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Abstract

This paper presents results from computer simulations used to investigate the damping performance of a
single particle vertical impact damper over a wide range of excitation frequencies and amplitudes, particle-
to-structure mass ratios, lid clearance ratios, structural damping ratios, and coefficients of restitution.
Measurements of the damping performance, particle flight times, and structure contact times are presented.
Performance at both the structure’s undamped natural frequency and off-resonant conditions are studied in
depth. Maximum damping at a fixed oscillation frequency occurs at an optimal lid height that increases
with increasing mass ratio, increasing structural damping ratio, but decreases with coefficient of restitution.
The corresponding maximum degree of damping increases with increasing mass ratio and coefficient of
restitution, but decreases with increasing structural damping ratio. Field plots of the damping ratio are also
presented as functions of oscillation amplitude and frequency to demonstrate the damper performance over
a range of design parameters and operating conditions.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

A single particle impact damper is a common vibration-damping device consisting of a single
particle enclosed within a container. The container can either be mounted directly to the structure
to be damped or can be designed as an integral part of the structure, often as holes drilled directly
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

[ ] The square brackets in the following list
indicate the quantity’s dimensions with
M, L, T, and F representing mass,
length, time, and force, respectively.

a base vibration amplitude [L]
c0 damping ratio of the primary system

without the impact damper c0 ¼

c=ð2
ffiffiffiffiffiffiffiffiffi
kmS

p
Þ [dimensionless]

c viscous damping coefficient [M/T]
d damping performance of the impact

damper sundamped=sdamped [dimension-
less]

df ratio of the system’s kinetic energy
converted into heat during an oscillation
cycle to the maximum kinetic energy of
the structure during the cycle, defined by
Friend and Kinra [11] [dimensionless]

f 0 force applied to the primary system [F]
g gravitational acceleration [L/T2]
h clearance of the particle [L]
h0 dimensionless clearance ratio: h0

¼

ho2
N=g [dimensionless]

k spring stiffness [F/L]
mP mass of the particle [M]
mS mass of primary structure [M]
m0 dimensionless mass ratio: m0 ¼ mP=mS

[dimensionless]
_yP velocity of the particle [L/T]
_yS velocity of the structure [L/T]
_ymax maximum velocity of the structure [L/T]
a0 dimensionless base amplitude: a0 ¼

ao2
N=g [dimensionless]

� coefficient of restitution for particle–s-
tructure impacts [dimensionless]

sundamped standard deviation of the structure’s
position without an impact damper [L]

sdamped standard deviation of the structure’s
position with the impact damper [L]

o0 dimensionless frequency ratio: o0 ¼

o=oN [dimensionless]
o radian frequency of excitation [1/T]
oN natural [radian] frequency of the pri-

mary system [1/T]
f phase angle in radian of the force

applied to the primary system [dimen-
sionless]
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into the structure [1,2]. Damping is achieved by modifying the structure dynamics through
collisions between the particle and the container walls and by dissipating energy through inelastic
impacts [3].

The advantages to using impact dampers over traditional damping devices are that impact
dampers are inexpensive, simple designs that provide effective damping performance over a range
of accelerations and frequencies [4–6]. In addition, impact dampers are robust and can operate in
environments that are too harsh for other traditional damping methods [7]. Vibration damping
with impact dampers has been used in a wide variety of applications including vibration
attenuation of cutting tools [8], television aerials [9], turbine blades [10,11], structures [12], and
plates, tubing, and shafts [1,13–15].

Despite their simple design, the dynamics of impact dampers can be very complex. The particle
and container trajectories are continuous, but not smooth due to impacts. The trajectories may
also exhibit multiple stable solutions [8,17,18] and fixed point, periodic orbits and local
bifurcations [19] for particular combinations of the system parameters. Factors affecting the
damper dynamics include the amplitude and frequency of the forcing vibrations, the masses of the
particle and structure, the structural stiffness and damping, the dimensions of the impact damper
container, the coefficient of restitution of the impacts, and the acceleration due to gravity. Indeed,
there has been little research on how impact dampers perform over a wide range of these
parameters.
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Previous analytical studies of impact dampers have focused on periodic particle and container
trajectories. Popplewell et al. [20] found that impact dampers are most effective when two equi-
spaced collisions (one with the container floor and one with the container lid) occur during each
oscillation cycle, a condition that occurs only for specific parameters [21]. In addition to periodic
trajectories, most of these previous studies have focused on horizontal dampers, i.e. the damper is
oriented such that gravitational acceleration is not a factor. Sadek and Mills [16] found that
gravity diminishes the effectiveness of an impact damper since the collisions are no longer equi-
spaced and the momentum impulses delivered during lid and floor impacts are not equal.

Several investigators [4–6,21] have used their analyses to produce design charts presenting the
damping performance for a horizontal impact damper as a function the system parameters such as
the particle-to-structure mass ratio, structural damping ratio (without the impact damper), lid
clearance ratio, and coefficient of restitution. Most of these charts are specifically for a system
operating at the structure’s natural frequency with two symmetric impacts per cycle and only a
few charts include variations in the forcing amplitude despite an impact damper’s inherent
dependence on this parameter. These previous studies indicate that an impact damper is more
effective as the structural damping ratio decreases and the particle-to-structure mass ratio
increases. In addition, these previous studies have shown that damping is maximized at a critical
clearance ratio. There are some discrepancies, however, as to how coefficient of restitution affects
damping performance. Dokainish and Elmaraghy [5] and Popplewell and Liao [6] indicate that
increasing the coefficient of restitution increases damping performance while Pinotti and Sadek
[21] state the opposite trend. Dokainish and Elmaraghy further indicate that decreasing the mass
ratio reduces the sensitivity to the coefficient of restitution. Bapat and Sankar [4] found both
analytically and experimentally that maximum damping performance for a freely decaying system
occurred at a coefficient of restitution of 0.3. The reason for these discrepancies remains unclear
although it should be noted that each of these studies investigated different vibration amplitudes.

Several researchers have also investigated the performance of impact dampers experimentally
[4,21–23]. In general, these experimental studies have corroborated analytical predictions. These
studies have also investigated, to a limited degree, the response of an impact-damped system over
a range of forcing frequencies and amplitudes. Ema and Marui [22] found that for the free
response decay of a spring mass system, the damping rate of the system increases with increasing
vibration amplitude with the best damping performance occurring for particular combinations of
the mass and clearance ratios depending on the initial spring displacement. Popplewell et al. [20]
found in their forced vibration experiments that excitation frequencies at or slightly above the
structure’s natural frequency produced positive damping, while frequencies lower than the natural
frequency produced negative damping, i.e. the structure vibrates more than without the impact
damper. Semercigil et al. [23] performed experiments on impact dampers in combination with
tuned mass dampers. The free decay of the response of a system with a tuned mass damper was
shown to be reduced by 80% by placing an impact damper inside of the tuned mass damper. The
impact damper was shown to be effective for a range of tuning frequencies and relatively
unaffected by excitation levels.

A number of investigators have also studied the performance of multi-particle [3,11,24,25]
and bean bag impact dampers [26,27–29]. Both multi-particle and bean bag dampers utilize
many particles within the damper container with multi-particle dampers having freely moving
particles and bean bag dampers typically constraining the particles within a flexible bag. In
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general, multi-particle and bean bag dampers produce less shock and noise and are less sensitive
to the vibration parameters, gravity, and container clearance dimensions than their single particle
counterparts [11]. The performance of multi-particle dampers, however, is affected by the size of
the particles used within the damper with smaller particles producing greater damping
performance at larger amplitudes [11]. Experiments have shown that multi-particle systems can
be modeled with reasonable accuracy as single particle dampers [24]. Experiments have also
shown that bean bag dampers can produce more effective damping than single particle impact
dampers [29].

While these previous studies have provided valuable insight into the dynamics of impact
dampers and how to optimize their design, there still remains a lack of information on how
impact dampers perform when operating over a wide range of conditions. For example, few
studies have examined excitation frequencies away from resonance or have looked at the effects of
excitation amplitude. Popplewell et al. [20] and Bapat and Sankar [4] have shown, in limited
studies, that the optimal impact damper parameters can vary at off-resonant conditions.
This paper presents results from computer simulations that are used to investigate the damping
performance of vertical impact dampers over a wide range of oscillation frequencies
and excitation amplitudes, particle-to-structure mass ratios, lid clearance ratios, coefficients
of restitution, and structural damping ratios. Additional investigations of the system dyna-
mics are presented for significant operating conditions such as where peaks in the damping
performance are observed and where the performance is sensitive to small changes in operating
conditions.
2. Computational model

A computer simulation was developed in order to investigate the performance of an impact
damper over a wide range of conditions. The modeled system consists of a base oscillating
sinusoidally with amplitude, a; and radian frequency, o: A rigid structure is attached to the base
with a damped spring of stiffness, k; and damping, c: Mounted to the structure is a container of
height, h; where ms is the combined mass of the structure and container. Within the container is a
particle with negligible diameter and mass, mP: Impacts between the container and particle are
characterized by a coefficient of restitution, �: The structure and impact damper are subject to
gravitational acceleration, g: A schematic of the system is shown in Fig. 1.

The structure’s acceleration between impacts, €yS (the overdots indicate differentiation with
respect to time) is given by

€yS ¼ �
k

m
ðyS � ybÞ �

c

m
ð _yS � _ybÞ � g, (1)

where m ¼ mS when the particle is in flight and m ¼ mS þ mP when the particle remains in contact
with the container floor or lid for an extended period (when the coefficient of restitution is zero,
for example).

The base acceleration, €yb; is prescribed to be

€yb ¼ �ao2 sinðotÞ. (2)



ARTICLE IN PRESS

y

particle with mass, mP

spring stiffness, k dashpot coefficient, c

base oscillating vertically with position, yb = asin(ωt)

structure with mass, mS

clearance height, h g

Fig. 1. A schematic of the modeled vertical impact damper system.
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Note that in the models of Dokainish and Elmaraghy [5] and Popplewell and Liao [6] a
sinusoidal force is imposed directly to a damper with a fixed base as opposed to prescribing the
base motion. Correlation between the two approaches is achieved by noting that the amplitude of
the applied force, f 0; and phase angle f; can be written as

f 0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

þ c2o2
p

, (3)

tanðfÞ ¼
co
k

. (4)

The particle’s acceleration is equal to the structure’s acceleration when the particle is in contact
with the container for extended periods. However, when the particle is in contact with the
container floor and €ySo� g; or when the particle is in contact with the container lid and €yS4�

g; then the particle loses contact with the container and has an acceleration equal to that of
gravity:

€yP ¼ �g. (5)

Impacts between the particle and the container are modeled using conservation of linear
momentum and a coefficient of restitution, �: Conservation of linear momentum gives

mS _y
þ
S þ mP _y

þ
P ¼ mS _y

�
S þ mP _y

�
P , (6)

where the superscripts ‘‘+’’ and ‘‘�’’ indicate conditions just after and prior to the impact,
respectively. The coefficient of restitution for the impact, e (0p�p1) is defined as the negative of
the ratio of the relative velocity between the structure and particle after impact to the relative
velocity before impact:

� ¼ �
_yþS � _yþP
_y�S � _y�P

� �
. (7)

Note that for real impacts the coefficient of restitution is a function of the impact velocity [30]
with the coefficient of restitution decreasing with the impact velocity raised to the �1/5 power
[31]. This velocity dependence is not considered in the present model nor has it been considered in
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most previous analytical and computational studies. Popplewell and Semercigil [29] did, in effect,
include a velocity-dependent coefficient of restitution in their studies of bean bag dampers and
found that such a model did slightly improve predictions of the transient and steady-state
response of the structure.

The simulation integrates the particle and structure equations of motion (the container is
mounted directly to the structure) in time using an Euler integration scheme with a simulation
time step of Dt ¼ 1:0� 10�5s: Test simulations were run with smaller time steps to verify that the
results are insensitive to further decreases in time step.

The simulation starts the parametric studies with the particle located on the container floor at
the static equilibrium position with the initial velocity of the base, i.e.

ySðt ¼ 0Þ ¼ yPðt ¼ 0Þ ¼
�ðmS þ mPÞg

k
; ybðt ¼ 0Þ ¼ 0,

_ySðt ¼ 0Þ ¼ _yPðt ¼ 0Þ ¼ _ybðt ¼ 0Þ ¼ ao. ð8Þ

At the end of a simulation, the frequency is incremented and the final particle and structure
states are used as the initial conditions for the following simulation. The process repeats over a
range of base frequencies and amplitudes.

To make the simulation results more general, the governing equations are written in
dimensionless form. The six resulting dimensionless parameters affecting the system dynamics are:
base acceleration amplitude, a0 ¼ ao2

N=g; base frequency, o0 ¼ o=oN ; structural damping ratio,
c0 ¼ c=ð2

ffiffiffiffiffiffiffiffiffi
kmS

p
Þ; mass ratio, m0 ¼ mP=mS; lid height, h0

¼ ho2
N=g; and coefficient of restitution, �:

The structure’s undamped natural frequency (without the impact damper) is oN ¼
ffiffiffiffiffiffiffiffiffiffiffi
k=ms

p
: Note

that the baseline coefficient of restitution has a value of zero. This value was chosen so that the
results from this study can be extended to multiple-particle and bean bag dampers where the
effective coefficient of restitution is approximately zero [26]. The effects of non-zero coefficients of
restitution are presented later.

Several simulations using different dimensional parameters, but identical dimensionless values,
were run to verify that the given dimensionless parameters produce identical dimensionless system
responses. An example is shown in Table 1, where the results varied by less than 0.01%. Note that
alternate definitions of the dimensionless lid height have been proposed in the literature.
Popplewell and Liao [6] suggest h=ðf 0=kÞ while Pinotti and Sadek [21] and Heiman et al. [32] use
h=a and a=h; respectively.

In this work, the effectiveness of the impact damper is quantified by

d ¼
sundamped

sdamped
, (9)

where sundamped is the standard deviation of the structure’s position without an impact damper
and sdamped is the standard deviation of the structure’s position with the impact damper. One
hundred base oscillations, excluding the initial 25 cycles so that initial transients could be avoided
(to be discussed later), were considered for the calculation of sundamped and sdamped. Values of
d41; do1; and d ¼ 1 indicate positive, negative, and zero effective damping, respectively.

Comparing the standard deviation of the structure’s displacement without an impact damper to
that with an impact damper allows for the comparison of what the response of the system would
be before and after an impact damper is applied. Adding an impact damper changes the system
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Table 1

The validity of the selected dimensionless parameters was established by demonstrating that the damping ratio did not

change when the dimensional parameters were varied while the dimensionless parameters were held constant. The

dimensionless parameters for all four cases given below are, o0 ¼ 1; a0 ¼ 1:0; c0 ¼ 0:1; h0 ¼ 0:1; m0 ¼ 0:1; and � ¼ 0:3

Parameters Case 1 Case 2 Case 3 Case 4

mS (kg) 1.0 1.5 1.0 1.0

mP (kg) 0.10 0.15 0.10 0.10

k (N/m) 1000 1000 2000 500

a (m) 0.098 0.015 0.005 0.020

o (rad/s) 31.63 25.82 44.73 22.36

c (N s/m) 6.3246 7.75 8.95 4.47

h (m) 0.001 0.0015 0.0005 0.002

Damping ratio, d 2.781 2.781 2.781 2.781
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resonant peak by adding mass to the system. When looking at results for o0 ¼ 1; increased
damping performance is caused by both the change in the system resonant peak and by the
impacts from the damper.

The stability of the particle trajectories was studied by randomly varying the initial conditions
to observe if different system trajectories appear. Multiple stable solutions were often present, but
did not have an appreciable effect on the damping ratio. The stability of impact damper
trajectories has been studied in detail in Refs. [17,18,20].

Popplewell and Liao [6] measured damping performance using the ratio of the maximum
displacement of the system with the damper to ðf 0=kÞ: Dokainish and Elmaraghy [5] used the ratio
of the maximum system displacement with the damper to the maximum displacement of the
primary system in the absence of the damper. Others, such as Friend and Kinra [3], have used the
ratio of system’s kinetic energy converted into heat (due to impacts) during an oscillation cycle to
the maximum kinetic energy of the structure during the cycle:

df ¼
ð1� �2Þ

_y2�
max

m0

1þ m0

� �Xi

1

ð _y�P � _y�
S Þ

2, (10)

where i is the number of impacts during an oscillation cycle. The variety of definitions for
damping ratio suggests that there is no one ‘‘best’’ way to define the damping performance of an
impact damper.

In order to avoid recording data resulting from initial transients, each simulation runs for 25
base oscillation cycles before any data are collected. After this initial period, particle and structure
state data are collected for 100 base oscillation cycles. Several additional simulations were run in
which the start of the data collection period and the number of data collection cycles were
increased. These simulations were performed for the parameters listed in Table 2 at the structure’s
natural frequency with the dimensionless amplitude varying from 0.1 to 5.0. The damping ratio
was found to vary by less than 0.2% for simulations with 100 base oscillation cycles when
compared to 1000 base oscillation cycles. These additional simulations demonstrated that the
chosen initial transient and data collection periods did not affect the data collected from the
simulation.
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Table 2

The dimensionless baseline simulation parameters. The structure’s undamped natural frequency is oN ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k=mS

p
Parameter Baseline value

Mass ratio, m0 ¼ mP=mS 0.05

Damping ratio, c0 ¼ c=ð2
ffiffiffiffiffiffiffiffiffi
kmS

p
Þ 0.05

Coefficient of restitution, � 0.0

Lid clearance ratio, h0
¼ ho2

N=g 50
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3. Results and discussion

First, the impact damper was analyzed for sufficiently small dimensionless base amplitudes, a0;
where the lid has no effect. Figs. 2a and b show the flight times of the particle, normalized by the
base oscillation period, and duration of the time the particle is in contact with the base and lid,
also normalized by the base oscillation period, for the baseline simulation parameters (refer to
Table 2). Fig. 2c shows the corresponding damping ratio, d: As a0 ! 0; the structure acceleration
remains greater than �g and the particle does not leave the floor, which is indicated by the zero
flight time. In this region the impact damper acts to ‘‘de-tune’’ the structure since the structure’s
natural frequency decreases due to the addition of the particle mass. The damping ratio for the
no-flight case is equal to the ratio of the frequency response function for the two cases which
reduces to

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

2c0

� �2

þ 1

s
. (11)

As the dimensionless base amplitude, a0, increases the particle leaves the structure and the
normalized flight time approaches a value of one, corresponding to a particle flight time equal to
the base oscillation period. Further increases in the dimensionless base amplitude result in a flight
time bifurcation with one normalized flight time greater than one, and the other less than one.
With further increases in a0; the two flight times transition to a single flight time again, but with
the system motion repeating every two cycles. An additional bifurcation occurs as the flight times
split and transition to motion that repeats every three cycles.

Complex trajectories appear after the particle begins to hit the lid (indicated by the vertical
dashed line in Fig. 2). Fig. 2c shows that flight time bifurcations decrease the damping ratio for
the no-lid case; however, when the flight time bifurcations occur with lid impacts, the damping
ratio increases.

Increasing a0 increases the damping ratio until a maximum is reached. Note that over this range
of a0 the particle hits the lid but does not ‘‘stick’’ since the lid acceleration at impact is greater than
�g: This can be observed in Figs. 2a and b where the times the particle spends on the floor and lid
between successive contacts are plotted.

The maximum damping value occurs when the particle just begins to ‘‘stick’’ to the lid, i.e. the
lid acceleration at impact is less than �g: Increasing a0 further results in decreasing d: Fig. 2b
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Fig. 2. (a) The particle flight time normalized by the base oscillation period plotted as a function of the dimensionless

base amplitude, a0; at a dimensionless frequency of o0 ¼ 1: The remainder of the simulation parameters are given in

Table 2. (b) The particle contact time with the floor (black) and lid (grey) corresponding to the conditions in (a). (c) The

damping ratio, d ; corresponding to the conditions in (a). The vertical dashed line indicates when lid impacts start to

occur. The vertical dot–dashed line indicates when the particle begins to ‘‘stick’’ to the lid at impact (i.e. €ySo� g at

impact). The flight time, corresponds to the time between successive floor/floor, floor/lid, and lid/floor impacts. The

floor (or lid) duration corresponds to the time the particle remains on the floor (or lid) after an impact.
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shows the flight time of the particle from the base to the lid approaches the flight time from the lid
to the base, i.e. the floor/lid collisions become equi-spaced. When the flight times are equal, the
effect of gravity becomes negligible and the vertical impact damper behaves essentially as a
horizontal impact damper. This transition can be seen in Fig. 2b and will be discussed later when
presenting Fig. 5.

As a0 ! 1 the particle spends less time in flight and more time in contact with the lid and base.
As observed in Figs. 2a and b, the normalized flight time of the particle approaches zero and the
contact time with the lid and base approach 0.5. Furthermore, the relative change in the
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structure’s momentum,

Dm ¼
ð _yþS � _y�

S Þ

_yþS

o
2p

, (12)

where the superscripts ‘‘+’’ and ‘‘�’’ indicate conditions just after and prior to the impact, due to
a particle impact decreases as indicated in Fig. 3. As a result, the system behaves essentially the
same as when a0 ! 0 and the damping ratio asymptotically approaches its original detuned value.

The effect of the dimensionless lid height on the damping ratio is shown in Fig. 4 where the
damping ratio, d; is plotted against the dimensionless base amplitude, a0; for a range of
dimensionless lid heights, h0: The figure shows that the maximum damping ratio increases with
increasing dimensionless lid height, h0; to a limiting value as a0 ! 1: Note that maximum
damping does not appear for h0

! 1 because this occurs at a0 ! 1: The a0 at which maximum
damping occurs increases as the lid height increases.

The damping curves initially follow the h0
! 1 curve, which corresponds to the damping

performance of a no-lid container. When the particle makes contact with the lid, the damping
curve branches away from this h0

! 1 curve and increases toward the maximum that occurs
when the particle just starts to ‘‘stick’’ to the lid (refer to Fig. 2).

The damping ratio data from Fig. 4 are plotted in Fig. 5 as a function of a0=h0 (or in
dimensional terms, a=h), along with additional h0 cases. This plot clearly demonstrates that the
damping ratio approaches a limiting value for sufficiently large h0: Furthermore, the damping
ratio scales well with a0=h0 for sufficiently large lid heights and base amplitudes. The fact that a0=h0

collapses the data indicates that gravity is no longer a significant parameter affecting the impact
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Fig. 3. Relative momentum change of the structure due to particle–floor and particle–lid impacts. The remainder of the

simulation parameters are given in Table 2.
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Fig. 4. The damping ratio, d; plotted as a function of the dimensionless base amplitude, a0; at a dimensionless frequency
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remainder of the simulation parameters are given in Table 2. The vertical dashed lines indicate branch points.
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damper’s dynamics at large a0=h0; i.e. the vertical damper behaves identically to a horizontal
damper.

The general trends discussed previously can be summarized in Fig. 6 where a performance plane
is plotted using a0 values corresponding to the branch points and maximum damping values for
varying h0: Below the branch point line the damping performance corresponds to the no-lid
solution. Between the branch point and maximum damping line the particle makes contact with
the lid, but does not ‘‘stick’’ ( €yS4� g at impact). The damping performance increases in this
range. Above the maximum damping curve, the particle ‘‘sticks’’ to the lid at impact ( €ySo� g at
impact) and the damping performance decreases monotonically to its original detuned value.

The dependence of the maximum damping value at the a0=h0 value at which this maximum
occurs was also investigated as a function of the mass ratio, structural damping ratio, and
coefficient of restitution. The maximum damping ratio as a function of the mass ratio, m0; is
shown in Fig. 7a, and the corresponding optimal a0=h0 value is shown in Fig. 7b. Increasing m0

increases both the maximum damping value and the optimal a0=h0 value in a nearly linear fashion.
Similar trends have been reported by Dokainish and Elmaraghy [5], Popplewell and Liao [6], and
Pinotti and Sadek [21]. The maximum damping ratio decreases monotonically as the structural
damping ratio, c0; increases as shown in Fig. 8a, and the corresponding optimal a0=h0 ratio
increases in an approximately linear fashion as shown in Fig. 8b. Similar results have been
presented by Dokainish and Elmaraghy [5]. The maximum damping ratio increases as the
coefficient of restitution, �; increases, with rapidly increasing damping as e-1, as shown in
Fig. 9a. However, as will be presented later, the amplitude range over which this increase in
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damping ratio occurs decreases with increasing coefficient of restitution. The optimal a0=h0

decreases as � increases as shown in Fig. 9b. Dokainish and Elmaraghy [5] and Popplewell and
Liao [6] have published similar results while Pinotti and Sadek [21] suggest the opposite trends. A
possible reason for the discrepancies will be discussed later.

Optimal lid height data from the current simulations are also compared with published design
charts [5,6] for validation. The optimal lid heights from simulations using three coefficients of
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restitution, � ¼ 0:25; 0.5 and 0.75, vary by less than 2.5% from the data reported in Ref. [6]. The
simulations give only a 1.7% difference with the data in Ref. [5] at coefficients of restitution equal
to 0.5 and 0.7.

Up to this point all of the results are presented for resonant conditions; however, impact
dampers often operate at off-resonant conditions as well. The damping performance at off-
resonant conditions was investigated by running simulations over a wide range of forcing
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frequencies and amplitudes. The damping results are presented in field plots as functions of the
dimensionless mass ratio, m0, dimensionless structural damping ratio, c0; dimensionless lid height,
h0; and coefficient of restitution, �: The simulations utilize the baseline simulation parameters
listed in Table 2 unless otherwise noted.

Fig. 10 (a)–(c) show the damping ratio over a range of o0 and a0 for mass ratios of m0 ¼ 0:025;
0.050, and 0.075. Several structures are observed in these figures. The damping ratio, d; has its
largest values at base excitation frequencies slightly larger than the structure’s natural frequency
(o0

X1) and for dimensionless base excitation amplitudes greater than a critical value (in this case,
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Fig. 10. Field plots of the damping ratio, d ; as a function of the dimensionless frequency, o0; and dimensionless base

amplitude, a0; for mass ratios of (a) m0 ¼ 0:025; (b) m0 ¼ 0:050; and (c) m0 ¼ 0:075: The remainder of the simulation

parameters are given in Table 2. Damping ratios less than one are set equal to one for visual clarity.
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a042). Adjacent to this region, but for o0o1; there exists a region of decreased damping. There is
a secondary region of large positive damping near a0o1 and o0

X1; and again, a region of
decreased damping adjacent to it but for o0o1: The region of increased damping extends to larger
a0 values with increasing o0; however, the damping performance decreases as o0 increases. There
are additional regions of positive increased damping with boundaries extending with positive
slope (da0=do040) for o041 and negative slope (da0=do0o0) for o0o1: These regions become
more pronounced with increasing mass ratio and, in some cases, transition abruptly to regions of
decreased damping (see, for example, the m0 ¼ 0:075 case with the branch near o0o1 and a0o1).
Regions of decreased damping performance exist between these branches. The structures observed
in these mass ratio plots also appear in the field plots where the other dimensionless parameters
are varied.
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Fig. 11. Field plots of the damping ratio, d; as a function of the dimensionless frequency, o0, and dimensionless base

amplitude, a0; for structure damping ratios of (a) c0 ¼ 0:025; (b) c0 ¼ 0:050; and (c) c0 ¼ 0:075: The remainder of the

simulation parameters are given in Table 2. Damping ratios less than one are set equal to one for visual clarity.

M.R. Duncan et al. / Journal of Sound and Vibration 286 (2005) 123–144 139
In general, the damping ratio field plots do not have significantly different structure as m0

varies; only the magnitudes of the damping ratio appear to vary to any significant degree with the
damping ratio increasing with increasing mass ratio. Similar observations have been made by
Dokainish and Elmaraghy [5] and Pinotti and Sadek [21].

The effects of the structural damping ratio, c0; on the effective damping ratio, d; are shown in
Fig. 11 (a)–(c) (corresponding to c0 ¼ 0:025; 0.050, and 0.075). The trends described previously for
varying mass ratio are also observed in these figures. The overall structure of the plots remains
similar as c0 increases; however, the magnitudes of the damping ratio, d; decrease significantly as c0

increases. This dependence on c0 is not unexpected since when c0 ¼ 0; the standard deviation of the
structure without the impact damper will approach infinity at o0 ¼ 1 so any amount of damping
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Fig. 12. Field plots of the damping ratio, d; as a function of the dimensionless frequency, o0, and dimensionless

amplitude, a0; for dimensionless lid heights of (a) h0 ¼ 25; (b) h0 ¼ 50; and (c) h0 ¼ 75: The remainder of the simulation

parameters are given in Table 2. Damping ratios less than one are set equal to one for visual clarity.
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caused by the impact damper will result in a damping ratio of d ! 1: Dokainish and Elmaraghy
[5] have reported similar damping ratio trends with the structural damping ratio.

The effects of the container’s lid height, h0; on the damping ratio, d; are shown in Figs. 12(a)–(c)
(corresponding to h0

¼ 25; 50, and 75). As the lid height increases, the a0 at which the particle starts
to hit the lid increases. For the no-lid impact case, the damping ratios shown in Figs. 12(a)–(c) are
identical. Increasing h0 stretches the general shape of the damping curve in the a0 direction. For
sufficiently large values of a0, larger than the critical value where the particle just begins to ‘‘stick’’
to the lid, the maximum damping performance is unaffected as observed in Figs. 12(a)–(c) which
have the same maximum damping value. Friend and Kinra [3] and Dokainish and Elmaraghy [5]
have reported similar damping ratio trends with varying dimensionless lid height.

The effects of the coefficient of restitution of the particle, �; on the impact damper’s damping
ratio, d, are shown in Figs. 13 (a)–(d) (corresponding to � ¼ 0:0; 0.25, 0.50, and 0.75). Increasing
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Fig. 13. Field plots of the damping ratio, d; as a function of the dimensionless frequency, o0, and dimensionless base

amplitude, a0; for coefficients of restitution of (a) � ¼ 0:0; (b) � ¼ 0:25; (c) � ¼ 0:50; and (d) � ¼ 0:75: The remainder of

the simulation parameters are given in Table 2. Damping ratios less than one are set equal to one for visual clarity.
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the coefficient of restitution has a significant effect on the overall shape and magnitude of the
damping performance field plots. Increasing e increases both the maximum damping ratio and the
frequency range over which the impact damper has increased damping performance. A large
region of increased damping occurs for o041 and broadens with increasing a0: As the maximum
damping value increases, a more defined and abrupt transition develops along the lower edge of
the branch. These results are similar to those of Popplewell and Liao [6].

Additional useful information is gained by examining the damping ratio behavior at a fixed o0

and varying a0 as shown in Fig. 14. Larger values of the coefficient of restitution increase the
maximum damping; however, the improved performance occurs over a smaller range of a0: For a0

larger than where the maximum damping value occurs, smaller coefficients of restitution provide
greater damping. This demonstrates that the performance of the impact damper is not a simple
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Fig. 14. The damping ratio, d; plotted as a function of the dimensionless base amplitude, a0, at a dimensionless

frequency of o0 ¼ 1 for varying coefficient of restitution, �; where K, � ¼ 0:0;., � ¼ 0:25;m, � ¼ 0:50;’, � ¼ 0:75: The

remainder of the simulation parameters are given in Table 2.

M.R. Duncan et al. / Journal of Sound and Vibration 286 (2005) 123–144142
function of the coefficient of restitution, but also depends on whether the value of a0 is above or
below the value at which maximum damping occurs.

This trend is helpful in explaining the apparent discrepancies reported on how the coefficient of
restitution affects the damping performance. Dokainish and Elmaraghy [5] and Popplewell and
Liao [6] concluded that increasing the coefficient of restitution increases the damping
performance. Fig. 14 shows that this conclusion is valid for assessing the dependence of
maximum damping performance on the coefficient of restitution. However, at larger a0 the
opposite trend is true, an observation made by Pinotti and Sadek [21].
4. Conclusions

The performance of a single particle vertical impact damper was investigated over a range of
forcing oscillation amplitudes and frequencies, mass ratios, structural damping ratios, impact
damper lid heights, and damper/structure coefficients of restitution. Previous studies have not
examined such a large parameter space and instead have focused primarily on conditions at the
structure’s natural frequency and periodic particle trajectories.

The degree of damping provided by the impact damper at both very small and very large
amplitudes approaches the detuned value corresponding to fixing the particle mass directly to the
structure. At the structure’s undamped natural frequency, maximum damping occurs at an
amplitude where the particle just begins to ‘‘stick’’ to the damper lid. Increasing the lid height of
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the damper increases the amplitude at which maximum damping occurs, but for sufficiently tall lid
heights, has no effect on the degree of damping. In addition, gravity plays less of a role in the
damper dynamics at large amplitudes and the vertical damper can be modeled as a horizontal
damper.

The lid height at which maximum damping occurs increases with increasing mass ratio and
increasing dimensionless structural damping, but decreases with increasing coefficient of restitution.
The corresponding maximum damping value increases with increasing mass ratio, increasing
coefficient of restitution, and decreasing dimensionless structural damping. These results are
generally consistent with those found in previous studies. At oscillation amplitudes greater than the
optimal value, damping decreases with increasing coefficient of restitution. This observation may
resolve previous conflicting reports [5,6,21] regarding the effect of the coefficient of restitution.

In addition to investigating conditions at the structure’s undamped natural frequency, damping
investigations were also performed over a range of frequencies. The general structure of these field
plots is similar despite variations in mass ratio and dimensionless structural damping ratio.
Increasing the dimensionless lid height stretched the general shape of the plot along the
dimensionless amplitude axis. At frequencies at and slightly greater than the structure’s
undamped natural frequency the impact damper provides positive damping for all amplitudes,
with the largest damping generally occurring at larger oscillation amplitudes. Negative damping
occurs at frequencies slightly less than the structure’s undamped natural frequency. Branches of
positive and negative damping appear as the forcing frequency diverges from the natural
frequency. For sufficiently small amplitudes no lid impacts occur and the degree of damping
exhibits local minima and maxima as a result of bifurcations in the particle flight dynamics. The
range of amplitudes over which this no-lid-impact region occurs increases with increasing lid
height. Of particular note in the field plots is that the frequency range over which positive
damping occurs increases with increasing coefficient of restitution. Hence, an impact damper
designed to produce the greatest degree of damping should have a large mass ratio, a large
coefficient of restitution, and should have a lid height optimized for the expected forcing
oscillation amplitude. The large coefficient of restitution will improve the damper’s off-resonant
performance, but will decrease the performance at off-design oscillation amplitudes.
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