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Abstract

Vibration-based methods of non-destructive damage detection utilizing curvature or strain energy mode
shapes have been applied in a variety of applications. Attractive features of these methods include high
sensitivity to damage and instant determination of the damage location. However, the quality of damage
detection achieved in practice depends upon determining a proper sampling interval for discretization of the
displacement mode shapes. Experimental observations show that both undersampling and oversampling of
the displacement mode shapes may have adverse effects on the quality of damage detection. This paper
presents an analysis aimed at determining the optimal sampling interval that would minimize the effects of
measurement noise and truncation errors on the calculation of the curvature and strain energy mode
shapes, thus maximizing sensitivity to damage and accuracy of damage localization. Derivation of
the formulas for the optimal sampling interval is based on the most commonly used numerical methods for
the computation of the curvature and the strain energy mode shapes. Numerical verification has shown very
good performance of the suggested formulas in predicting the optimal sampling interval.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Damage detection by curvature or strain energy mode shapes has been widely discussed
in research literature and used in practical applications. These methods not only allow
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detection of damage in a structure but also determination of damage location with high degree of
accuracy.

Pandey et al. [1] detected location of cracks by observing changes in curvature mode shapes.
The authors showed that damage introduced into the structure led to local changes in the shape of
curvature mode shapes and could be observed by comparing curvature mode shapes of the
damaged structure to the curvature mode shapes of the undamaged structure. Ratcliffe [2], and
Hoerst and Ratcliffe [3] introduced a modified Laplacian operator for damage detection using
mode shape information. This method had the same numerical formula for computing mode
shapes as in Ref. [1]. Farrar and Jauregui [4] conducted a comparative study of different damage
identification algorithms on a bridge. The curvature-based methods performed very well
compared to other methods tested in the experiments, occupying the top two places of the
accuracy of detection. The authors also noted the methods’ high sensitivity to less severe damage
cases. Lu et al. [S] used flexibility curvature in simulated experiments on the reinforced
concrete beams. Sampaio [6] described a frequency response function curvature method, based on
Pandey’s work. Dutta and Talukdar [7] considered using curvature mode shapes for better
localization of damage in bridges.

Several variations of the strain energy method have been discussed in recent literature. Petro
et al. [8] tested the strain energy method on aluminum beams, trying to establish the method’s
applicability to damage detection in an aluminum portable bridge. Venkatappa [9] described a
variation of the strain energy mode shapes method used in the analysis presented in this paper.
The damage detection procedure was based on comparing the strain energy mode shapes for the
damaged structure to those of the undamaged structure. The author reported that the strain
energy method had shown more sensitivity to damage than other mode shape-based methods.
Osegueda et al. [10] investigated the strain energy method on aluminum cantilever beams and
honeycomb composite plates. The authors received positive damage detection results in
experiments with beams and negative results in experiments with composite plates. They also
reported that strain energy methods not only can identify damage but also quantify it by
accounting the energy relations between damaged and undamaged states. In another work of
Carrasco et al. [11], the authors applied the strain energy method to damage detection in a space
truss model. The reported results were partially successful. The method detected more severe
damage cases, while some of the less severe cases went undetected. Cornwell et al. [12] performed a
comparative study of two vibration-based damage identification algorithms, including the strain
energy method. The testing was conducted on a beam and a plate, comparing the damaged
vs. undamaged strain energy distribution. The strain energy method successfully identified severe
damage cases, but a masking effect was reported for lower level damages, i.e., when the two
damage locations had different levels of damage, the algorithm tended to only conclusively
identify the location with the largest amount of damage. Wahab and Roeck [13] used modal
curvatures to detect damage in bridges by using the change in dynamic parameters between the
intact and damage states. The experiments were conducted on a prestressed concrete bridge. This
paper also introduced a damage indicator called “curvature damage factor”, in which the
difference in curvature mode shapes for all modes can be summarized in one number for each
measurement point. Yoo et al. [14] used the difference in strain energy mode shapes between
damaged and undamaged cases to detect and locate damage in a plate. Pereyra et al. [15] studied
damage detection in an aluminum stiffened-plate panel resembling aircraft fuselage construction.
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As in most other studies, the damaged strain energy mode shapes were compared to the
undamaged strain energy mode shapes. Statistical methods were employed to jointly analyze
information from several mode shapes and to locate damage. Cornwell et al. [16] provided a
detailed theoretical explanation on application of the strain energy method to plate-like
structures. They reported that the method was effective enough to detect areas with10% reduction
in stiffness. Ndambi et al. [17] utilized strain energy mode shapes for damage assessment in
reinforced concrete beams. Kim et al. [18] conducted comparative studies of frequency-based and
a mode-shape-based methods. The mode-shape-based method utilized computations of the modal
strain energy and provided higher accuracy of damage localization than the frequency-
based method.

A few recent studies have addressed the issue of determining the proper sampling interval for
acquisition of the displacement mode shapes that could be utilized in strain energy or curvature
calculations. Napolitano [19] investigated the quality of damage detection using reduced
measurements and the strain energy algorithm. The work featured a finite element model of a
free—free beam sampled with the number of sampling points varying from 11 to 101. The author
concluded that the strain energy method performs better when many response points are
measured. Shi and Law [20] investigated damage localization from modal strain energy change in
simulated experiments. The authors considered the effects of measurement noise and systematic
errors by artificially adding random noise to the simulation results. They noted that measurement
noise and incompleteness of measured modes greatly affect the result of damage localization. Yoo
and Kim [21] tried to experimentally establish the minimal number of sensing elements in a grid
covering the plate to identify the damage location with sufficient accuracy. Yan and Deng [22]
applied the strain energy algorithm to non-destructive damage detection in bridges. They
conducted numerical experiments on a finite element model of a freely supported bridge T-beam.
Among the conclusions made in the paper, one is that “the key of damage detection of real
bridges using strain energy is the measurement accuracy of the vibration amplitude”.

In most works covering damage detection by curvature or strain energy mode shapes, the
utilized sampling interval has been set intuitively. The spatial resolution (number of sampling
points) used to acquire displacement mode shapes (reciprocal of the sampling interval) was chosen
to be that at a level that seems to be suitable but has no firm justification. Conclusions reached by
many authors studying effects of the spatial resolution on the damage detection results follow the
intuitively reasonable path: the more the sampling points, the better. This is a completely valid
approach for acquisition of the displacement mode shapes (direct consequence of the Nyquist’s
sampling theorem), but it cannot be automatically extended to curvature or strain energy mode
shapes. Indeed, accuracy of locating the damage directly depends on the sampling interval. Lower
sampling interval allows localizing the damage with higher precision. At the same time, practical
application of the curvature and strain energy mode shapes is subject to the effects of
measurement noise, which may render ‘“‘the more the better” approach invalid. Modern
instrumentation, such as laser doppler vibrometers (LDV), allow for very high density of sampling
and high precision of acquiring the mode shapes. Ideally, the accuracy of localizing the damage
should be proportional to the decrease in the sampling interval. Practice, however, disproves this
hypothesis.

To demonstrate this point, Fig. 1 shows strain energy mode shapes computed from the data
acquired by an Ometron VPI-4000 laser vibrometer on a free—free aluminum beam (4th bending
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Fig. 1. Fourth bending mode shape of an undamaged free—free beam: (a) ideal (dashed line) and computed (solid line)
strain energy mode shapes for the fourth bending mode shape of an undamaged free—free beam; (b) 150 sampling
points; (¢) 60 sampling points; (d) 30 sampling points; (¢) 15 sampling points.

mode shape). Clearly, both the strain energy mode shape computed with just a few points
(15 points) and the strain energy mode shape computed on too many points (150 points) are not
suitable for damage detection due to severe distortion in the shape of the computed strain energy
mode shapes. The strain energy mode shape computed on 30 points provides the best
approximation of the actual mode shape with the least amount of false peaks by utilizing a
near-optimal sampling interval. The answer to determining the optimal sampling interval for
strain energy and curvature mode shapes seems to be in the connection between the measurement
noise and the numerical properties of the computational methods used to calculate the curvature
and strain energy mode shapes. This paper provides both analytical and numerical justification for
the selection of the proper sampling interval for performing damage detection on curvature and
strain energy mode shapes with the most commonly used numerical methods. The analysis
is performed for the errors originating as the effects of measurement noise and does not consider
the errors in the spatial interval itself. Practically applicable formulas are supplied as a result
of the research.
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2. Analysis of curvature mode shapes

Computation of the curvature mode shapes is an integral part of the strain energy method.
Calculations of curvature mode shapes are always performed before the strain energy mode
shapes can be computed. Thus, it is convenient to start the study of the numerical properties of the
strain energy mode shapes with the study of curvature mode shapes and then extend the results to
strain energy mode shapes.

The method of curvature mode shapes is described in Ref. [1]. The authors showed that damage
introduced into the structure led to local changes in the shape of curvature mode shapes and could
be observed by comparing curvature mode shapes of the damaged structure to the curvature mode
shapes of the undamaged structure. Computation of the curvature mode shapes from
displacement mode shapes is usually performed using the central difference second derivative
formula [1]:

ney _ X+ 1) —2¢(x) + @(x — h)
¢"(x) = 2
where ¢ is the displacement mode shape sampled with the sampling interval /.

It is a known fact that computation of numerical derivatives using finite differences is very
prone to noise in the data for smaller sampling intervals (more sampling points) [23]. At the same
time, larger sampling intervals (less sampling points) may cause imperfect restoration of the
curvature mode shapes due to the truncation error [24]. Therefore, proper spatial resolution n
(the reciprocal of the sampling interval /) for sampling of displacement mode shapes should be
high enough to avoid truncation error and, at the same time, low enough to avoid errors due to
the perturbation in the data. The error in the curvature mode shapes computed by formula (1) can
be estimated as follows.

Denote ¢, = ¢(xo + h), ¢y = @(x0), ¢_; = @(xo — h); then the value of a curvature mode
shape computed from ¢ at the location xq is [24]

) (1)

2

1 0 —1
12

h2
where e is the approximation error of O(h%).

In practice, the exact values of ¢, ¢, and ¢@_, are not known. Assume that the measurement
device generates an absolute constant additive error o and a relative multiplicative error ¢. Then
the values of ¢ acquired from the measurement equipment are

" (x0) = 2 (), @)

+e, e =

=@ toat+ep, Gy=¢gtot+epy, G =@ +ate 10, |exi]<e (3)
Formula (2) becomes
— 200+ 91 e19) — 26009 + 6190,
> - W
The term (¢, — 29y + ¢_,) /h2 is what actually is being computed during the curvature mode
shape calculations. The corresponding error is

D — 20 D -2 _
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The maximum bound on the error can be estimated as

+2 + |p_ M

|E>| <

where My = max(y,—xo+mpl @’ (X)|.

In Eq. (6), the term &(|@,| + 2|¢@o| + |¢_,|)/h* corresponds to the error due to the noise in data,
and the term (My4/ 12)h* corresponds to the truncation error introduced by replacing the
derivative by a finite difference expression. Denoting the bound on the right of Eq. (6) as

e(loy ]+ 2lool +1o_11) My

_ M4 »
E(h) = 2 +15 e, (7
the optimal sampling interval Ay can be determined by finding the minimum of E(/):
12 24 12
E(>Elhy), o = \4/8( nl* 20l 2D _ e, (sa)
4

where Fy = (12| + 24|po| + 12|¢_;|)/ M4 for x = x¢, xo € (0, L); L is the length of a curvature
mode shape. Eq. (8a) produces the optimal sampling interval for sampling in the neighborhood of
Xxo. Note that though in general x, € (0, L), the results are only valid when xo — /2>0 and x( +
h< L. To determine the optimal sampling interval for sampling a displacement mode shape on a
beam of a finite length L and subsequent computing of a curvature mode shape, the worst case
value of F,4 should be determined on the interval (0, L) and used in formula (8a):

12 24 12
hy = f/S—F——, Fqy= r[I(%%((( — E(ﬂ . |q)_l|)> for e L) .
, 4

Formula (8b) was obtained by assuming that the value of F, is a constant and is independent of
h. Although not true in general, such an assumption is valid because F4 can be estimated
numerically, thus establishing the maximum values that can be used for practical calculations.

For example, the displacement mode shape equation for the most commonly used free—free
beam [25] for the mode k is

@i(x) = cosh <);(Tx> + cos (M%) — 0 <Sinh (%) + sin (Aka> >: ©)

where L is the length of the beam, 4; and ¢ are mode shape coefficients dependent on k: /J; =
{4.730040739999998, 7.853204619999998,10.9956078, 14.1371655, 17.27875969999999, (2k + 1)r /2
for k> 5}; o5 = (cosh A — cos A;)/(sinh Jx — sin Ax)

The fourth derivative of Eq. (9) with respect to x is

2 cosh(xx/L) N 2y cos(Zxx/L) . (z;ﬁ sinh(/x/L) N yo sin(zkx/L)>
. .

v
@k (X) = L4 L4 L4 L4

(10)

Both Egs. (9) and (10) can be discretized for a number of sampling intervals /4 and used to
estimate F4 for different values of 4 and k. Fig. 2 shows the graphs of F, for the first bending
mode (k = 1) of a free—free beam with the length L = 1 sampled with n = 1/h = 30 and n = 300.
The maximum value of F4 for n = 30 is 0.09505 and for n = 300 is 0.09588. Fig. 3 shows the
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graphs with the same parameters for the second bending mode (k = 2) of a free—free beam. The
maximum values of F4 are 0.01236 (n = 30) and 0.01261 (n = 300).

Figs. 2 and 3 show that the maximum value of F4 has very little dependency on the sampling
interval A, but it is significantly different for different modes k, decreasing in value as k grows.
Thus, a larger number of sampling points n (smaller sampling interval /) can be used for the
higher order modes acquired with the same measurement noise level ¢ as the lower order modes.
For practical calculation of 4y, the maximum of F4 can be numerically estimated for a sufficiently
high n, such as n = 300.

Table 1 shows values of F4 for the first five bending modes of beams with different boundary
conditions and unit length L = 1, computed with n = 300. Values supplied in the table should be
used directly in formula (8b) to obtain the optimal sampling interval for a displacement mode
shape. The values of sy computed from Eq. (8b) should be adjusted for the actual length of a beam
(hor = hoL) or used to compute the optimal spatial resolution ny = 1/hy. The same is true for the
formulas derived later in this paper.
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Fig. 2. Numerical estimate of F4 for the first mode of a free—free beam: (a) n = 30, L = 1; (b) n = 300, L = 1.
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Fig. 3. Numerical estimate of F4 for the second mode of a free—free beam: (a) n = 30, L = 1; (b) n = 300, L = 1.

Table 1

Numerical estimates of F4 for different boundary conditions

Boundary conditions Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Free—free, clamped—clamped 0.09588 0.01261 0.003282 0.001201 0.000538
Pinned—pinned, sliding—sliding 0.4927 0.0307 0.006082 0.001924 0.000788
Clamped—pinned 0.2019 0.01922 0.004415 0.001509 0.000648

Clamped—free 3.864 0.09885 0.0126 0.003282 0.001201
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Formula (8b) establishes the optimal sampling interval that minimizes the maximum absolute
error in calculations of the curvature mode shapes and also minimizes the effect of the
measurement noise. The same formula can be used both for damaged and undamaged beams
because changes in the displacement mode shapes due to damage are usually minimal and can be
neglected. An interesting observation following from Eq. (8b) is that doubling the spatial
resolution (sampling a displacement mode shape at twice the number of sampling points) requires
decreasing the measurement noise by a factor of 16!

Another point of interest would be the value of the sampling interval /4, at which the maximum
computational error becomes equal to or greater than the maximum value of ¢”(x). Acquiring a
displacement mode shape with 4> 4, will lead to amplification of the measurement noise, rather
than computation of ¢”(x).

Establishing 4, requires solving the equation

e(loy | + 2[ol + 19 1) L M
W 12

The analytical solution of Eq. (11) can be obtained as follows. Denote M>; = maxp, zjl¢"(x)|.

Then, after multiplying both parts by 12/ /M4, Eq. (11) becomes

W = max|e” ()] (11)

12e(1y| + 2ol + lo_y]) 4 12Mo 1
hW———=0
M, + M, or
eFy +h* —ah* =0, where o= 12Ms;/Mj. (12)

Solution of Eq. (12) gives

BiLow = \/% —0.5v/2 —4eFy and gy = \/% +0.5v/22 — 4eFy. (13)

The root 4, ow corresponds to the error from the measurement noise and the root /,yigu
corresponds to the truncation error. Only /4,1 ow is of interest, due to the fact that there usually is
no reason to discretize a function with a sampling interval above Ay. The A, ow Will further be
referred to as 4,,:

By = \/% —0.5v/a% — 4¢F,. (14)

Only real values of 4, are meaningful. A complex /,, may appear if the noise level in the data is
so high that the error exceeds M,; for any h. As in the case with F4, appropriate value of « can be
found numerically. Figs. 4 and 5 show numerical evaluations of o for the first and second
displacement mode shapes of the free—free beam computed with n = 30 and 300, L = 1. The
minimal value of o is of interest, because higher values decrease A, reducing the influence of
measurement noise. The worst possible scenario should be considered to provide universal
applicability of Eq. (14).

Minimal values of o are 0.429821 and 0.425894 for the first bending mode shape (rn = 30 and
300, respectively); 0.146828 and 0.146 for the second bending mode shape (n = 30 and 300,
respectively). Analogous to Fy4, the dependency of o on /4; is insignificant, while the dependency on
k is well-pronounced. Contrary to the behavior of Fy4, the worst case values of o should be
obtained from a numerical solution featuring a low but practically applicable spatial resolution n,
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Fig. 4. Numerical estimate of o for the first mode of a free—free beam: (a) n = 30,L = 1; (b) n =300, L = 1.
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Fig. 5. Numerical estimate of o for the second mode of a free—free beam: (a) n = 30,L = 1; (b) n = 300, L = 1.

Table 2

Numerical estimates of « for different boundary conditions (L = 1)

Boundary conditions Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Free—free, clamped—clamped 0.4233 0.1446 0.07482 0.04534 0.02823
Pinned—pinned, sliding—sliding 1.215 0.3039 0.135 0.07599 0.04863
Clamped-pinned 1.031 0.3179 0.1534 0.0902 0.06105
Clamped—free 3.679 0.7275 0.2608 0.1313 0.07949

which was selected to be n = 20. Table 2 shows the values of « (for a beam of unit length L = 1),
that can be utilized in practical calculations of /.

Fig. 6 illustrates behavior of the computational error E(%) compared to the behavior of ¢”(x)
computed noise-free through formula (1) for the first bending mode of a free—free beam
(x =0.5L,& =0.001). It should be noted that values of A, and A,yigu Will not correspond to
those computed by using Eq. (13), since the graphics reflect the actual o for the location x but not
the worst case estimate of o for a mode shape. Besides, the value of ¢”(x) at the utilized location x
may not be equal to the value of M.
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Fig. 6. E(h) (dotted line) and noiseless ¢”(x) (solid line) for the first bending mode of a free—free beam; location
x = 0.5L; noise level ¢ = 0.001.

3. Analysis of strain energy mode shapes
Strain energy mode shapes are usually computed by using the formula [9]

1
Uab = >
where U, is the strain energy calculated on the interval a — b; EI is the flexural stiffness of the
cross section; ¢(x) is the mode shape vector (displacement mode shape); ¢”(x) is the modal
curvature (curvature mode shape).

Thus, the optimal sampling interval for computing a strain energy mode shape should be
closely related to that of the curvature mode shapes, as calculations of curvature play the central
role in calculations of strain energy. Numerically, the computation of Eq. (15) is usually
performed as follows: (1) taking the second derivative of a displacement mode shape as described
in the previous section; (2) squaring of the curvature mode shape; (3) trapezoidal integration of
the modal curvature (EI is assumed to be constant even for a damaged beam, and thus can be
omitted).

Integration, performed in step 3 of the procedure above, will have the most significant impact
on the optimal sampling interval for the strain energy mode shapes. Theoretically, the interval
a — b may include more than one sampling interval 4. However, performing integration with
a— b>h does not seem necessary, as it will impede damage localization. It would be more
practical to perform both differentiation and integration on the same interval 7 = a — b, which
will provide the least errors in computation of the strain energy mode shapes.

The most commonly used, in damage detection, numerical formula for trapezoidal integration
on an interval a — b = h is [23]

b
/ EI(¢") dx. (15)

a

Xo+h
f(x)dx = g(f(xo) + f(xo + h)) — % Pf'(E)  where xo< & <xo + h. (16)

X0
The error term on the right represents the approximation error and is of O(h’). The error
diminishes with the reduction of 4.
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Denote f(x) = (¢"(x))*, fo = (¢"(x0) + €)*, [1 = (¢"(xo + h) + &1)*, les] <e, where ¢y and e,
are the errors of differentiation E(/). Then the numerical formula for the strain energy value on
the interval 4 is

h — —— h
Ui =1 (5 o +7D 15 h3f”(ék)> -2 (5 (¢ (X)) + (¢ (o + W))) + Ez(h>>,
where

h 1 1 1 /!
Er(h) =5 Qeog™(x0) + e +2e19"(x, + h) + €}) — T P (&) (17

is the total error in the calculations of the strain energy. The E(%) reflects the error due to noise in
data, truncation error during differentiation, error from squaring, and approximation error
during trapezoidal integration.

The maximum bound on E (k) can be estimated as

M
Er1<eh(lo" (o)l + 19" (o + W)l +€) + 5 I, (18)

where M = max |, x4 (0" (x))"].

Analytical evaluation of Eq. (18) in an attempt to establish the optimal sampling interval /4 is
complicated and leads to solutions that are not easy to apply in practice. Instead, a numerical
evaluation of Eq. (18) can be performed to connect the optimal sampling interval for curvature
mode shapes to the optimal sampling interval for strain energy mode shapes. The goal of the
numerical evaluation is to find min(E£;(%)) Vx and related Ay for the given boundary conditions,
measurement noise level ¢, and mode number k, thus establishing the dependency between
hostrAIN and hgcurvaTurE in the form

hosTRAIN = g(H0CURVATURE) (19)

To perform the evaluation of the error behavior, both the error E(/4) for the curvature mode
shapes and the error Ej(h) for strain energy mode shapes were computed at every sampled
location x; € (0, L) along the beam length for a variety of spatial resolutions 7; and measurement
noise levels . As an example, Fig. 7 shows the computational error E(h) for curvature as a
function of n; and x; for the second bending mode shape of a free—free beam with the noise level
£ =0.01 (1%). Fig. 8 illustrates the strain energy error E;(h) for the same beam. The optimal
spatial resolution nocurvaTure = 1/hocurvaTure for computation of the curvature mode shapes
can be determined from the graph by finding a point AycurvaTure such that E(/ycUrRvVATURE) =
min(max |E(h))Vx;]), j = [1,nmax], i = [1,/], where nyax 1s the maximal spatial resolution selected
for the numerical experiment. The optimal spatial resolution nostraiN = 1/hosTrRAIN for
computation of the strain energy mode shapes can be identified by finding a point /sTrRAIN
such that Ej(fstrain) = min(max |E;(h)Vx;]), j = [1,nmax], i = [1,/].

Utilizing the procedure described above, both nycurvature and nostrain Were determined for
several modes of beams with different boundary conditions and ¢ varying from 0.1 to 0.0000001.
Then the value of ngsTran Was plotted as a function of nocurvature (Fig.9). The graph in Fig. 9
demonstrates a well-expressed linear dependency between the optimal sampling interval for the
curvature and strain energy mode shapes. This dependency can be identified precisely by
performing a linear regression on the dataset containing the combined data for all the boundary
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Fig. 8. Numerically computed E;(/) (strain energy calculation error) for the second mode of a free—free beam
(e =0.01).

conditions and modes of vibration (Fig. 10). The linear regression produced the following
dependency:

= =—1.83+1.327 =—-183+1327 —, 20
NOSTRAIN gn(nOCURVATURE) + NOCURVATURE + m (20)

with the correlation value of 0.9997 and standard deviation of 1.73. Or, in another form,
hosTRAIN = g(hocurvaTURE) = —0.00155 4 0.89hcurvaTURE = —0.00155 + 0.89+/eF4. (21)

Formulas (20) and (21) can be used to calculate the optimal sampling interval for the
computation of the strain energy mode shapes acquired with the relative measurement error e.
Both formulas utilize the optimal sampling interval for curvature mode shapes calculated by using
formula (8b) as a basis for producing the value of AsTRAIN-
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Fig. 10. Linear regression of the optimal sampling resolution of the strain energy mode shapes: combined data set (H);

linear regression (solid line).

In the analysis of the curvature mode shapes, a limit value of /4,, was established to estimate the
minimum sampling interval, after which the computation of the curvature mode shapes begins to
follow measurement noise rather than the mode shape function. For the computation of the
strain energy mode shapes, the same limit /,, can be accepted as the minimal sampling interval
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because computation of strain energy directly depends on the accuracy of the curvature
calculations.

4. Effects of error distribution

Formulas for computing the optimal sampling interval for the curvature (8b) and the strain
energy mode shapes (20) and (21) estimate the worst case scenario and do not account for error
distribution within the interval [—¢, ¢]. The probability of the largest measurement errors & or —¢
occurring during an experiment depends upon the probability density function describing
distribution of the measurement error. The probability of the worst case computational error in
calculations of the curvature or the strain energy mode shapes is even smaller. For example, the
occurrence of the worst case computational error for curvature mode shapes at location x requires
the measurement error to take the value ¢ at location x + A, the value —¢ at location x and the
value ¢ at location x — / (assuming that the values of ¢y, ¢, ¢_, all have the same sign). As a
result, the probability of the worst case computational error is less than the probability of the
largest measurement error. This situation is illustrated in Figs. 11 and 12, which show the original
uniform distribution of the measurement error ¢; and distribution of the computational error E(/%)
for curvature mode shapes.

Because it is not guaranteed that the worst computational error will occur during a specific
experiment, the formulas for the optimal sampling interval may seem to underpredict the value of
h. The degree of underprediction depends upon the distribution of the measurement noise and the
type of the function to be calculated (underprediction for calculations of the strain energy shapes
is better expressed than for calculations of curvature). At the same time, formulas (8b), (20), and
(21) guarantee the minimal computational error independently of noise distribution and specific
measurement errors during an experiment and thus provide the most reliable estimate of 4. If the
goal is to find the optimal / for a different purpose (for example, such as to minimize the average
computational error), the desired value of & may be obtained by accounting for the distribution of
the measurement noise and computational errors, and correspondingly substituting the value of ¢
with the adjusted noise estimates.
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Fig. 11. Histogram of the uniformly distributed measurement error |¢| <0.0001.
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Fig. 12. Histogram of the computational error E(/) for the curvature calculations (first mode of a free—free beam,
x=0.5L,h=0.1L).

5. Numerical verification

Derivation of the formulas for the optimal sampling interval did not account for the changes
due to damage in the beam. The motivation for such an analysis is that a less severe damage will
cause very subtle changes in the displacement mode shapes, and thus does not influence the
outcome. A more severe damage will cause visible changes in the displacement mode shapes, but
the estimate of / for such a damage obtained through Eq. (8b) or (21) is a conservative one, i.e., a
damaged displacement mode shape could be sampled at a higher resolution due to the fact that
changes in the displacement mode shapes are going to be very significant around damaged
locations. Thus, sampling the displacement mode shapes with the optimal sampling interval will
produce the maximal sensitivity to small damages, while maximizing the resolution of damage
localization (increasing the number of sampling points).

Normally, a damage detection procedure utilizing the curvature or the strain energy mode
shapes requires acquisition of the displacement mode shapes from the undamaged structure and
the structure under test (test mode shapes). For example, undamaged displacement mode shapes
could be obtained from a knowingly good structure identical to the structure being tested or from
historical data. After computation of curvature mode shapes, the undamaged curvature mode
shapes are then subtracted from the curvature mode shapes for the test structure and the resulting
“difference curvature mode shapes™ are analyzed for peaks (indicators of damage). The same
procedure applies to testing by strain energy mode shapes.

The performance of formulas (8b) and (21) was verified by evaluating the actual computational
error in calculations of curvature and strain energy mode shapes. Error-free curvature and strain
energy mode shapes were analytically computed from the displacement mode shape equations for
a free—free beam. The same displacement mode shape equations were discretized for a number of
sampling intervals with the number of sampling points varying from sy, =4 to nfmax = 70.
Uniform noise was added to each sampling point. Curvature and strain energy mode shapes were
numerically computed from the noisy data. The error at each sampling point was determined
relative to the analytically computed values. The maximum computational error for each
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sampling point was determined by repeating the procedure 10,000 times and selecting the maximal
error from the obtained 10,000 values.

Fig. 13 shows the dependency of the relative computational error for curvature mode shapes of
the first mode of a free—free beam on spatial resolution used for discretization of the displacement
mode shapes. The measurement noise ¢ is 0.001%, and the error is computed at location x = 0.5L.
The minimum of the computational error is observed for the spatial resolution n = 10; the
optimal spatial resolution predicted by Eq. (8b) is also 10 sampling points.

Fig. 14 shows the dependency of the relative computational error for strain energy mode shapes
for the same conditions. The minimum of the error is observed for spatial resolution n = 14; the
optimal spatial resolution predicted by Eq. (21) is 12 sampling points.

Fig. 15 demonstrates the comparison of the numerically determined optimal spatial resolution
for curvature mode shapes and the value predicted by formula (8b). Displacement mode shapes
for a free—free beam were used in numerical computations. The values on the horizontal axis
(“‘measurement noise’’) are equivalent to 100e. Fig. 16 shows the same comparison for strain
energy mode shapes.

As indicated in Figs. 13-16, the optimal spatial resolution (determined in experiments with
known a priori analytical solution for curvature and strain energy mode shapes) shows very good
correlation to the results produced by formulas (8b), (20) and (21). Small differences in the
prediction of the optimal spatial resolution of the strain energy mode shapes can be explained by
the effect of the probability distribution that was discussed earlier. Overall, the suggested
approach performed very well in determining the optimal sampling interval for the discretization
of the displacement mode shapes (and subsequent computation of curvature or strain energy
mode shapes).

Relative computational error, %

5 10 15 20
Spatial resolution, sampling points

Fig. 13. Relative computational error for curvature mode shapes of the first mode of a free—free beam (x = 0.5L,
¢=10.001).
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Fig. 14. Relative computational error for strain energy mode shapes of the first mode of a free—free beam (x =
0.5L,& = 0.001).

35 -
30 -
25 -
20 -
15 |
10 |
5 |
0 . . . )
1 0.1 0.01 0.001

Spatial resolution, points

Measurement noise (100¢), %

Fig. 15. Comparison of the numerically ([J) and analytically (A) determined optimal spatial resolution for curvature
mode shapes.

6. Conclusions

This paper attempted to address the practical issue of determining the optimal sampling interval
for damage detection using strain energy mode shapes. The task was set on minimizing the effect
of measurement noise in commonly used numerical methods, while providing maximum
sensitivity to damage and maximizing the spatial resolution. The suggested approach identifies
the optimal sampling interval to be used for acquisition of the displacement mode shapes.
Utilizing the optimal sampling interval may be especially important for the recent data acquisition
methods capable of very dense sampling, such as laser vibrometry. Application of a laser
vibrometer for the goal of better damage localization though denser sampling may have adverse
effects on the quality of damage detection if no special care is taken to reduce measurement noise.
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Fig. 16. Comparison of the numerically ([J) and analytically (A) determined optimal spatial resolution for strain
energy mode shapes.

Formulas (8b), (20), and (21) should be used to estimate the optimal sampling interval for the
acquisition of the displacement mode shapes and subsequent calculation of curvature or strain
energy mode shapes. Table 1 lists the parameters that can be applied in practical calculations of
spatial resolution for the most commonly used boundary conditions of a beam. Applied with the
parameters from Table 2, formula (14) can be utilized to determine the maximum number of
sampling points, after which the measurement noise begins to dominate the results of calculations
and the calculated curvature or strain energy mode shapes become meaningless. Numerical
verification of the suggested formulas showed very good performance of the method in predicting
the optimal sampling interval.

Practical determination of the optimal spatial sampling interval requires correct estimates of
measurement error & which is dependent on utilized measurement equipment and testing
methodology. In general, statistical methods can be applied to produce estimates of ¢ for each
particular experimental setup.
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