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Abstract

The superposition method is employed to analyze the effects of elastic edge support on the in-plane free
vibration frequencies and mode shapes of rectangular plates. The elastic edge support is considered to be
uniformly distributed along the plate edges and symmetrically distributed with respect to the plate central
axes. In addition, exact solutions are also obtained for a family of simply supported plates whose
eigenvalues constitute upper limits for those of the elastically supported plates. An array of highly accurate
eigenvalues for the completely free plate is also computed in order to provide lower limit eigenvalues.
Eigenvalues are computed and tabulated for elastically supported plates of various aspect ratios and
dimensionless elastic support coefficients.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

It is generally agreed that there exists a vast technical literature related to the free lateral
vibration of rectangular plates. The situation with regard to in-plane vibration is quite different.
There are, nevertheless, a limited number of publications related to this latter subject, most
of which have appeared in recent years. Since listings of these publications have appeared in
Refs. [1-3], for example, there is no need to repeat them here.
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Nomenclature X,y quarter plate coordinates
En dimensionless coordinates, ¢ = x/a,
a,b quarter plate edge lengths n=y/b
an =1 10 plate aspect ratio, b/a
an - vy o inverse of plate aspect ratio, a/b
es =(1-v)/2 03,03, Ty dimensionless in-plane normal and
E Young’s modulus of plate material shear stresses, defined in text
ki,k,  basic elastic edge stiffnesses, defined in w circular frequency of plate vibration
text 0 mass density of plate material
K3}, K3 dimensionless elastic edge stiffnesses, v Poisson ratio of plate material (taken
defined in text 5 h?fe 33.0-3) .
u,v plate in-plane displacements in x and y A dimensionless frequency of plate vibra-
directions, respectively tion, = way/p(1 —v?)/E
U,V dimensionless displacements, U = u/a,
V=uv/a

It is acknowledged that lateral vibration problems have historically received most of the
attention as their lower natural vibration frequencies are more likely to coincide with those of the
available excitation forces. It is pointed out, however, that there is a legitimate practical need for
exploration of plate in-plane vibration. Such vibration can be encountered when turbulent
fluid boundary layers flow along plate structures such as ship hulls. Another practical application
where in-plane plate vibration can be encountered centers around the dynamic behavior
of sandwich plates. Here the outer sheets of the assembly may undergo in-plane vibration, while
the assembly itself undergoes lateral vibration. This phenomenon is discussed by Wang and
Wereley [4].

In an earlier publication, the present author described how highly accurate analytical
type solutions are obtained for in-plane free vibration of the completely free rectangular
plate [2]. Subsequently, he described the obtaining of solutions for the fully clamped plate
[3]. In both studies the analysis was carried out by means of the superposition method. In the
latter paper, it was also shown how exact Levy type solutions can be obtained for a family of
simply supported plates. In both cases excellent agreement was encountered when computed
results were compared with those obtained by Bardel et al. [1] using a Rayleigh—Ritz energy
approach.

In the present paper, the superposition method is employed to obtain accurate analytical type
solutions for the free in-plane vibration of rectangular plates with uniform, symmetrically
distributed elastic edge supports acting normal to the boundaries. All plate boundaries are free of
shear stresses. Stresses normal to these boundaries are, of course, proportional to plate
displacement normal to these same boundaries. The magnitude of these stresses will depend on the
elastic stiffness of the edge support. Exact Levy type solutions are also obtained for an additional
set of problems where the boundary conditions are designated as those of the simple support type.
These latter exact solutions provide limiting cases for the problems of plates with elastic support,
as the stiffness of the support approaches infinity.
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2. Mathematical procedure
2.1. The families of modes under investigation

The outline of a rectangular plate of interest is provided in Fig. 1. The reference, x, y, axes lie
along the plate center lines. In all problems considered here the stiffness of the uniform elastic
support running along opposite edges is considered to be equal. It is therefore to be anticipated
that in-plane displacement patterns for all free vibration modes will possess symmetry, or
anti-symmetry, with respect to the plate central axes. This phenomenon is discussed at length in
Ref. [2]. A mode is said to possess symmetry with respect to an axis if plate displacement normal
to the axis has a symmetric distribution about it. In such a case displacement parallel to the axis
will have a displacement anti-symmetrically distributed about it. Modes with just the opposite
displacement distributions are said to be anti-symmetrically distributed with respect to the axis. It
is convenient, therefore, to define the three possible families of vibration modes as follows. (1)
Symmetric—symmetric modes: these mode displacements have a symmetric distribution about each
of the plate central axes. (2) Anti-symmetric—anti-symmetric modes:. these mode displacements
have an anti-symmetric distribution about each of the plate central axes. (3) Symmetric—anti-
symmetric modes: these mode displacements possess symmetry with respect to the central x-axis,
and anti-symmetry with respect to the central y-axis.

These three families represent all possible mode families for the plate under investigation and
will be analyzed separately. It will be appreciated that with enforcement of appropriate boundary
conditions only one-quarter of the plate need be analyzed.

It will also be appreciated that for each mode family there will be a limiting case approached
when the elastic support stiffness coefficients approach infinity. In such limiting cases
displacement normal to the boundaries will be forbidden as well as shear forces along the edges.
It will be shown that exact solutions exist for the limiting cases of each of the three mode families

2a
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Fig. 1. Schematic representation of rectangular plate of interest.
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discussed above. Because one-term exact solutions are obtained for these limiting cases, they are
referred to here as simple support problems.

2.2. The governing differential equations

Equations governing the in-plane dynamic behavior of isotropic rectangular plates were
developed in dimensionless form in Ref. [2]. They are reproduced here in the interest of
completeness only:

o o° o° 19°
ansz U Y "“[ v U}+/14U:0 (1)

Ty awn " |ogon Tean?

and

OV 1 PU]  andU  andV .,
—+= et + AV =0, 2
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where all symbols introduced are as defined in the nomenclature.

2.3. Dimensionless in-plane stresses and elastic support coefficients

The dimensionless in-plane stresses were developed in Ref. [2]. They are reproduced here for
convenience as

. 6U+v6V . v6U+16V and 1" 6U+ ov
o o, =V—+——— To, = = =
* o on’ ¥ 0 P on Yooy o¢
Turning next to the elastic edge support coefficient, we first focus on the edge, = 1, of the
quarter plate segment of Fig. 1. Returning to dimensional quantities and equating the plate in-
plane normal tensile force per unit edge length to the matching force exerted by the elastic

boundary, we obtain

E Qu(x, y) n ou(x, y)

—k 3
el 100, ), 3
where k; relates the force per unit depth of plate, per unit length, with plate displacement normal
to the edge.
Non-dimensionalizing Eq. (3), it is readily shown that we may write
a,(Cm) = —KiV(En), “4)

where K% = kja(1 —v?)/E.
Following an identical procedure, it is shown that for the edge, £ = 1, we may write

where K% = kya(1 —v?)/E, the subscript 2 referring to the edge, ¢ = 1. It is to be noted that for
equal values of the basic stiffness coefficients, k; and k», the associated dimensionless coefficients
K7 and K3 will be equal, regardless of the plate aspect ratio.
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2.4. Analysis of symmetric—symmetric modes

The analytical procedure to follow differs very little from that described in detail in Ref. [2] for
completely free plate analysis. Only these slight differences will be elaborated upon here.

Consider the quarter plate shown on the left-hand side of Fig. 2. Pairs of small circles adjacent
to the axes indicate that free vibration modes will possess symmetry with respect to these axes. To
the right of the figure the two forced vibration problems (building blocks) utilized in analyzing
this family of modes by the superposition method are represented schematically. Distributed
harmonic driving forces are represented by small arrows along the driven edges. Focusing on the
first building block, it is seen that its response to the excitation may be expressed in the form
proposed by Levy as

UEn) =Y Unn)cos empé (6)
m=1,2
and
VEm =" Vaulpsin emp, (7)
m=1,2

where emp = 2m — 1)r/2.

The symmetric mode conditions are satisfied along the n-axis, while a condition of zero shear
stress is satisfied along the edge, ¢ = 1. Stresses normal to this edge will in general be non-zero.

It is shown in detail in Ref. [2] how substitution of the above series into the differential
equations leads to a pair of coupled ordinary differential equations involving the functions U,,()
and V,,(n). Through differentiation and manipulation of these equations, a fourth-order ordinary
homogeneous differential equation involving ¥ ,,(1) only is isolated. The solution for this latter
equation is well known.

Solving the related characteristic equation and introducing the quantities Rootl, and Root2,
which depend on the roots of the characteristic equation [2], it is shown that three forms of
solution are possible for this differential equation for the problems under consideration. With
each solution for the quantity V,,(5), a solution for the corresponding quantity U,,(n) is obtained
using results of the previously manipulated equations [2]. Only the results are presented here for
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Fig. 2. Building blocks utilized in symmetric-symmetric mode analysis.
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convenience. They are as follows.

Solution 1: Rootl >0, Root2<0; then

Vm(n) = Ay, sinh B,n + By, cosh f,,n + C,, sin y,,n + D, cos v, (8)
and
U,(n) = Amoim cosh f,,n + By, sinh f,,.n + Cy,03,, cos 9,1 + Doy, sin p,1. )
Solution 2: Rootl <0, Root2<0; then
Vu(n) = A, sin B,n+ B, cos B,n+ Cy, sin y,n+ D, cos y,n (10)
and
U,(n) = Aot cos B,n + Budon sin f,,n + Cpozy, €os y,,1 + Dyyday, sin p,4. (11)

Solution 3: Rootl >0, Root2>0; then
V() = A, sinh g,n+ By, cosh f,,n+ C, sinh y,,n + D, cosh y,.n (12)

and
U(n) = Apmoum cosh f,,n + By, sinh f,,n + Cyo3, cosh y,1n + Dy,o4y, sinh y,n. (13)

The quantities f3,,,, 7,,,» %1m, - - - €tc., are as defined in Ref. [2] and the quantities 4,,, By, . .. etc.,
are to be determined through enforcement of appropriate boundary conditions.

It will be obvious, in view of the symmetry which the quantities, V() above, must possess
with respect to the &-axis, that the quantities 4,, and B,, must all equal zero. Enforcement of the
condition of zero shear force along the edge, n = 1, permits evaluation of a third coefficient. The
quantities V,,(n) and U,,(n) for Solution 1 can therefore be expressed as

Vin(n) = Bp[cosh B, + 01, cos 7,1] (14)
and

Um(n) = Bm[on sinh ﬁmn + 91,7,064," sin an]a (15)

with corresponding expressions for the other solutions. Quantities 0;,, are given in Ref. [2].

It is here that the present analysis differs slightly from that of Ref. [2]. It is known that building
blocks such as those under consideration may be either harmonically force-driven or
displacement-driven. In some problems, however, it is found that use of displacement-driven
building blocks is preferable. Use of force-driven building blocks can lead to the uncovering of
what have been called ‘rejection mode eigenvalues’. In this latter case, non-trivial solutions can be
found for the coefficients in the distributed driving force expansions; however, displacement
associated with one block nullifies exactly that associated with the other. The result is no net
displacement for the plate in question and the associated eigenvalue must be rejected. This
phenomenon as it pertains to plate lateral vibration has been discussed extensively in Ref. [5].

In the present analysis, we consider all building blocks to be displacement driven. Returning to
Eq. (14) and continuing with analysis of the first building block, we choose to represent the
amplitude of the displacement excitation along the driven edge as

Vinlyzi = > Ep sin emp . (16)
m=1,2
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Enforcing this edge condition we obtain, for any m,

B,,[cosh B, + 01, cos y,,] = Ey, (17)
and finally, Solution 1,
Vi) = EmOrimlcosh B,n + 01 cos y,,1] (13)
and
Un(n) = EnOrimloom sinh B,n + oy sin 1], (19)

where 0,1, = 1/(cosh f3,, + 01,,, cos 7,,).

Corresponding expressions for Solutions 2 and 3 will differ in that, as seen earlier, they involve
trigonometric functions and hyperbolic functions only, respectively, with expressions for the
quantities 6y, becoming 60,y,, = 1/(cos f,, + 01, cos y,,) and 01y, = 1/(cosh S, + 01,, cosh y,,),
respectively.

It is to be noted that we now have available the solution for the response of the first building
block to any harmonic edge displacement-driven excitation with the amplitude represented by the
series of Eq. (16).

The second building block is displacement-driven along the edge, ¢ =1, and constitutes
essentially a mirror image of the first. Its solution is easily extracted from that of the first
following rules of transformation explained in Ref. [2], with the subscript ‘m’ now replaced by ‘»’
in order to avoid confusion. Retaining the symbols U and V to indicate displacements in the ¢&
and 5 directions, respectively, and interchanging the variables ¢ and # in Eqgs. (6) and (7), we
obtain

UE,n) =Y Uy&)sin enpry (20)
n=1,2
and
V(g =Y Va&cos enpr, 21

n=1,2

where enp = (2n — 1)x/2.

Before moving on to utilization of the above building block solutions for generation of the
eigenvalue matrix associated with symmetric-symmetric mode analysis, it is appropriate to
develop building block solutions for the other two families of modes.

2.5. Analysis of anti-symmetric—anti-symmetric modes

Again, the analysis will differ from that described for the corresponding set of modes in Ref. [2]
only in that the building blocks will be displacement driven. The quarter plate of interest and
associated building blocks utilized in the analysis are shown schematically in Fig. 3. Note that
there are no pairs of small circles adjacent to the axes, indicating that this family of modes will
have an anti-symmetric distribution with respect to the plate central axes. Focusing on the first



948 D.J. Gorman | Journal of Sound and Vibration 285 (2005) 941-966

a § &

» »
» »

e +
$4144444
n I1| L

v v v

T

v

P

n

Fig. 3. Building blocks utilized in anti-symmetric—anti-symmetric mode analysis.

building block, its solution is expressed in the form proposed by Levy as

UG =Y, Un(n)sin emp¢& (22)
m=1,2
and
VEm =Y Viuln)cos empé, (23)
m=1,2

where emp = (m — ).

As made clear in Ref. [2], the solution with m = 1 will be one-dimensional with the quantity
U,.(n) equal to zero.

It is shown that upon satisfying the condition of anti-symmetry with respect to the ¢-axis the
quantity V,,(n) is expressed as

Vin(n) = Ao sin om, (24)

where o> = )?(bz /a1, and Ay is a constant to be determined. Quantity a;; = unity.
The amplitude of the harmonically driven displacement along the edge, n = 1, is expressed as

Vau(n) = i E,, cos emp. (25)

m=1,2
Enforcing this edge condition for the first term of the expansion above (m = 1), we obtain
Ay = E,,/sino. (26)

Returning to Eqgs. (22) and (23), and considering the case m>1, it is seen that solutions will be
identical to those already provided in Ref. [2], except for the quantities 0y,,. Since we are now
driving the building block with the distributed harmonic displacement of Eq. (25), new and
appropriate expressions are required for these quantities as follows.

Solution 1:

O11m = 1/(sinh f,, + 0y, sin v,,).
Solution 2:

O11m = 1/(sin B, + 01, sin 7p,,).
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Solution 3:
011 = 1/(smh ﬂm + 01,, sinh ”/m).

This information, coupled with that of Ref. [2], provides the response of the first building block
to any distributed harmonic edge excitation.

Response of the second building block is extracted from that of the first through the same
transformation of axes as discussed earlier.

2.6. Analysis of the symmetric—anti-symmetric modes

This family of modes is analyzed by means of the building blocks of Fig. 4. The first building
block differs from the one immediately above only in that it must possess symmetry with respect
to the &-axis. For the term, m = 1, it is readily shown that we may write

—E
Vu(n) = .m¢ cos oy]. (27)
o sin o
Solutions for the response with m>=2, are identical to those provided for the corresponding
building block of Ref. [2], except for the quantities 6;;,,. For our displacement-driven building

block, they are given as follows.

Solution 1:

O11m = 1/(cosh B, + 01, cos y,,).
Solution 2:

O11m = 1/(cos B, + 01, cos y,,).
Solution 3:

O11m = 1/(cosh f3,, + 01,, cosh 7,,).

It will be obvious that the solution for the second building block of Fig. 4 cannot be extracted
from that of the first. This was taken care of in Ref. [2] by introducing an intermediate building
block. We follow the same procedure here and introduce an intermediate building block identical
to the first building block of Fig. 2, except that displacement V' is anti-symmetrically distributed
about the &-axis. Solution for response of our displacement-driven building block differs from
that provided in Ref. [2] only in connection with the quantities 01y,,. Appropriate expressions for

[ a

oa & ;

»

L

v "
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4 v 1 v

Fig. 4. Building blocks utilized in symmetric—anti-symmetric mode analysis.
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these quantities as they relate to the present intermediate building block are as follows:

Solution 1:

O11m = 1/(sinh f,, + 0y, sin v,,).
Solution 2:

O11m = 1/(sin B, + 01, sin 7,,).
Solution 3:

011 = 1/(smh ﬂm + 01,, sinh ”/m).

It will be obvious that a solution for the response of the second building block of Fig. 4 can now
be extracted, through a transformation of axes, from that of the intermediate building block
described above.

This completes the obtaining of response solutions for all building blocks required in the work
undertaken in the present paper.

2.7. Generation of the eigenvalue matrices

A thorough description of development of these matrices for completely free plates was
provided in Ref. [2]. Only a brief description of matrix development for the present problem, with
emphasis on the way it differs from that described earlier, is therefore provided here.

Well-established procedures are followed. Focusing on the symmetric—symmetric mode analysis
of the present problem, we begin by choosing a value for ‘N’, the number of terms to be utilized in
the building block solution expansions. We then turn our attention to the solution of interest, i.e.,
that composed of the combined solution resulting when the two building block solutions are
superimposed, one-upon-the-other. This new solution satisfies all prescribed boundary conditions
along the axes, as well as the required condition of zero shear stress along the outer edges. The
additional condition to be satisfied by the combined solution along the edge, 1 = 1, is now
expressed as (Eq. (4)

7 (& mly=1 + KTV (& mly=1 = 0. (28)

Each building block will contribute to the left-hand side of the above equation. We choose to
expand the contributions of each building block in a trigonometric series and require that each net
coefficient in this boundary series should vanish (the superposition method). It is appropriate here
to use the trigonometric series of Eq. (16) as the contributions of the first building block will
already be available in terms of this series. Contributions of the second building block will need to
be expanded in this boundary series using standard techniques. Setting each net coefficient in the
boundary series equal to zero gives rise to a set of N homogeneous algebraic equations relating the
2N driving coefficients, E,, and E,. A second set of homogeneous algebraic equations is obtained
by enforcing the appropriate boundary condition along the edge, £ = 1. We thus have a set of 2N
equations relating the 2N unknown driving coefficients. The coefficient matrix of this set of
equations constitutes our eigenvalue matrix.

A schematic representation of the matrix is shown in Fig. 5. Eigenvalues are obtained by
searching for those values of 42, the dimensionless frequency, which causes the determinant of this
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eigenvalue matrix to vanish. By setting one of the non-zero driving coefficients equal to unity and
solving the resulting set of non-homogeneous equations, the remaining coefficients are evaluated
and mode shapes of the in-plane displacements are obtained.

An identical procedure is followed to solve for the eigenvalues and mode shapes of the other
two mode families. It is to be noted that with the stiffness coefficients K7 and K3 equal to zero, the
above computation will generate eigenvalues of the completely free plate. It is also worth noting
that only the diagonal terms of the eigenvalue matrix described will depend on these elastic
stiffness coefficients. This is because the second building block has zero displacement normal to
the edge, n = 1, while the first has zero displacement normal to the edge, £ = 1.

It will be obvious that as the elastic stiffness coefficients approach infinity the plate vibration
modes will approach certain limits, i.e., limits where motion normal to the plate outer edges must
equal zero. We examine these limiting cases next.

2.8. Analysis of plate vibration limiting simple support cases

In analogy with plate lateral vibration problems, there are certain sets of boundary conditions
for which exact solutions can be obtained. One such family of modes was discussed in Ref. [1] and
elaborated upon in Ref. [3]. In this earlier mode family, displacement parallel to the plate outer
edges, as well as stress normal to these edges, was not allowed. Exact solutions for these problems
were obtained by means of a one-term Levy type solution in Ref. [3].

We now look at a companion set of simply supported plate problems where shear stress along
the outer edges, as well as displacement normal to these edges, is not allowed. We will continue to
focus attention on quarter-plate segments.

v
v

A?A

v

v

— _ | \

Fig. 5. Schematic representation of eigenvalue matrix based on three-term building block solutions.
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2.8.1. Fully symmetric mode vibration

The quarter-plate of interest differs from that of Fig. 2 only in the boundary conditions to be
enforced. In what is to follow we express the required solution in a manner identical to that
provided for the first building block of the general problem of symmetric—symmetric mode
vibration analysis described earlier. All of the symbols, with the exception of 0,y,,, are unchanged.
This time, however, we will focus on the response related to each term, m, of the series,
individually. Also, we will ignore Solution 3, described earlier, as only trigonometric functions can
appear in the simple support mode shapes under study.

For any term, m, we may write

V(&) = Viu(n) sin emp ¢ (29)

and
U(E,1m) = Upn(n) cos emp ¢, (30)

where emp = 2m — 1)r/2.
Enforcing the condition of symmetry about the £-axis, and zero shear stress along the edge,
n = 1, we obtain

Solution 1:
Vin(n) = Amlcosh B, + 01 cos 1] (31
and
Un(n) = Ap[oam sinh f,,1 4+ 010, sin p,,1]. (32)
Solution 2:
Vin(n) = Am[cos B,1 + O1m cos 7,1] (33)
and
Un(n) = Aploam sin B, + 010, sin y,,1]. (34)

Note that required conditions of zero shear stress and zero normal displacement along the edge,
& =1, are satisfied.

It is now necessary to evaluate the constant 4,,. It is advantageous to consider the edge, n = 1,
to be driven by a harmonic normal stress of distributed amplitude, E,, sin emp &.

Substituting for the expression o7, from the above equations, and setting this quantity equal to
the applied stress at the driven edge, we obtain the following.

Solution 1:
Vin(n) = EnOiim[cosh f,n + 01 cos 7,1] (35)
and
Un(n) = E011m[oom sinh B, 4 01,04, sin y,.1], (36)
where

Gllm = 1/{[ﬁm/¢ — veémp Osz] sinh ﬁm - le[ym/d) + vemp OC4m] sin Vm}~



D.J. Gorman | Journal of Sound and Vibration 285 (2005) 941-966 953

Solution 2:
V(1) = Emb11mlcos B, + O1m cos 7,1 (37)
and
Un() = EmOrimloam sin f,n + Ormotam sin y,1], (38)
where

Ollm = _1/{[ﬁm/d) + vemp OCZM] sin ﬁm + Hlln[ym/d) + vemp OC4m] sin ym}

Eigenvalues for the family of simple support modes under consideration are obtained as
follows.

First, choose a value for the quantity ‘m’ of interest. Then enforce the condition of zero
displacement normal to the edge, # = 1. This requires searching for the value of the parameter 12,
which causes the quantity to the right of the coefficient E,, of Egs. (35) or (37) to vanish, thus
permitting a non-trivial solution for plate displacement. These values of A% are the eigenvalues.
Mode displacements are given by Eqs. (35) and (36), or (37) and (38), as appropriate.

It is found that when Solution 1 is applicable the coefficient of the hyperbolic term vanishes and
this term can be neglected. There are, in theory, an infinite number of eigenvalues associated with
any value of the subscript ‘m’, but only the first four or five will be of interest to us.

2.8.2. Anti-symmetric—anti-symmetric mode vibration
The procedure to be followed here is essentially the same as that described above for the

symmetric—symmetric modes. For any value of ‘m’, the plate displacements are now expressed as
(see Egs. (22) and (23))

Vm(é’ ’7) = Vm(n) Cos emp é (39)

and

Un(&,n) = Up(n)sin emp ¢, (40)

where emp = (m — ).
Here we encounter a special case when the subscript m equals one. As pointed out in the earlier
study of these modes, the quantity U,,(y) will equal zero and for V() we have (Eq. (24))

Vin(n) = Ao sin o, (41)

where o2 = )uzcbz /ai,a;; = 1.0, and A is a constant to be determined.

The driving harmonic stresses at the edge, n = 1, of the plate for this family of modes is
obtained from the cosine series of Eq. (25). The first term of this series will be a constant, E,,
where m = 1, and it must balance the stress at the plate boundary. This latter stress is obtained by
substituting Eq. (41) into the expression for the dimensionless stress o}. We thus obtain for the
constant Ao,

(42)
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and for the displacement of the driven edge,

¢ sin o
V(imly=1 = E

m .
o COS o

(43)

Setting the displacement equal to zero, it is seen that a non-trivial solution for the quantity £,
is obtained only if the parameter o takes on the discrete values =, 2, ...... ,nm, etc. Returning to the
definition of «, we find that we can write for the eigenvalue associated with any plate, for m = 1,

22 =nm/¢. (44)

We thus have available the eigenvalues and mode shapes for this mode family with m = 1. No
computations are required.

It will be appreciated that two distinct one-dimensional free vibration modes of the type
described above are possible. In the second mode of this pair, displacement will be a function of
the coordinate, &, only. Solutions for eigenvalues and mode shapes of this latter set are easily
extracted from the solution described above by simply replacing the plate aspect ratio with its
inverse. Eq. (44) would lead, however, to eigenvalues based on edge length ‘6’. We can retain our
definition, based on edge length ‘a’, through multiplying the right-hand side of Eq. (44) by the
inverse of the aspect ratio. This leads to the following modified expression for the eigenvalues of
these latter problems:

)% = nn. (45)

We next look at the analysis when m>=2. Following steps completely analogous to those
described for symmetric—symmetric mode analysis immediately above, we arrive at expressions for
the quantities V,,(y) and U,,(n) as follows.

Solution 1:
Vi) = EmOrim[sinh f,1n 4 01y sin p,,1] (46)
and
Un(n) = Epnbimloam cosh B,n + 03, cos p,,m], (47)
with
O11m = 1/{ [% + vemp oclm] cosh 8, + 01, [%” + vemp oc3m} cos ym}.
Solution 2:
Vi) = EnOiim[sin B0 + 01y sin y,,1] (48)
and
Un(n) = EnOrimloam cos B, + 0imotzm cos p,1], (49)
with

Qllm = 1/{ |:% + v emp OC1m:| COos ﬁm + le |:%+ vemp O‘3m:| Cos ym}'

Again, eigenvalues are obtained by searching for those values of the parameter 2> which cause
the quantity to the right of the coefficient E,, in the appropriate expression for V(1) to vanish.
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2.8.3. Symmetric—anti-symmetric mode vibration

Here we focus attention on the first building block of Fig. 4. For any value of ‘w’, the plate
displacements are again expressed as given by Egs. (39) and (40). Now, with subscript ‘m’ equal to
one, it is shown that

Vm(n) = Ao cos an, (50)

while U,,(n) equals zero everywhere. The amplitude of the driving stress is expressed as
E,, cos emp, and enforcing a balance between the plate normal stress and the driving stress at the
boundary we obtain

E,¢

Vi) = ——
() o sin o

cosS 0. (51)

It is seen that for a non-trivial solution for this displacement, with E,, not equal to zero, we
require

a=02n— /2, n=12,... ¢etc (52)
and for the frequencies we have, after rearrangement,
2n— 1
2=t ”¢ ) 212, (53)

In this mode family, there will be no one-dimensional mode with displacement a function of the
coordinate &.

We turn next to the situation when m>2. Again, we follow steps analogous to those described
for the symmetric-symmetric mode studies and arrive at the following expressions for the
quantities V,,(n) and U,,(n).

Solution 1:
Vin(n) = Epbiimlcosh B,n + 01 cos 7,1 (54)
and
Un(n) = Epn01imloom sinh B,1 + 01,00, sin p,1], (59)
with
O11m = 1/{ [% + vemp och} sinh f8,, — 01, [% — vemp oc4m} sin ym}.
Solution 2:
Vin(n) = Epbiimlcos f,n + O cos y,1] (56)
and
U,(n) = E011mloon sin B,n + 01,04, sin y,,1], (57)
with

011 = 1/{ [vemp oo — %] sin f3,, + O, [vemp O — %] sin ym}.
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Again, eigenvalues are those values of the parameter 4> which cause the quantities to the right
of the coefficient E,, in Egs. (54) or (56), as appropriate, to vanish.

3. Presentation of computed results

There are well-defined upper and lower frequency limits for free vibration of the elastically
supported rectangular plates considered here. We begin with a tabulation of the lower limits for a
selected range of plate aspect ratios.

3.1. Completely free plate vibration eigenvalues

A limited tabulation of accurate eigenvalues for the completely free plate was presented in Ref.
[2], where excellent agreement with those computed earlier by Bardel et al. [1] was obtained. Here,
using the displacement-driven building blocks described, a more comprehensive set of eigenvalues
is provided. Computed results for each of the three mode families are tabulated separately in
Tables 1-4 with plate aspect ratios of 1.0, 1.25, 1.50, and 2.0. In the case of symmetric—anti-
symmetric modes, results are also presented for the inverse of these aspect ratios. The objective
has been to provide results with four significant digit accuracy. Based on the experience described
in Ref. [2], it has been chosen to utilize 15 terms in all building block series solutions in order to
assure the required accuracy.

It will be seen that, except for a very few cases, the lower limits for free vibration of the
elastically supported plate will be those of the completely free plate. Exceptional cases will be

Table 1
Computed eigenvalues, 42, for symmetric-symmetric mode vibration of the completely free plate

Mode ®

1.0 1.25 1.5 2.0
(1) 1.160 1.043 0.9604 0.8170
2) 2.153 1.825 1.531 1.182
3) 2.629 2.303 2.083 1.714
@) 2.643 2.506 2.364 1.987
Table 2
Computed eigenvalues, A%, for anti-symmetric-anti-symmetric mode vibration of the completely free plate
Mode ®

1.0 1.25 1.5 2.0
) 1314 1.136 0.9716 0.7402
2) 1.494 1.362 1.351 1.308
3) 1.726 1.612 1.577 1.501

“4 2.523 2.101 1.859 1.585
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Table 3
Computed eigenvalues, A%, for symmetric-anti-symmetric mode vibration of the completely free plate (¢>1)

Mode @

1.0 1.25 1.5 2.0
0 1.236 1.292 1.324 1.314
2) 1.862 1.661 1.510 1.342
3) 2.485 2.219 2.065 1.687
4 3.050 2.500 2.124 1.863
Table 4
Computed eigenvalues, A%, for symmetric—anti-symmetric mode vibration of the completely free plate (¢! > 1)
Mode o

1.0 1.25 1.5 2.0
(1) 1.236 1.166 1.099 0.9774
) 1.862 2.049 2.190 2.392
3) 2.485 2.841 3.072 3.225
(4) 3.050 3.460 3.808 4.465
Table 5
Simply supported plate eigenvalues, >: symmetric-symmetric modes

=1 =125

n: 0] (@) 3 “ O] 2 3 ()
n:
(1) 1.314 2.221 2.939 4.738 1.190 2.012 2.416 3.832
2) 2.939 3.943 4.967 5.419 2.885 3.570 4.647 4.877
3) 4.738 5.419 6.571 7.994 4.706 5.154 5.950 6.977
4) 6.571 7.007 7.994 9.200 6.547 6.876 7.492 8.330

those where, as the elastic support coefficients approach zero, the plate is able to approach limits
of rigid body rotation or translation. Such cases will be drawn to the attention of the reader.

3.2. Computed eigenvalues for the simply supported mode family

As pointed out earlier, the simply supported mode family considered here involves mode shapes
where shear stresses along the plate edges, as well as displacements normal to these edges, are
everywhere zero. Eigenvalues for these modes constitute upper limits for the elastically supported
plate. Exact solutions for these eigenvalues are now available and they are tabulated in
Tables 5-12. The letter ‘m’ indicates the number of half waves running along the edge, n =1,
while the letter ‘»’ indicates the associated modes in ascending order.
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3.3. Computed eigenvalues for elastically supported plates
Computed eigenvalues for elastically supported plates of various aspect ratios and with various

elastic stiffness coefficients are presented in Tables 13-20. It is to be noted that for all results
presented in these tables the two dimensionless stiffness coefficients, K} and K3, are equal. In each

Table 6
Simply supported plate eigenvalues, A*: symmetric-symmetric modes

=15 »=20
n: (6] @ 3 “ M @ 3 “
n:
(1) 1.169 1.888 2.078 3.234 1.039 1.675 1.756 2.502
2) 2.856 3.351 4.168 4.827 2.826 3.117 3.629 4.284
3) 4.688 5.004 5.584 6.356 4.670 4.851 5.195 5.672
4 6.535 6.765 7.205 7.818 6.522 6.653 6.907 7.272

Table 7
Simply supported plate eigenvalues, 2 anti-symmetric—anti-symmetric modes

o=1 p=125
n: ()] (@) 3 (C)] M (@) 3 (C)]
n:
()* 3.142 6.283 9.425 12.57 2.513 5.027 7.540 10.05
)° 3.142 6.283 9.425 12.57 3.142 6.283 9.425 12.57
3) 2.629 4.156 4.443 5.877 2.380 3.507 4.023 4.832
“4) 4.156 5.257 6.701 7.025 4.004 4.760 5.806 6.767

u=0.

v=0.
Table 8
Simply supported plate eigenvalues, 4*: anti-symmetric-anti-symmetric modes
p=15 »=20

n: (O] (@) 3 @ M (@) 3) @
nm:
(H? 2.094 4.189 6.283 8.378 1.501 3.142 4.712 6.283
)° 3.142 6.283 9.425 12.57 3.142 6.283 9.425 12.57
3) 2.234 3.098 3.776 4.156 2.078 2.628 3.351 3.512
4) 3918 4.468 5.257 6.195 3.832 4.156 4.647 5.257
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Table 9
Simply supported plate eigenvalues, A*: symmetric-anti-symmetric modes
=10 =125
n: (0] (@) 3 (C)] (0] (@) 3 (C)]
n:
(H? 1.571 4.712 7.854 11.00 1.257 3.770 6.283 8.797
2) 2.078 3.351 3.512 5.004 2.002 2.903 3.384 4.156
3) 3.832 4.647 5.950 6.477 3.791 4.335 5.257 6.395
4 5.653 6.234 7.258 8.568 5.625 6.005 6.701 7.627
=0
Table 10
Simply supported plate eigenvalues, 4*: symmetric-anti-symmetric modes
=15 ¢=20
n: O] (@) ©) @ M @ 3 (C)]
nm:
(n* 1.047 3.142 5.236 7.330 0.7854 2.356 3.927 5.498
2) 1.959 2.628 3.312 3.613 1.916 2.323 2.975 3.238
3) 3.769 4.156 4.839 5.712 3.970 4.384 4.939 5.595
“ 5.877 6.379 7.064 7.885 5.747 6.455 6.970 7.564
u=0
Table 11
Simply supported plate eigenvalues, 2*: symmetric-anti-symmetric modes
o' =10 o =125
n: ()] @ 3 (C)] (0] (@) 3 (C)]
ni.
(H? 1.571 4.712 7.854 11.00 1.964 5.891 9.818 1.375
2) 2.078 3.351 3.512 5.004 2.192 3.705 3.950 6.098
3) 3.832 4.647 5.950 6.477 3.895 5.095 6.583 6.896
“4) 5.653 6.234 7.258 8.568 5.696 6.575 8.051 9.627

table the first column gives the lower limit eigenvalues, which are obtained from the completely
free plate eigenvalue tabulations, or are, in fact, equal to zero if rigid body motion of the plate is

possible. Upper limit eigenvalues (K7

eigenvalue tabulations.

00) are obtained from appropriate simply supported plate
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Table 12

Simply supported plate eigenvalues, A*: symmetric-anti-symmetric modes
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ol =15 o' =20
n: 0] 2 3 (©)] 0] 2 3 (C)
m:
(n* 1.356 7.069 11.78 16.49 3.142 9.925 15.71 21.99
2) 2.323 3.927 4.576 7.735 2.628 4.443 5.877 9.477
3) 3.970 5.595 6.710 7.899 4.156 6.701 7.025 10.01
“4 5.747 6.970 8.926 9.715 5.877 7.885 9.935 10.84
‘u=0

Table 13
Eigenvalues vs. stiffness coefficients: symmetric—symmetric modes

p=1 Q= 1.25
Ki: 0.0 0.25 0.5 0.75 1.0 00 0.0 0.25 0.5 0.75 1.0 00
Mode:
(@) 0.0 0.4722 0.6331 0.7380 0.8140 1.314 0.0 0.4511 0.6020 0.6989 0.7681 1.190
2) 1.160 1.271 1.362 1.438 1.502 2.221 1.043 1.153 1.241 1.313 1.373 2.012
3) 2.153 2.257 2.343 2.414 2.473 2.939 1.825 1.908 1.974 2.027 2.069 2.416
Table 14
Eigenvalues vs. stiffness coefficients: symmetric—symmetric modes

p=15 »=20
Ki: 0.0 0.25 0.5 0.75 1.0 oo 0.0 0.25 0.5 0.75 1.0 oo
Mode:
(1) 0.0 0.4440 0.5910 0.6842 0.7499 1.117 0.0 0.4446 0.5909 0.6823 0.7452 1.039
2) 0.9604 1.071 1.157 1.226 1.284 1.888 0.8170 0.9394 1.029 1.099 1.155 1.675
3) 1.531 1.603 1.660 1.706 1.744 2.078 1.182 1.241 1.289 1.329 1.364 1.756
Table 15
Eigenvalues vs. stiffness coefficients: anti-symmetric—anti-symmetric modes

p=1 ¢ =125
Ki: 0.0 0.25 0.5 0.75 1.0 00 0.0 0.25 0.5 0.75 1.0 00
Mode:
(1) 1.314 1.481 1.612 1.717 1.804 2.629 1.136 1.292 1.413 1.523 1.605 2.380
2) 1.494 1.648 1.776 1.884 1.978 3.142 1.362 1.512 1.611 1.693 1.763 2.380
3) 1.726 1.841 1.940 2.026 2.100 3.142 1.612 1.716 1.808 1.889 1.961 2.513
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Table 16
Eigenvalues vs. stiffness coefficients: anti-symmetric—anti-symmetric modes
Ki: 0.0 0.25 0.5 0.75 1.0 oo 0.0 0.25 0.5 0.75 1.0 00
Mode:
(1) 0.9716 1.121 1.243 1.334 1.408 2.094 0.7402 0.8801 0.9876 1.063 1.122 1.571
2) 1.351 1.452 1.535 1.603 1.661 2.094 1.308 1.375 1.422 1.457 1.483 1.571
3) 1.577 1.670 1.752 1.827 1.894 2.234 1.501 1.568 1.612 1.642 1.667 2.078
Table 17
Eigenvalues vs. stiffness coefficients: symmetric—anti-symmetric modes

@ =10 @ =125
Ki: 0.0 0.25 0.5 0.75 1.0 00 0.0 0.25 0.5 0.75 1.0 00
Mode:
(0] 0.0 0.4785 0.6498 0.7663 0.8540 1.571 0.0 0.4234 0.5697 0.6664 0.7376 1.257
2) 1.236 1.366 1.465 1.541 1.602 2.078 1.292 1.401 1.487 1.554 1.608 2.002
3) 1.862 1.988 2.097 2.192 2.276 3.351 1.661 1.777 1.876 1.963 2.038 2.903
Table 18
Eigenvalues vs. stiffness coefficients: symmetric—anti-symmetric modes

p=15 ¢=20
Ki: 0.0 0.25 0.5 0.75 1.0 00 0.0 0.25 0.5 0.75 1.0 00
Mode:
(1) 0.0 0.3825 0.5100 0.5922 0.6514 1.047 0.0 0.3244 0.4255 0.4875 0.5305 0.7854
2) 1.324 1.423 1.500 1.562 1.612 1.959 1.314 1.403 1.478 1.543 1.598 1.916
3) 1.510 1.615 1.704 1.781 1.848 2.628 1.342 1.433 1.505 1.563 1.611 2.323
Table 19
Eigenvalues vs. stiffness coefficients: symmetric—anti-symmetric modes

¢'=10 ¢l =125
Ki: 0.0 0.25 0.5 0.75 1.0 00 0.0 0.25 0.5 0.75 1.0 00
Mode:
(@) 0.0 0.4785 0.6498 0.7663 0.8540 1.571 0.0 0.5397 0.7385 0.8769 0.9832 1.964
2) 1.236 1.366 1.465 1.541 1.602 2.078 1.166 1.324 1.440 1.530 1.602 2.192
3) 1.862 1.988 2.097 2.192 2.276 3.351 2.049 2.185 2.304 2.407 2.497 3.705
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Table 20
Eigenvalues vs. stiffness coefficients: symmetric—anti-symmetric modes

o' =15 ol =20
Ki: 0.0 0.25 0.5 0.75 1.0 00 0.0 0.25 0.5 0.75 1.0 00
Mode:
(@) 0.0 0.5946 0.8180 0.9760 1.099 2.323 0.0 0.6917 0.9580 1.150 1.303 2.928
2) 1.099 1.287 1.423 1.526 1.609 2.323 0.9774 1.231 1.406 1.539 1.644 3.142

3) 2.190 2.342 2.472 2.584 2.681 3.927 2.392 2.583 2.739 2.868 2.978 4.156

0.0 2.0 4.0 6.0 8.0 10.0
3.0 | | | | 3.0

25 — — 25

2.0

1.5

AN—p

10 —J10
0.5 |— —Jos
0.0 | | | 0.0
0.0 2.0 40 6.0 8.0 10.0
KoK, >

Fig. 6. Graphical representation of first three symmetric-symmetric mode eigenvalues as a function of elastic edge
support coefficient for square plate (K} = K3).
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4. Discussion of results

In Fig. 6, eigenvalues for the first three fully symmetric modes of the square plate are plotted as
a function of the dimensionless elastic edge coefficients. As the stiffness coefficients approach zero
the plate approaches a condition of rigid body in-plane oscillatory rotation about the quarter
plate upper left corner. This is, of course, the center point of the full plate.

In Fig. 7 the computed mode shape is shown for the above quarter plate with dimensionless
stiffness coefficients equal to 0.05. It will be noted that at this low value of elastic edge support
stiffness the quarter plate almost retains its rectangular configuration but is able to oscillate about
the origin of its axes. It should also be noted that symmetric mode conditions are satisfied along
the same axes.

We next turn to the upper limit for this mode as the stiffness coefficients approach infinity. The
exact eigenvalue related to this limit is, of course, available from Table 5 and is equal to 1.314.
Extending the first mode plot of Fig. 7 to higher stiffness values it is found that, in fact, one
approaches arbitrarily close to the above eigenvalue. With a stiffness coefficient of 100, the
associated eigenvalue is found to equal 1.305.

The computed mode shape related to the exact eigenvalue (based on the simply supported plate
analysis) is presented in Fig. 8. It will be noted that the condition of zero displacement normal to

12 T T T T T T

06 -

02

0.2 1 I I 1 I
-0.2 0 0.2 0.4 0.6 0.8 1 12

Fig. 7. Computed mode shape for first symmetric-symmetric mode vibration of elastically supported square plate
(K7 = K3 = 0.05).
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Fig. 8. Computed mode shape for first symmetric-symmetric mode vibration of the simply supported square plate.

the plate outer edges is fulfilled exactly. The condition of zero shear stress along these edges is, of
course, also satisfied.

In Fig. 9 the corresponding mode shape obtained from the elastically supported plate analysis,
based on a dimensionless stiffness coefficient of 100, is also presented. It will be observed on
comparing the two mode shapes above that they are almost identical.

Extended verification curves of the type shown in Fig. 6 have been plotted in connection with all
of the elastically supported plate free vibration computed data presented in Tables 13-20. In each
case the approach of the curves to the correct upper limit was verified. This adds a high degree of
confidence to the analytical procedures employed.

In Tables 17-20, which relate to symmetric—anti-symmetric mode vibration, it will be observed
that the first mode eigenvalue with K7 equal to zero is also zero. This limit of zero for the
eigenvalue corresponds to plate rigid body translation parallel to the y-axis.

5. Discussion and conclusions
Research of a limited scope related to in-plane free vibration of plates with elastic support along

one edge is reported by Gutierrez and Laura [6]. What was described as ‘an approximate solution’
obtained by the Ritz approach was utilized to generate a very limited amount of computed data.
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Fig. 9. Computed mode shape for first symmetric-symmetric mode vibration of elastically supported square plate
(K7 = K5 = 100).

In the present paper, the primary objective has been to obtain an accurate analytical type
solution for the free in-plane vibration of rectangular plates with symmetrically distributed
uniform elastic supports acting normal to the edges. Toward this end, it was decided to extend the
superposition method as described in Ref. [2] in order to accomplish the task. Building blocks
utilized in the earlier analysis were slightly modified to the edge-displacement driven type in order
to avoid the possibility of uncovering rejection mode eigenvalues as discussed earlier. A
substantially increased tabulation of accurate eigenvalues for the completely free plate are now
available in Tables 1-4. These eigenvalues also, of course, provide lower limits for those of the
elastically supported plates.

It was recognized that upper limits for the eigenvalues of elastically supported plates were, in
fact, those of a family of ‘simply supported’ plates for which exact solutions were achievable.
Exact single-term Levy type solutions for this latter family of plates were obtained and results
tabulated. Finally, a rather extensive array of computed eigenvalues for elastically supported
plates of various aspect ratios and elastic edge stiffness coefficients was provided. It has been
verified that correct limiting cases have been approached as elastic support coefficients approach
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their natural limits. It is anticipated that all data tabulated here will serve a valuable role in
providing accurate results against which the findings of other researchers can be compared.

It will be appreciated by the reader that only a limited range of eigenvalues can be tabulated for
these elastically supported plates. One could compute eigenvalues for plates with two opposite
edges elastically supported and the other two free by simply setting one of the elastic coefficients,
K7, or K3 equal to zero. It will be apparent that the same basic analytical procedure described here
could be utilized to study the free vibration of plates where the elastic support is not symmetrically
distributed about the plate central axes. This could be accomplished by utilizing a single set of
three or four building blocks, as required, so that prescribed boundary conditions could be
satisfied along each edge. While in the present study all edges are considered to be free of shear,
this condition can be altered. In fact, it is evident that, with the correct choice of building blocks,
the present method can be exploited to handle plates with any combination of classical or
elastically supported edge conditions.
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