertial term ðm ¼ 1Þ

In this case, the inertial term is expressed as

dðrÞ ¼ a0 þ a1r. (31)

Let us introduce the non-dimensional coefficient g defined such that

g ¼
a0

a1R
; a1a0. (32)

Hence, the inertial term can be expressed with the reduced coordinate as

dðrÞ ¼ a0 1þ
r
g

� �
, (33)

where r is defined in Eq. (28).
Instead of the set (20), we get here seven algebraic expressions for the coefficients of the flexural

rigidity polynomial form defined in Eq. (7)

c0 ¼ c1 ¼ 0,

c2 ¼ � 4ð3þ nÞðR2b1 � 2R3b2 þ 3R4b3 � 4R5b4 þ 5b5Þ,

c3 ¼ 64b0 � 64Rb1 þ 16ð1� nÞR2b2 þ 16ð5þ 3nÞR3b3

� 32ð7þ 3nÞR4b4 þ 32ð13þ 5nÞR5b5 �
5þ n
1þ n

a0R
4o2 þ 32

a0R

kW

b0o2,

c4 ¼ 12ð11þ nÞb1 � 24ð11þ nÞb2 þ 288R2b3 � 96ð1� nÞR3b4

� 60ð7þ 5nÞR4b5 þ 32
a1R

kW

b0o2,

c5 ¼ 32ð7þ nÞb2 � 96ð7þ nÞb3 þ 128ð9þ nÞR2b4 � 1280R3b5 þ 2
3þ n
1þ n

a0R
2o2,

c6 ¼ 20ð17þ 3nÞb3 � 80ð17þ 3nÞRb4 þ 100ð31þ 5nÞR2b5 þ 2
3þ n
1þ n

a1R
2o2,

c7 ¼ 96ð5þ nÞb4 � 480ð5þ nÞRb5 � a0o2,

c8 ¼ 28ð23þ 5nÞRb5 � a1o2. ð34Þ

Since the polynomial expression of the differential equation must vanish for every positive r not
greater than R; all the coefficients ci must be equal to zero. From c8 ¼ 0; the natural frequency
squared is obtained as

o2 ¼
28b5ð23þ 5nÞ

a1
. (35)
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Upon substitution of Eq. (35) into c5 ¼ 0; c6 ¼ 0; c7 ¼ 0 of Eqs. (34), the remaining equations
yield the coefficient b2; b3; b4 of the flexural rigidity:

b2 ¼
�35ð23þ 5nÞð3� nÞð17þ 3nÞa0 þ 12ð5þ nÞð15n2 � 296nþ 1823Þa1R

60ð5þ nÞð17þ 3nÞð1þ nÞa1
R2b5,

b3 ¼
35ð23þ 5nÞð17þ 3nÞð1þ nÞa0 þ 6ð5þ nÞð105n2 þ 568n� 41Þa1R

30a1ð5þ nÞð17þ 3nÞð1þ nÞ
Rb5,

b4 ¼
120ð5þ nÞa1R þ 7ð23þ 5nÞa0

24a1ð5þ nÞ
b5. ð36Þ

Let us consider now the set of equations c3 ¼ 0 and c4 ¼ 0 of Eqs. (34), substituting the values
of o2; b2; b3; b4 obtained in Eqs. (35) and (36). We obtain for b0 and b1 the following solution:

b0 ¼ 32
ð7þ nÞð11þ nÞð17þ 3nÞð23þ 5nÞa0 þ ð15n3 þ 463n2 þ 3789nþ 8885Þa1R

ð1þ nÞð17þ 3nÞ½240ð11þ nÞa1kW þ 3360ð11þ nÞð23þ 5nÞa0b5 þ 17920ð23þ 5nÞa1b5	


R4kW b5,

b1 ¼ � f105ð11þ nÞð23þ 5nÞð17þ 3nÞa0a1kW þ 6½18375a20b5 þ ð60a21kW þ 475300a20b5Þn
3

þ ð1456a21kW þ 4351690a20b5Þn
2 þ ð12060a21kW þ 17017700a20b5Þn

þ 29816a21kW þ 24236135a20b5	Rb5

þ 28ð23þ 5nÞð705n3 þ 17633n2 þ 130715nþ 294723ÞR2a0a1b5

þ 2688ð23þ 5nÞð15n2 þ 232nþ 721Þa21R
3b5gR

3b5=ð17þ 3nÞð1þ nÞ½90ð11þ nÞa21kW

þ 1260ð11þ nÞð23þ 5nÞa1a0b5 þ 6720ð23þ 5nÞa21b5	. ð37Þ

Taking into account the previous results (35)–(37), equation c2 ¼ 0 from Eq. (34) must now be
satisfied. Two solutions for b5 are obtained

b5 ¼ 0 (38)

or

b5 ¼
12ð15n3 þ 364n2 þ 2619nþ 5546Þa1kW

7ð23þ 5nÞð165a0n3 þ ð329a0 � 1440a1RÞn2 � ð11441a0 þ 15936a1RÞn� 37309a0 � 38688a1RÞR
.

ð39Þ

The first solution b5 ¼ 0 described in Eq. (38) must be dismissed since it leads to the trivial case
with flexural rigidity that is identically zero all over the plate.
Eqs. (7), (17), (35)–(37) and (39) lead to a determinate solution in the case of a linearly varying

inertial term. Indeed, the natural frequency squared is obtained by substituting the expression of
b5 into Eq. (35)

o2 ¼
48kW ð15n3 þ 364n2 þ 2619nþ 5546Þ

a1R
2½ð165n3 þ 329n2 � 11441n� 37309Þg� ð1440n2 þ 15936nþ 38688Þ	

. (40)
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The flexural rigidity and mode shape are expressed as follows, respectively

DðrÞ ¼
g
240

ð165n2 þ 3314nþ 12725Þð3þ nÞ2

ð5þ nÞð17þ nÞð1þ nÞ
�
7g
6

ð3þ nÞð23þ 5nÞ
ð1þ nÞð1þ 5nÞ

r2
�

�
9

5

ð33þ 5nÞð3þ nÞ
ð17þ 3nÞð1þ nÞ

r3 þ
7g
24

ð23þ 5nÞ
ð5þ nÞ

r4 þ r5
�

R5b5, ð41Þ

W ðrÞ
R4

¼
81

35

ð33þ 5nÞð3þ nÞ2

ð1þ nÞð17þ 3nÞð23þ 5nÞ
� 2

3þ n
1þ n

r2 þ r4. (42)

The physical realizability demands that the expression for the natural frequency o2 be positive.
Analogously, DðrÞ must take positive values in the interval ½0;R	: The investigation of o2 shows
that a solution exists in either of two cases

goa for a140, (43)

g4a for a1o0, (44)

where a is defined by the expression

a ¼
1440n2 þ 15936nþ 38688

165n3 þ 329n2 � 11441n� 37309
. (45)

Indeed, since the numerator in Eq. (40) is positive, so should be the numerator. This implies that
a1 and the expression in the square parentheses should have the same sign. This requirement leads
to conditions in Eqs. (43) and (44).
In the following the value of n is fixed at n ¼ 0:3: The flexural rigidity D in Eq. (41) is a function

of g and r:Dðg; rÞ: We demand for D not to vanish in the interval r 2 ½0; 1	: Moreover, it should
not change the sign in that interval. Considering r as a parameter, the value of g that makes D
Fig. 3. Values of g that make the flexural rigidity vanish are given by solid lines (a); (b) represents the relationship

between the coefficient a1 and the coefficient g that allows a physically acceptable solution for the natural frequency

squared o2; the shaded area (c) represents the range of values for g that allow the flexural rigidity not to vanish.
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Fig. 4. Variation of the natural frequency squared versus g 2	b; 0½; n ¼ 0:3:

Fig. 5. Variation of the flexural rigidity of an inhomogeneous plate with translational spring on the boundary with a

linearly decreasing inertial term along the radial coordinate and a coefficient of Poisson fixed to n ¼ 0:3; for different
value of g 2	b; 0½: —, g ¼ �0:01; - - - -, g ¼ �0:1; - - -, g ¼ �0:2; , g ¼ �0:31:

Fig. 6. Mode shape of an inhomogeneous plate with translational spring on the boundary with a linearly decreasing

inertial term along the radial coordinate and a coefficient of Poisson fixed to n ¼ 0:3:

I. Elishakoff, D. Meyer / Journal of Sound and Vibration 285 (2005) 1192–1202 1201
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vanish is

g1 ¼ �
25440r3ð�20493þ 2327r2Þ

299127609� 1718133648r2 þ 29816100r4
. (46)

Fig. 3 represents the variations of g1 with r: The interpretation of this graph leads us to conclude
that a140 cannot be accepted since for all value of g such as goa; D vanishes in the interval [0,1].
Let us examine the case a1o0: The shaded area that represents the admissible values for g is
defined by

bogo0, (47)

where b � �0:3206643660 is the maximum value of g on the right of the vertical asymptote when
n ¼ 0:3: For such values of g; the first term represented by the square bracket in Eq. (41) gets
negative values. The condition for D to be positive depends then only upon the sign of b5 as
defined in Eq. (39). We can easily observe that

b5o0 for g4a. (48)

Finally, the solution obtained in Eqs. (40)–(42) has a physical explication when

a1o0 for bogo0. (49)

Figs. 4–6 portray o2; DðrÞ and W ðrÞ for different values of g 2 ½b; 0	:
7. Conclusion

Apparently, the first closed-form solution has been derived for the free vibrations of
inhomogeneous circular plates supported by a translational spring along plate’s boundary.
References

[1] A.W. Leissa, Vibration of Plates, NASA SP-169, 1969, pp. 13–15.

[2] P.A.A. Laura, L.E. Luisoni, J.J. Lopez, A note on free and forced vibrations of circular plates: the effect of support

flexibility, Journal of Sound and Vibration 47 (2) (1976) 287–291.

[3] P.A.A. Laura, J.C. Paloto, R.D. Santos, A note on the vibration and stability of circular plate elastically restrained

against rotation, Journal of Sound and Vibration 41 (2) (1975) 177–180.

[4] S.P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959, pp. 51–54.


	Inverse vibration problem for inhomogeneous circular plate with translational spring
	Introduction
	Basic equations
	Boundary conditions
	Method of solution
	Constant inertial term (m=0)
	Linearly varying inertial term (m=1)
	Conclusion
	References


