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Abstract

Over the years, lined ducts with bulk reacting linings have been investigated for their sound attenuation
performance. The methods employed for these studies can be broadly categorized into three major types. In
one approach, the duct is assumed to be of infinite length of which a slice of finite length is taken out to get
a transfer matrix between the two end points of this slice. In another approach, the one dimensional,
coupled wave equations are solved, with the pressure difference between the flow passage and the
absorptive lining being supported by a perforated plate. In the third major approach, the three-dimensional
wave equation is solved, taking into consideration the finite length boundary effects. In this paper, these
three approaches are compared with respect to their limitations, simplicity and accuracy. Here, the lowest
mode or the (0,0) mode only has been investigated. In the third approach, improvements are incorporated
to make this method work accurately in the high frequency regions too. Relatively larger sized ducts are
also examined for different values of d=h ratios.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Dissipation of acoustical energy in absorptive linings is the most widely analyzed sound
attenuation concept in the gas flow containing absorptive ducts, where minimization of pressure
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

Symbols

a speed of sound
d diameter of holes in the perforated plate
f frequency in Hz
j

ffiffiffiffiffiffiffi
�1

p

J Bessel’s function
k wavenumber
l length of cavity
M Mach number of fluid flow
N Neumann function
p pressure field in the duct
r distance along r-axis, radius
S area of cross section
t thickness of the perforate plate
TL transmission loss in dB
TM transfer matrix
u particle velocity
v volume velocity
Y charateristic impedance
z distance along z-axis
Z non-dimensional impedance

Z particle displacement
r density
s porosity of the perforated plate
o driving frequency
r Laplacian operator

Subscripts

0,1 order of Bessel and Neumann functions
1,2,3,4 different regions in the duct
a; b regions to the left of plane A or right of

plane B
h hole on the perforated wall
p perforation
r radial direction
rw radial direction inside the absorptive

wall
w absorptive lining, perforated wall
z axial direction
� positive and negative moving waves
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drop across the silencer is also of utmost concern with the primary objective of broadband sound
attenuation. Their frequent use in the intake and exhaust ducts of gas turbines, air conditioning
and ventilation ducts of large industrial fans, etc. necessitates the development of a standardized
procedure to analyze these ducts under different operating conditions for the desired accuracy and
the frequency range of interest.

Some situations with high volume flow rates dictate the size of the silencer to be of the order of
one meter diameter or even more with very low velocity of mean flow of the exhaust or ventilated
gas through these ducts. In those cases, the analysis should be stable throughout the frequency
range of interest. Then, depending on the application, two kinds of configuration are generally
implemented to optimize the cost of fabrication: rectangular and circular. In this paper, the
circular ducts are investigated. The three methods used for getting the transfer matrix are
described below. The finite-length slice approach (hereafter, referred to as the first approach or the
finite-slice model) and the one-dimensional decoupling approach (referred to here as the second
approach or the two-duct model, following Ref. [1]) are explained very briefly, as they follow the
same arguments as in Refs. [1,2], respectively, with very little modifications. The third approach,
viz. the two-dimensional wave model with finite boundary effect approach (referred to here as
two-dimensional model or the third approach) is described in detail incorporating many changes
to be able to investigate high frequency ranges and large sized silencers.
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It may be noted that the first approach ignores wave reflections from the end plates of the
annular cavity. The second approach implies coupled one-dimensional analysis. The third
approach is same as the first approach as far as the derivation of the axial wavenumber is
concerned. But, for deriving the transfer matrix, the reflections at the boundaries are taken into
account.
2. First approach: a slice of finite length taken from an infinite duct

In analyzing the bulk-reacting liner on circular ducts with a perforated protective layer,
shown in Fig. 1, it can be noted that the protective layer thickness at r ¼ r1 is too small
to be considered while calculating the lining thickness using r1 and r2: Then, for the fundamental
or the (0,0) mode forward progressive wave in the central flow duct, the pressure field can be
expressed as

pðz; r; tÞ ¼ AJ0ðkrrÞe
jðot�kzzÞ; (1)

with the over-riding compatibility condition

k2
z þ k2

r ¼ k2
0; (2)

where J0 is the Bessel function of zeroth order. kz and kr are the wavenumbers in the axial and the
radial direction. k0 is the wavenumber in the air medium and o is the driving frequency.

Similarly, the pressure field in the lining is given by the expression

pwðz; r; tÞ ¼ BfJ0ðkrwrÞ þ CbN0ðkrwrÞgejðot�kzzÞ; (3)

with the over-riding compatibility condition

k2
z þ k2

rw ¼ k2
w; (4)

where N0 is the Neumann function of zeroth order. kw is the wavenumber in the absorptive
medium. krw is the wavenumber in the radial direction inside the absorptive wall.

In writing Eq. (4) it has been assumed (inherent in the bulk reaction model) that the axial
wavenumber in the lining equals that in the central duct ðror1Þ: The radial particle velocities in
Fig. 1. Slice of an infinite circular duct lined with a bulk-reacting lining.
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both regions can be derived using the Euler’s (momentum) equation as follows:

urðz; r; tÞ ¼ �j
kr

or0

AJ1ðkrrÞe
jðot�kzzÞ; (5)

urwðz; r; tÞ ¼ �j
krw

orw

B½J1ðkrwrÞ þ CbN1ðkrwrÞejðot�kzzÞ�; (6)

where r0 and rw are the densities of the air and the absorptive medium. J1 and N1 are the Bessel
and Neumann functions of first order. The value of the constant Cb can be evaluated from the
zero-radial-velocity boundary condition at the outer rigid wall as

Cb ¼ �
J1ðkrwr2Þ

N1ðkrwr2Þ
: (7)

Munjal and Thawani [3], in applying the perforate impedance formula, have used the expression
for a perforated plate backed by an air cavity, on the assumption that it would hold for the lined
duct as well on account of very high values of porosity of the fibrous backing. In this study, the
expression for the same has been modified in the line of Ref. [2] and is discussed in detail later
under the second approach.

Neglecting the convective effect of mean flow, radial velocities across the perforated layer can
be equated as

urðr1Þ ¼ urwðr1Þ: (8)

If the perforated plate is assumed to sustain a pressure difference, then the pressure drop across
the perforate layer can be related to the radial particle velocity at that point as

pðr1Þ ¼ pwðr1Þ þ Zpr0a0urðr1Þ; (9)

where Zp is the non-dimensional perforate impedance of the protective layer, discussed in detail
later under the second approach and a0 is the speed of sound in the central duct. Then, by dividing
Eq. (9) by Eq. (8), and making use of Eqs. (1), (3), (5) and (6), the eigenequation can be derived
as [3]

j
or0

kr

J0ðkrr1Þ

J0ðkrr1Þ
¼ j

orw

krw

J0ðkrr1Þ þ CbN0ðkrwr1Þ

J1ðkrr1Þ þ CbN1ðkrwr1Þ
þ Zpr0a0: (10)

After getting the eigenequation relating the axial wavenumber (both krw and kr are functions of
kz) and other physical parameters of the muffler , it is solved to get the complex axial wavenumber
using the Newton–Raphson scheme. As opposed to the cited reference, the initial guess for the
solution scheme at the lowest frequency (1Hz) is derived from a second degree polynomial
approximation of the actual eigenequation [4,5]. For subsequent frequency steps, the root of the
previous step is taken as the initial guess. To avoid the problem of mode jumping [6,7], a
frequency step of 1Hz is chosen which can still be made smaller if some mode jumping is observed
for some particular configuration, as the computation time taken for each step is very little. The
function derivative at each step is calculated by numerical differentiation methods [8].

Having got the complex axial wavenumber for stationary medium, the same can be calculated
for the convective medium as described in Ref. [1]. Finally, the transfer matrix (or the four-pole
parameters) can also be derived from which the transmission loss is readily calculated from the
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expression [1]

TL ¼ 20 log10

ðT11 þ T12=Y 1 þ Y 1T21 þ T22Þ

2

����
����; (11)

where Tij ði; j ¼ 1; 2Þ are the four-pole parameters and Y 1 is the characteristic impedance of the
central duct.
3. Second approach: two-duct model or the one-dimensional decoupling approach

This analysis goes in the line of Ref. [1], where the transfer matrix for a concentric tube
resonator has been derived using the one-dimensional decoupling approach. Certain changes are
incorporated in the expression for the perforate impedance of the protective layer in the case of a
grazing flow and in the boundary conditions. In the absence of mean flow, for perforations facing
the air medium, the perforate impedance is given by [1]

Zp ¼ ½0:006þ jk0ðtw þ 0:75dhÞ�=s; (12)

where tw and dh are the thicknesses of the perforated wall and the diameter of the holes or
perforations, respectively. s denotes the overall porosity of the perforated protective plate. In
their paper, Selamet et al. [2] have modified the perforate impedance expression for the situation,
when the materials on the two sides of the protective layer are different (refer Fig. 2).

In this case, the above impedance expression gets modified as

Zp ¼ 0:006þ jk0 tw þ 0:375dh 1þ
Y w

Y 0

kw

k0

� �� �� �
=s: (13)

With the above expression for the perforate impedance in the one-dimensional decoupled
analysis, they have demonstrated good agreement with the experimental and BEM results. But,
their expressions are valid only for a stationary medium. Comparing Eq. (12) and (13), one
observes that the reactive part of the perforate impedance, which is a function of the
perforate–hole diameter, is getting modified by the presence of the absorptive lining in place of air
on one side of the perforated plate. So, following a heuristic approach, the corresponding
expression for the same in the case of a moving medium under the grazing flow assumption [1] can
be expressed as

Zp ¼
1

s
½7:337
 10�3ð1þ 72:23MÞ þ j2:2245
 10�5f1þ 51twg


 1þ 102dh 1þ
Y w

Y 0

kw

k0
Þ

� �
f

� �
; ð14Þ

where M is the Mach number in the central duct and f is the frequency in Hz.
At planes ‘A’ and ‘B’, the boundary conditions [1] are modified to take into account the

complex characteristic properties of the fibrous material as opposed to the real wavenumber and
the characteristic impedance of air, that would apply if the annular region were filled with air
instead of the absorptive material.
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Fig. 2. The lined circular duct with perforated protective layer and extended inlet/outlet.
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4. Third approach: two-dimensional wave modeling with finite boundary effects

To get the final transfer matrix between the upstream point ‘u’ and downstream point ‘d’ (as
shown in Fig. 2), the first thing is to get the eigenequation from which the complex axial
wavenumber can be got. Then, using the force equilibrium and the continuity of volume velocity
at planes ‘A’ and ‘B’ in an integral sense, the finite length boundary conditions can be
incorporated. These are described below under different sub-sections.
4.1. Eigenequation formulation for a circular dissipative duct

Waves in regions 1, 2 and 4 are governed by two-dimensional convective wave equations. Thus,
for region 2 of Fig. 2

1

a2
0

D2p2

Dt2
� r2p2 ¼ 0: (15)

Assuming sinusoidal variation w.r.t. time, Eq. (15) can be re-written as a convective Helmholtz
equation:

ð1� M2Þ
@2p2

@z2
þ

1

r

@p2

@r
þ
@2p2

@r2
þ k2

0p2 � 2jMk0
@p2

@z
¼ 0: (16)

The corresponding Helmholtz equation in region 3, for stationary medium, can now be written as

@2p3

@z2
þ

1

r

@p3

@r
þ

@2p3

@r2
þ k2

wp3 ¼ 0; (17)

where kw is the (complex) wavenumber of the absorptive material.
As explained under the first approach, the acoustic fields in regions 2 and 3 may be expressed by

Eqs. (1) and (3) with slight modification to take into account the convective effect of the mean
flow. Then, for the forward and rearward moving progressive waves, respectively, the pressure
fields are given by [1]

pðz; r; tÞ ¼ A�J0ðkr�rÞejðot�kz�
zÞ; (18)

pwðz; r; tÞ ¼ B�fJ0ðkrw�
rÞ þ Cb�N0ðkrw�

rÞgejðot�kz�
zÞ: (19)
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These pressure fields cannot sustain themselves independently as these regions are physically
connected. So, the pressure amplitudes, A� and B�; are related to each other, respectively, so as to
establish a coupled pressure field in the chamber. Now, this coupled sound field in the annular
cavity region (between planes A and B, see Fig. 2) may be expressed as

ppðz; rÞ ¼ Ppþcpþ
ðrÞe�jkzþz þ Pp�cp�

ðrÞeþjkz�z; (20)

where cp�
represents the radial dependence of the pressure field, which can be written in a divided

form for the two regions as

cp�
¼

c2p�
; 0oror1

c3p�
; r1oror2

( )
; (21)

where c2p�
and c3p�

are the modal eigenfunctions prevailing in regions 2 and 3 to make the
pressure amplitudes in these regions dependent on each other. In fact, c2p�

are the ratios of the
respective pressure amplitudes in the two regions at r ¼ r1; so as to maintain a proper pressure
difference at the junction of the two regions to allow the continuity of the radial particle
displacement, denoted by Z; following Ref. [1], at this boundary. The pressure drop and the
continuity of the radial particle displacement at the boundary can be written as [3]

pðr1Þ � pwðr1Þ ¼ Zpr0a0urðr1Þ; (22)

where ur ¼ joZr; and

Zrðr1Þ ¼ Zrwðr1Þ; (23)

where Zp is the non-dimensional perforate impedance of the protective layer (discussed in detail
under the second approach). Terms ZrðrÞ and ZrwðrÞ are the radial particle displacements in regions
2 and 3, respectively. Now, Zr and Zrw are expressed as

Zr ¼
1

r0o2ð1� Mðk�
z =k0ÞÞ

@p

@r
(24)

and

Zrw ¼
1

rwo2

@pw

@r
: (25)

Making use of Eq. (22) with Eqs. (18) and (19), the ratio A�/B� can be got, which is nothing but
the modal eigen function c2p�

: So the eigenfunctions can now be written as

c2p�
¼ J0ðkr�rÞ

J0ðkrw�
r1Þ � Cb�N0ðkrw�

r1Þ

J0ðkrw�
r1Þ þ j

Zpkr�
k0J1ðkr�

r1Þ

ðk0�Mkz�Þ
2

(26)

and

c3p�
¼ J0ðkrw�

r1Þ � Cb�N0ðkrw�
r1Þ (27)
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and the term Cb� in the above equations can directly be written in a form analogous to Eq. (7) by
replacing krw with krw�

to become

Cb� ¼ �
J1ðkrw�

r2Þ

N1ðkrw�
r2Þ

: (28)

Using Eqs. (24) and (25) in the displacement continuity Eq. (23), one can get another relation
between A� and B�: So, on eliminating these constant terms, the eigenequation can be derived
to be

krw

kr

� �
ð1� Mðkz�=k0ÞÞ

2J0ðkr�r1Þ

J1ðkr�r1Þ
þ j

Zpkr

k0

� �

�
rrw

rr

� �
½J0ðkrw�

r1Þ þ Cb�N0ðkrw�
r1Þ�

½J1ðkrw�
r1Þ þ Cb�N1ðkrw�

r1Þ�
¼ 0: ð29Þ

This equation reduces to the eigenequation derived in the case of first approach for the no-flow
condition, i.e. for M ¼ 0: This equation is solved for the complex axial wavenumber using the
Newton–Raphson scheme. The details of the solving procedure has been discussed under the first
approach. The non-convective eigen equation is solved first, and the wavenumber is then modified
to take into account the convective effect and finally get kz� : However, derivation of the
eigenfunctions cp�

incorporates the convective effects, which is also desirable, as they are used to
implement the boundary conditions in the case of sound propagation in a moving medium.

4.2. Derivation of the four-pole parameters

The assumption of plane wave propagation in regions 1 and 4 allows the sound pressure fields
in these regions to be expressed as

p1ðz; rÞ ¼ P1þe
�jk1zþz þ P1�e

þjk1z�z; (30)

p4ðz
0; rÞ ¼ P4þe

�jk4zþz0 ; (31)

z0 is measured from the starting of region 4, that is, point ‘d’. It can be noted that the end
condition may be assumed to be anechoic, without loss of generality for derivation of the four-
pole parameters, making P4� ¼ 0: The force balance equation at plane A is given by

S1ðP1þ þ P1�Þ ¼ PpþS2þ þ Pp�S2� ; (32)

The force balance equation at plane B is given by

S4P4þ ¼ PpþS2þe
�jkzþ lp þ Pp�S2�e

þjkz� lp : (33)

In the above equations,

S1 ¼ pr21; S4 ¼ pr24 (34)

and

S2þ ¼ 2p
Z r1

0

c2pþ
ðrÞrdr; S2� ¼ 2p

Z r1

0

c2p�
ðrÞrdr: (35)
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Eqs. (32) and (33) can now be re-written as

p1 ¼ Ppþ

S2þ

S1

� �
þ Pp�

S2�

S1

� �
(36)

and

p4 ¼ Ppþ

S2þ

S4

� �
e�jkzþ lp þ Pp�

S2�

S4

� �
eþjkz� lp : (37)

Now, coming to the particle velocity, from the Euler’s equations in the central air-way, for the
forward progressive wave, one has

r0

Du2þ

Dt
¼ �

@p

@z
; (38)

or

jor0 1�
U

o
kzþ

� �
u2þ ¼ Ppþc2pþ

ðjkzþÞ; (39)

where U is the velocity of the fluid flow. Then one can write

u2þ ¼ Ppþc2pþ

kzþ=k0

r0c0ð1� Mðkzþ=k0ÞÞ
: (40)

So, for the forward and rearward waves in the central air-way, respectively, one has,

u2� ¼ Pp�c2p�
a2� ; (41)

where

a2� ¼
kz�=k0

r0c0ð1� Mðkz�=k0ÞÞ
: (42)

Similarly, in the annular absorptive region, assuming no convective effect in that region, for the
forward and the rearward waves, respectively, one gets,

u3� ¼ Pp�c3p�
a3� ; (43)

where

a3� ¼
kz�=k0

r0c0

� �
r0

rw

� �
: (44)

Now, the particle velocity at plane A in the upstream direction of the annular cavity at plane A
can be expressed as

uðla; rÞ ¼
ppðla; rÞ

ZaðlaÞ
; (45)
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where ZaðlaÞ is the normal impedance seen by the wave in region 3 (see Fig. 2) at plane A, i.e.
at a distance la from the left-end plate, in the axial direction. Then, the volume velocity is
given by

vla
¼ 2p

Z r2

r1

uðla; rÞrdr ¼
2p

ZaðlaÞ

Z r2

r1

ppðla; rÞrdr; (46)

where ppðla; rÞ and uðla; rÞ are the pressure and particle velocity at a distance la from the left end-
plate as a function of radial distance r as shown in Fig. 2. Considering the continuity of the
volume velocity at plane A, one gets

S1

r0c0
ðP1þ � P1�Þ ¼

Z
S2

ðu2þ � u2�Þ dS þ

Z
S3

Ppþc3pþ

Za

�
Pp�c3p�

Za

� �
dS: (47)

One can divide the right-hand side of the above equation into two parts, viz. volume velocity due
to the forward moving wave and that due to the rearward moving wave. So,

S1

r0c0
ðP1þ � P1�Þ ¼ volumeþ � volume�; (48)

where

volumeþ ¼ Ppþ

Z r1

0

a2þc2pþ
þ

1

Za

c3pþ

� �
2prdr

� �
(49)

and

volume� ¼ Pp�

Z r1

0

a2�c2p�
þ

1

Za

c3p�

� �
2prdr

� �
: (50)

So, in terms of the acoustic variables one can write the continuity equation of the volume velocity
at plane A as

v1 ¼ Ppþ a2þS2þ þ
1

Za

S3þ

� �
� Pp� a2�S2� þ

1

Za

S3�

� �
: (51)

Similarly, considering the continuity of volume velocity at plane B, one gets

v4 ¼ Ppþ a2þS2þ �
1

Zb

S3þ

� �
eð�jkzþ lpÞ

� Pp� a2�S2� �
1

Zb

S3�

� �
eðþjkz� lpÞ: ð52Þ

In the above equations, S2� are given by Eq. (35) and S3� are given as

S3þ ¼ 2p
Z r2

r1

c3pþ
ðrÞrdr; S3� ¼ 2p

Z r2

r1

c3p�
ðrÞrdr: (53)

Now, from Eqs. (36) and (51), one can write the state variables in a compact form as

p1

v1

( )
¼ ½A�

Ppþ

Pp�

( )
; (54)
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where

½A� ¼

S2þ

S1

� 

S2�

S1

� 

a2þS2þ þ 1

Za
S3þ

� 

� a2�S2� þ 1

Za
S3�

� 

2
64

3
75: (55)

Similarly, one can relate the state variables at the entrance of region 4 to the pressure amplitudes
of the forward and rearward waves in region 2. From Eqs. (37) and (52), one gets

p4

v4

( )
¼ ½B�

Ppþ

Pp�

( )
; (56)

where

½B� ¼

S2þ

S4

� 

e�jkzþ lp S2�

S4

� 

eþjkz� lp

a2þS2þ � 1
Zb

S3þ

� 

e�jkzþ lp � a2�S2� � 1

Zb
S3�

� 

eþjkz� lp

2
64

3
75: (57)

Now, one can eliminate the pressure amplitudes Pp� from Eqs. (54) and (56) to relate the acoustic
variables at the up-stream and the down-stream points u and d (refer Fig. 2) as

p1

v1

( )
¼ ½TM�

p4

v4

( )
; (58)

where

½TM� ¼ ½A�½B��1: (59)

This transfer matrix between the up- and down-stream points of the perforated portion can be
combined with transfer matrices of the up- and down-stream uniform pipes to get the overall
transfer matrix. The transmission loss can then be calculated from the four pole parameters of the
product transfer matrix [1].

At this point, it is of utmost interest to analyze the effect of the annular side cavities on the two
ends of the perforated tube. When these lengths become zero, the impedances Za and Zb tend to
infinity. So matrices A and B take the form

½A� ¼

S2þ

S1

� 

S2�

S1

� 

ða2þS2þÞ �ða2�S2�Þ

2
4

3
5 (60)

and

½B� ¼

S2þ

S4

� 

e�jkzþ lp S2�

S4

� 

eþjkz� lp

ða2þS2þÞe
�jkzþ lp �ða2�S2�Þe

þjkz� lp

2
4

3
5: (61)
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Now making use of Eq. (59) and assuming S1 to be equal to S4; the final transfer matrix for a
simple lined duct becomes

½TM� ¼

a2�e
ðþjkzþ lpÞ þ a2þe

ð�jkz� lpÞ

a2� þ a2þ

eðþjkzþ lpÞ � eð�jkz� lpÞ

S1ða2� þ a2þÞ

a2�a2þS1ðe
ðþjkzþ lpÞ � eð�jkz� lpÞÞ

ða2� þ a2þÞ
a2�e

ðþjkzþ lpÞ þ a2þe
ð�jkz� lpÞ

a2� þ a2þ

2
66664

3
77775: (62)

From this expression, it is seen that the four-pole parameters are independent of S2þ and S2� if the
unperforated lengths la and lb tend to zero. One more very important point can be observed from
Eq. (62). The term a2� corresponds to the term Y� in Eq. (6.7) of Ref. [1]. In that case, Eq. (62)
boils down to Eq. (6.16) of Ref. [1] exactly. That shows the equivalence of the first and the third
approach in the absence of any extended inlet or outlet portion in the protective layer. It is to be
noted that in the derivation of Eq. (6.16) of Ref. [1], a similar left-moving wave with the same
wavenumber (in the absence of mean flow) as the right-moving wave is assumed to be present in
the duct. In the present paper, the third approach is similar to the first approach as far as the
derivation of the axial wavenumber is concerned; the boundary conditions do not play a role here.
So, both the first and the third approach do not take into account the precise effects of reflections
at the boundaries as is implicit in the bulk reacting model. When extended inlet/outlet are
not present in the third approach, the reflected wave at the end plate seems to be playing the
same role as the assumed left-moving wave in the derivation of Eq. (6.16) of Ref. [1], thereby
making the two approaches identical in this respect. When the extended inlet/outlet ducts are
present, reflection in the annular cavities introduce some phase cancellation and modify the
waves thereby making the first and the third approach different. So, in the absence of extended
inlet/outlet the first approach can be used and the complicated process of integration at the
boundaries is not necessary in these situations. These facts and effects of the non-zero values of
these unperforated lengths la and lb will be demonstrated with some sample mufflers in the
subsequent sections.
5. Validation of the third approach

Although this approach is reasonably stable for analyzing mufflers of very large trans-
verse dimensions as well, it is verified hereunder for some smaller mufflers as experimental
results are not available for larger mufflers. The results from these methods are compared
with the experimental results of Cummings and Chang [9,10] and those of Kirby [12] in Figs. 3
and 4.

The muffler dimensions taken for Fig. 3 are

r1 ¼ 1:98 cm; r2 ¼ 3:80 cm;

lp ¼ 32:5 cm; la ¼ 0:00 cm; lb ¼ 0:00 cm:
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Fig. 3. Comparison of the third approach with the experimental results of Cummings and Chang [9].

Fig. 4. Comparison of the third approach with the experimental results of Kirby [12].
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These dimensions are assigned the same values as considered by Cummings and Chang [9] for
their experiment and specified in the work of Peat and Rathi [11] who have used a finite element
method to show that the experimental results obtained by Cummings and Chang are in good
agreement with the numerical method used by them [11]. The flow resistivity of the material has
been taken as 5000Pa s=m2: The complex wavenumber and the characteristic impedance of the
material have been calculated using the curve-fitting formulas used by Cummings and Chang [9].
The perforated wall has not been considered as is the case in the reference. The deviation of the
analytical results from the experimental ones at the low frequency zones are not very surprising as
at these frequencies it is very difficult to get very accurate measurements. Moreover, the
unperforated portions at the upstream end and at the downstream end (i.e. the extended inlet/
outlet) may play some role at these low frequencies. For all practical purposes, non-zero values of
la and lb are inevitable due to fabrication constraints. For all other frequency bands of interest,
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the model predictions are in very good agreement with the numerical results as well as
experimental observations.

For a second test case, the model of the third approach is compared with the experimental
results obtained by Kirby [12] for a relatively larger silencer with r1 ¼ 3:8 cm; r2 ¼ 7:6 cm; lp ¼

31:5 cm; la ¼ lb ¼ 0:0 cm: The flow resistivity of the material has been taken as 30; 700Pa s=m2 and
the perforate porosity value has been taken as 26.3% as was considered by Kirby [12]. The bulk
acoustic properties, kw and Y w; are also calculated form the Delany and Bazley coefficients given
by Kirby [12] using the empirical formula presented in the reference. The perforate impedance Zp

has been calculated using Eq. (14). The predictions are again quite close to the experimental
observations in nearly the entire frequency range of interest. Kirby, in his analysis, has neglected
some higher order terms that are not so significant at low frequencies. But, their effects in the
high-frequency region may be significant. After neglecting higher order terms from the
polynomial expressions of the cylindrical functions, again some terms are neglected to put the
final approximated eigenequation as a quadratic in k2

x for no flow condition, i.e. for M ¼ 0:
Neglecting these terms may also lead to some inaccuracies in the high-frequency zones. In this
paper, these approximated form or truncated series are assumed only for the first frequency step
to calculate the initial guess to be used in the Newton–Raphson scheme. For subsequent steps, the
root of the previous frequency step is used as the initial guess. That gives a better prediction of
transmission loss at the higher frequency range as well as for larger silencer (of the order of 1m
diameter) to be discussed in subsequent sections.
6. Comparison of the above three approaches

Now that the third approach is verified to be predicting the transmission loss correctly over the
frequency range of interest, the other two (approximate ones) are weighed against it to establish a
standard procedure to exploit their advantages under the limitations they possess. For all the
comparisons in this section, the muffler dimensions are same as those used for Fig. 3.
1.
 When la and lb are not taken into consideration, i.e. on putting la ¼ lb ¼ 0; it is observed that
the first and the third approach give exactly the same result (as shown above theoretically). The
curves indistinguishably overlap each other as shown in Fig. 5.
2.
 When la and lb are not zero, the first approach cannot be used directly as it does not take into
account the extended inlet/outlet conditions while taking the slice from the infinite duct.
However, a finite length of slice can be used in combination with an area change having
extended inlet/outlet with side end walls being acoustically lined to approximately simulate the
third approach. But, this shows considerable discrepancies with the third approach as can be
seen from Fig. 6.
3.
 It can also be noted that the upward trends in the experimental results by Cummings and
Chang in Fig. 3 in the high-frequency regions could be attributed to a deficiency or inadequacy
in the heuristic derivation of the perforate impedance expression, i.e. Eq. (14).
4.
 The extended inlet/outlet on the two ends of the protective layer, however, can be implemented
through the second approach. The comparison between this and the third approach is shown in
Fig. 7. On comparing this with Fig. 3 it can be clearly observed that the second approach
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Fig. 6. Comparison of the first and the third approach. With extended inlet or outlet on the two ends of the protective

plate, la ¼ 2 cm and lb ¼ 3 cm:

Fig. 5. Comparison of the first and the third approach. No extended inlet or outlet on the protective plate, i.e.

la ¼ lb ¼ 0:0:
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predictions differ considerably from the third approach and hence from the experimental
observations.

7. Some parametric studies making use of the numerical scheme

The third approach can be used for large sized silencers too. It is used here to analyze two large
mufflers and the results are shown in Fig. 8 for comparison. For the same absorptive material
(flow resistivity ¼ 10; 000Pa s=m2) and same total length of 1m, the performance of very large
mufflers is restricted to a very narrow range of frequency. It can be seen from Fig. 8 that the
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Fig. 7. Comparison of the second and the third approach for M ¼ 0:0: With extended inlet or outlet on the two ends of

the protective plate, la ¼ 2 cm and lb ¼ 3 cm:
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performance (the peak transmission loss) decreases with the increase in the size of the muffler if
the thickness of the lining is kept constant which is not surprising. In the case of these mufflers
(diameters of the order of 1m), a slight amount of instability is observed at high frequencies, as
may be observed from Fig. 8.

The contribution of the reflection in the annular cavities (La and Lb) are seen in Fig. 9 to be very
insignificant in the case of these large mufflers. So, for such large mufflers, small un-perforated
lengths do not alter the performance greatly. Hence, in all the subsequent figures, these effects are
not shown.

The relative thickness of the lining with respect to the diameter of the central air-way is
generally expressed as the ratio d=h; d being the lining thickness and h the ratio of the cross-
sectional area to the wetted perimeter, which comes out to be half of r1: Axial transmission loss
ðTLaÞ depends very strongly on this ratio as is implicit in Fig. 8; for curves (a) and (c), d=h ¼ 1 and
l=h ¼ 10; and for curves (b) and (d), d=h ¼ 0:5 and l=h ¼ 5: The effect of lower value of d=h is to
narrow down the peak and lower value of l=h is to lower the whole curve. The effect of d=h alone
is shown in Figs. 10 and 11.

First, the relative performance (TLa curves) of mufflers for different values of d=h ratio have
been plotted keeping the radius of the central duct, r1; constant. From Fig. 10, it can be observed
that, at low values of d=h; the nature of the TLa curve is a narrow band. As the ratio is increased,
the bandwidth of the TLa curve is increased, though a decrease in the TL peak is also observed.

On the other hand, when outer radius, r2; is held fixed, the effect of increasing d=h is shown in
Fig. 11. As d=h increases, thickness of the lining gets increased, thereby making the TL curve more
and more flat over a larger band of frequency.

As the cross-sectional area of the central duct gets reduced, the mean flow velocity increases and
therefore pressure drop will increase. So on the basis of these trends, it can be said that, though,
increasing d=h seems to be advantageous at first sight, a balance has to be maintained between
increasing the outer radius and decreasing the inside radius. Incidentally, this is why pod silencers
recommend themselves over simple lined ducts [8].
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Fig. 9. Effect of annular cavities (La and Lb) for two large sized mufflers. (a) and (c) Outside diameter ¼ 60 cm; inside
diameter ¼ 40 cm: (b) and (d) Outside diameter ¼ 100 cm; inside diameter ¼ 80 cm: (a) and (b) Without any

unperforated lengths. (c) and (d) With unperforated lengths as shown in the inset.

Fig. 8. Transmission loss curves for two large sized mufflers. (a) outside diameter ¼ 60 cm; inside diameter ¼ 40 cm; (b)
outside diameter ¼ 100 cm; inside diameter ¼ 80 cm as shown in the inset.
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8. Concluding remarks

When a lined duct with extended inlet and/or outlet is to be analyzed, the first approach
fails completely to provide good predictions in line with the experimentally observed results.
Though, the second approach is capable of analyzing such situations, it predicts somewhat
higher values than the observed ones thereby leaving only the third approach to be used in
such cases.
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Fig. 10. Transmission loss curves for different d=h values. Radius of the central duct, r1 is held fixed at 20 cm. Outer

radius, r2; only is varied. Length of the muffler ¼ 1m; Flow resistivity ¼ 10; 000Pa s=m2; la ¼ lb ¼ 0:0:

Fig. 11. Transmission loss curves for different d=h values. Overall radius of the muffler, r2 is held fixed at 30 cm. Radius

of the central duct, r1; only is varied. Length of the muffler ¼ 1m; Flow resistivity ¼ 10; 000Pa s=m2; la ¼ lb ¼ 0:0:
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For very large mufflers, the maximum difference in the axial transmission loss, with and
without extended inlet/outlet, is below 1.0 dB as can be seen from Fig. 8. Hence, the effect of small
extended inlet/outlets is not so significant in these large mufflers, in which case the first approach,
which comes very handy for implementation, is sufficient to predict within tolerable limits.

In the absence of extended inlet/outlet, it has been shown that the first approach and the third
approach are identically equal. So, in this case it is not worth performing the complicated process
of imposing the boundary condition of the end plates.

While analyzing very large mufflers, the second method fails due to high numerical instabilities,
which is not encountered in the first or the third approach. So, for such situations, the first
approach is preferable owing to its simplicity. However, the third approach can be used to analyze
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the larger mufflers, if the extended inlet/outlet lengths are substantial portions of the overall
length of the muffler.

Incidentally, the second approach would fail in the absence of the perforated plate which is
required to sustain a pressure differential between the central flow duct and the absorptive
annular duct. Therefore, this approach is basically not applicable to lined ducts.
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