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Abstract

Electrical equivalent circuits with impedance elements modeling the electromechanical behavior of a thin
plate with piezoelectric actuators are presented. The dynamic characteristics of a two-dimensional
piezoelectric force actuator are represented by a 5� 5 impedance matrix, which is equivalent to a five-port
electric network. When the dual piezoelectric actuators are assumed to produce average bending moments
for a unit length along the edge at the interfacial surfaces, a 5� 5 impedance matrix for these actuators is
obtained. While the dual actuators are assumed to produce average bending moments for a unit area at the
interfacial surfaces between the plate and the actuators, a 3� 5 impedance matrix is presented. According
to the theory of thin plates, the impedance of a rectangle thin plate with four simply supported edges is
related with vibration amplitude of the plate. The continuity conditions between the actuators and the
plates are established by using two approximate hypotheses we proposed. The system impedances are
finally obtained by solving the impedance equations of the piezoelectric actuators and the plate. Four
numerical examples are analyzed to illustrate the application of this modeling method, and the results agree
well with the results obtained by other methods. Equivalent electric circuits of thin plates with piezoelectric
actuators are capable of dynamically analyzing of such complex electromechanical system with 2D
piezoelectric actuators.
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1. Introduction

The smart structures integrated with piezoelectric sensors and/or actuators are widely
investigated in recent years. The theories and methodologies for such structures are on the basic
knowledge in this field, which is the fundamental in designing and manufacturing smart structures
with piezoelectric materials. Models for studying the interaction of piezoelectric actuators to
structures have been intensively studied since 1980s. Crawley and De Luis [1] proposed a static
model to analyze the smart beams surface-mounted with piezoelectric actuators, which are
assumed to produce pure bending activation, and they analyzed the thin plate driven by induced-
strain actuators in a quasi-static way, in which the inertial or mass of the actuators are not
included in their model. Park et al. [2] extended this type of models into the case of piezoelectric
actuators that produce beading and torsion. Further more, Lim and He [3] obtained the exact
solution of a compositionally graded piezoelectric layer under uniform stretch, bending and
twisting recently. Liang et al. [4,5] first proposed impedance models for smart beams and plates,
where the elastic structures and piezoelectric actuators are represented by one or two two-
dimensional (2D) impedance elements in their models. The dynamic equilibriums at the
connection between the elastic and piezoelectric elements are formulated. They proposed a
dynamic actuator/structure interaction chart (DASIC) in analyzing 1D smart beam with a PZT
stack [4]. These impedance models are also used to determine the power flow and consumption [6],
to optimize the locations of the actuators [7] and to calculate the thermal effect in smart structures
[5]. Dimitriadis [8], Zhou [9] and their co-workers studied the vibration of beam, thin plates and
cylindrical vessel driven by piezoelectric actuators both theoretically and experimentally using
impedance models. Although the concepts of static and dynamic equilibrium are clearly clarified
in impedance models, the corresponding relationships of the electromechanical continuity
conditions to the actual connections between 2D actuators and structures are inexplicably
modeled in their models.
The equivalent electric circuits of mechanical systems such as acoustic system has been proved

to be successful in the history [10,11], and it tends to be a good methodology for modeling
electromechanical system including smart structures with piezoelectric actuators. This methodol-
ogy is based on the accordance of governing differential equations between the actual
electromechanical system and electric system [10]. Recently, Aoyagi and Tanaka [12] have
obtained an equivalent electric model for a smart beam with dual piezoelectric actuators, which
produce pure bending to the host structure. They used a group of impedance equations to present
the beam vibration of multiple degrees of freedom (mdof). They also analyzed a piezoelectric
acceleration sensor using equivalent electric circuits and vibration modal superposition method in
their research [13]. Li Guo-Qing et al. [14,15] proposed some simple equivalent electric circuits for
analyzing smart beams and plates supported by piezoelectric stacks. Cho and his co-workers [16]
proposed a five-port equivalent electric circuit when they investigated the piezoelectric bimorphs,
and the 3D solution of such smart structures has been obtained by Lim et al. [17]. The five-port
electric network proposed by Cho et al. can be used to analyze piezoelectric bimorphs with
arbitrary boundary conditions, including clamped, simply supported and free boundary
conditions.
Most of the equivalent electric models established before are of smart beams or plates only with

1D actuators, which can be equivalently modeled as electric networks with a few ports. But 2D
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piezoelectric actuators actually produce distributed activations in plates, which has been revealed
by both FEM analysis and experiments, and the early works by Tzou et al. [18] and Ha et al. [19]
using FEM and the experimental works by Zhou et al. are some of the instances. Then, the
dynamic characteristics of two-dimensional piezoelectric actuators will be exclusively studied in
the following section of this paper. As one two-dimensional piezoelectric actuator work as a force
actuator, the equivalent electromechanical efforts and flows will be well defined. An impedance
matrix of this actuator and the equivalent multi-port electric network are presented. As a pair of
2D piezoelectric actuator is used as actuators to produce pure bending, the equivalent mechanical
efforts can be defined as the average bending moments for a unit edge length or for a unit contact
area of the actuators. The impedances of these actuators are obtained and their corresponding
equivalent electric networks are presented as well. As far as the host elastic structures are
concerned, it will be not difficult to analyze the impedance of a rectangle plate with various edge
boundary conditions using the vibration theory of thin plates.
Another difficulty of establishing the equivalent electric models is to deal with the complicated

boundary conditions involved with plates or shells with 2D actuators. To deal with the continuity
conditions at the interfacial surfaces between the actuators and the plates, two approximate
hypotheses are proposed in this paper. One hypothesis is to average the actual distributed bending
actuation and the other is to relate the edge velocities of 2D rectangle actuators with the deflection
velocity of thin plate. Once the equivalent electric systems of 2D piezoelectric actuators and thin
plate are obtained, dynamic characteristics of the equivalent electric system considered are
analyzed in detail. At the end of this paper, several examples are presented to illustrate the
applications of the proposed methods using equivalent electric networks.
2. Equivalent electric circuits of 2D piezoelectric actuators

2.1. Impedance equation of a 2D force actuator

Let us consider a generic model of a 2D piezoelectric element integrated with a structure as
shown in Fig. 1a. It is assumed that when an AC voltage is applied across a piezoelectric element
along the polarization direction, an in-plane expansion (or contraction) is induced in both 1ðxpÞ

and 2ðypÞ axes of the patch. The dynamic response of the element should be solved from its
constitutive equations and the geometric boundary conditions, so that the displacement response
of the piezoelectric actuator may be described by [4]

up ¼ ½A sinðkp11xpÞ þ B cosðkp11xpÞ�e
jot;

vp ¼ ½C sinðkp22ypÞ þ D cosðkp22ypÞ�e
jot; ð1Þ

where o is the working frequency and j ¼
ffiffiffiffiffiffiffi
�1

p
: The subscript p refers to the parameters of the

piezoelectric element, which will be always implicit in this paper. In the above equation the
wavenumbers kp11 and kp22 are identical for isotropic piezoelectric materials [4]:

k2
p ¼ k2

p11 ¼ k2
p22 ¼ o2

rp

Y E
p

; (2)
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Fig. 1. 2D piezoelectric actuators: (a) one piezoelectric 2D force actuator; (b) dual piezoelectric 2D bending actuators.
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in which rp and Y E
p denote the mass density and Young’s modules of the actuator, respectively.

The constants A, B, C and D are determined by boundary conditions of the piezoelectric actuator.
Then, the strains of the piezoelectric actuators should be

�px ¼ ½A cosðkp11xpÞ � B sinðkp11xpÞ�kp11e
jot;

�py ¼ ½C cosðkp22ypÞ � D sinðkp22ypÞ�kp22e
jot: ð3Þ

According to the analogy theory between the electric systems and the mechanical systems, the
mechanical velocities are analogy to electric flows (so that it can be called as mechanical flows)
while the mechanical forces are analogy to electric efforts (mechanical efforts). Therefore, the
mechanical flows of the piezoelectric actuator can be defined by the edge velocities of the 2D
piezoelectric actuator,

U1 ¼
qup

qt

����
xp¼0

; U2 ¼
qup

qt

����
xp¼ap

; U3 ¼
qvp

qt

����
yp¼0

; U4 ¼
qvp

qt

����
yp¼bp

: (4)

Substituting Eq. (1) into Eq. (4), the constants A, B, C and D are expressed in terms of the
mechanical flows,

A ¼
U2

joejot sinðkp11apÞ
�

U1 cosðkp11apÞ

joejot sinðkp11apÞ
;

B ¼
U1

joejot
;

C ¼
U4

joejot sinðkp22bpÞ
�

U3 cosðkp22bpÞ

joejot sinðkp22bpÞ
;

D ¼
U3

joejot
: ð5Þ

It is assumed that V ¼ V̄ejot is the electric field applied across the thickness of the actuator. The
over bar over the symbol refers to the spatial component of the variable, which will also be always
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implicit in this paper. Thus, the electric field in the thickness direction is given by

E ¼ V̄ejot=tp; (6)

where tp is the thickness of the actuator.
Next the constitutive equations of the piezoelectric actuator is used to determinate the

mechanics efforts by electric and displacement fields. The stresses spx; spy and electric
displacement Dz are

spx ¼
Y E

p

1� n2p
½ð�px � d31EÞ þ npð�py � d32EÞ�;

spy ¼
Y E

p

1� n2p
½ð�py � d32EÞ þ npð�px � d31EÞ�;

Dz ¼ m33E þ d31spx þ d32spy; ð7Þ

where d31 and d32 are the piezoelectric constants, np denotes Poisson’s ratio of the actuator, and
m33 is the dielectric permittivity constant.
The electric current passing through the piezoelectric actuator is thus given by

I ¼

Z bp

0

Z ap

0

_Dz dxp dyp; (8)

where ap and bp are length and width of the piezoelectric actuator, respectively. Next, we define
the mechanical efforts as

F1 ¼ �
tp

bp

Z bp

0

spx dyp

����
xp¼0

; F2 ¼
tp

bp

Z bp

0

spx dyp

����
xp¼ap

;

F3 ¼ �
tp

bp

Z bp

0

spy dxp

����
yp¼0

; F4 ¼
tp

bp

Z bp

0

spy dxp

����
yp¼bp

: ð9Þ

The sign convention of the variables in the above equations are shown in Fig. 1a. Substituting the
third equation of Eq. (7) together with Eqs. (6), (5) and (3) into Eq. (8) yields the relation between
electric current and mechanical flows, which are Eq. (A.1) shown in the appendix.
To sum up the above formulations, the electromechanical flows of 2D piezoelectric actuator are

UA ¼ fU1;U2;U3;U4; Ig
T; (10)

while the electromechanical efforts are defined by

FA ¼ fF1;F2;F3;F4;VgT: (11)

After a long but not very complex calculations using the above 11 equations, the actuator
impedance relationship between electromechanical efforts and electromechanical flows is
obtained, that is

FA ¼ ZAUA; (12)
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Fig. 2. Equivalent electric networks for 2D piezoelectric actuators: (a) five-port equivalent electric network for 2D force

actuator; (b) five-port equivalent electric network for 2D bending actuators.
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where ZA is an 5� 5 impedance matrix, whose elements are listed in the appendix. It should be
noted that the above equation governs the dynamic behavior of a piezoelectric actuator shown in
Fig. 1a, therefore, Eq. (11) can be called ‘impedance equation of a 2D dimensional force actuator’.
The electric equivalent network for Eq. (11) is a five-port network shown in Fig. 2a. It should be
mentioned that Brissaud [20] has given a 7� 7 impedance matrix using a similar formulism to the
above when he studied 3D modeling for a rectangle piezoelectric plate.

2.2. Impedance equation of dual bending actuators

In many cases of smart structures integrated with the piezoelectric actuators, a pair of
piezoelectric actuators is used to produce pure bending activation as shown in Fig. 1b. It is
assumed that the two patches of piezoelectric actuators are completely symmetry, and the voltages
applied on the top and the bottom surface of the piezoelectric electrodes are counter-wise to each
other. In the following, we will investigate the dynamic behavior of such dual piezoelectric
actuators and give their corresponding equivalent electric models.
At first, by examining Eq. (3) and the first two equations of Eq. (7), the stress distributions

in the actuators should be a distribution function along 1ðxpÞ and 2ðypÞ axes directions.
The dual actuators actually apply distributed bending moments to the plate, which can be
described as

mxðxp; ypÞ ¼ tpðtp þ tsÞspx; myðxp; ypÞ ¼ tpðtp þ tsÞspx; (13)

where ts denotes the thickness of the structural plate. In order to simplify the model and formula,
we seek the expressions of the average bending actuation to replacing the actuation given by
Eq. (13) in the following.
We adopt the assumption that the distributed moments of bending along one edge line of

the actuator can be regarded as a constant, which is proposed by Crawley and Lazarus [21]. Thus,
the average bending moments for a unit length along the axes directions at the edges of the plate
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are introduced:

Mx0 ¼ �
tpðts þ tpÞ

bp

Z bp

0

spx dyp

����
xp¼0

; Mxa ¼
tpðts þ tpÞ

bp

Z bp

0

spx dyp

����
xp¼ap

;

My0 ¼ �
tpðts þ tpÞ

ap

Z ap

0

spy dxp

����
yp¼0

; Myb ¼
tpðts þ tpÞ

ap

Z ap

0

spy dxp

����
yp¼bp

: ð14Þ

Then, the average bending moments given by Eq. (14) combined with electric voltage can be
defined as equivalent electromechanical efforts in this case, which are

FB ¼ fMx0;Mxa;My0;Myb;VgT: (15)

While the definition of electromechanical flows in Eq. (10) keeps unchanged and the definitions of
mechanical efforts are given by Eq. (15), the impedance matrix for the dual actuators will become

FB ¼ ZBUA; (16)

where ZB is an impedance matrix, which are related with ZA by the following equations:

ZBij ¼ ðtp þ tsÞZAij ði ¼ 1; 4; j ¼ 1; 5Þ;

ZB5j ¼ ZA5j ðj ¼ 1; 5Þ: ð17Þ

Since Eq. (17) represents the dynamic behavior of dual piezoelectric actuators producing average
bending moments on a unit length along the axes directions to the 2D structures, Eq. (16) can be
called ‘impedance equation of dual bending line actuators’. In this case, the electric equivalent
network for Eq. (17) is also a five-port network shown in Fig. 2a but the impedance of the
network ZA should be replaced by ZB: In the global coordinate system, the load function of the
dual actuators can be written as

Mx ¼ ½Mx0dðx � x0Þ � Mxadðx � xaÞ�½Hðy � y0Þ � Hðy � ybÞ�;

My ¼ ½My0dðy � y0Þ � Mybdðy � ybÞ�½Hðx � x0Þ � Hðx � xaÞ�: ð18Þ

where x and y are axes of the global coordinates system originated in the host structure, and Hð�Þ

is a unit step function and dð�Þ is a delta function. These bending activations are illustrated
in Fig. 3a.
Another more simple model for dual 2D piezoelectric actuators can be used, in which the dual

piezoelectric actuators are assumed to produce the average area bending moments to the host
structures. Therefore, the bending moments for a unit area of the interfacial surface between the
actuators and the plate can also be defined as mechanical efforts, which are

Mpx ¼
tpðts þ tpÞ

apbp

Z bp

0

Z ap

0

spx dxp dyp;

Mpy ¼
tpðts þ tpÞ

apbp

Z bp

0

Z ap

0

spy dxp dyp: ð19Þ

The equivalent electromechanical efforts vector in this case is

FC ¼ fMpx;Mpy;VgT: (20)
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Fig. 3. Models for the bending activation of dual 2D piezoelectric actuators: (a) dual piezoelectric 2D actuators

producing line bending moments; (b) dual piezoelectric 2D actuators producing area bending moments.
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Following the same procedure to obtain Eq. (16), the following expression between the average
bending moment activation and mechanical flows are also obtained.

FC ¼ ZCUA; (21)

where the elements of 3� 5 impedance matrix ZC are also listed in the appendix. Eq. (21)
represents the dynamic behavior of dual piezoelectric actuators producing average bending
activation for a unit area of the plate, so Eq. (21) can be called ‘impedance equation of dual
bending area actuators’. In this case, these actuations are illustrated in Fig. 3b. The equivalent
electric network for Eq. (21) should be a five-port network with two short close circuit as shown in
Fig. 2b and the activation function should be

Mx ¼ Mpx½Hðx � x0Þ � Hðx � xaÞ�½Hðy � y0Þ � Hðy � ybÞ�;

My ¼ Mpy½Hðx � x0Þ � Hðx � xaÞ�½Hðy � y0Þ � Hðy � ybÞ�: ð22Þ
3. Equivalent electric circuits of thin plate with piezoelectric actuators

Consider the vibration problems of a rectangle thin plate driven by a pair of rectangle
piezoelectric actuators as shown in Fig. 4. The theory of thin plates is adopted, and the equation
of motion for rectangle plate can be expressed as follows:

Dsr
2r2w þ rsts

q2w
qt2

þ c̄s
qw

qt
¼ f ðx; y; tÞ;

Ds ¼
Y st

3
s

12ð1� n2s Þ
;

r2 ¼
q2

qx2
þ

q2

qy2
; ð23Þ

where rs is the mass density of the plate and ts the thickness, Y s and ns denote Young’s modules
and Poisson’s ratio of the structural plate, respectively. The subscript s refers to the parameters of
the structural thin plate, which will be always implicit. As driving by voltage V ¼ V̄ejot on a pair
of actuators on the top and bottom surfaces of the plate, the system response is also harmonic and
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Fig. 4. Geometry configuration of a simply supported thin plate actuated by a pair of 2D actuators.
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is written as follows:

wðx; y; tÞ ¼
X1
m¼1

X1
n¼1

W̄ mnfmnðx; yÞe
jot: (24)

The vibration mode function of the thin plate with four simply supported edges is

fmnðx; yÞ ¼ sin amx sin any;

am ¼
mp
as

; an ¼
np
bs

; ð25Þ

where as and bs are the length and the width of the plate. Inserting Eq. (25) into Eq. (24) leads toX1
m¼1

X1
n¼1

fDsða2m þ a2nÞ
2
� o2rsts þ joc̄sgW̄ mnfðx; yÞ ¼ f̄ ðx; yÞ: (26)

Provided that damping coefficient c̄s is set to zero, Eq. (26) can be rewritten asX1
m¼1

X1
n¼1

ðo2
mn � o2ÞW̄ mnfðx; yÞ ¼

1

rsts

f̄ ðx; yÞ; (27)

where the resonant frequencies omn are given by

omn ¼ p2
m2

a2s
þ

n2

b2s

 ! ffiffiffiffiffiffi
Ds

m̄

r
; (28)

in which m̄ is mass of the plate per area. Recalling the actuation function of piezoelectric actuators
given by Eq. (18), the spatial component of the bending moments are

M̄x ¼ ½M̄x0dðx � x0Þ � M̄xadðx � xaÞ�½Hðy � y0Þ � Hðy � ybÞ�;

M̄y ¼ ½M̄y0dðy � y0Þ � M̄ybdðy � ybÞ�½Hðx � x0Þ � Hðx � xaÞ�: ð29Þ

The load function of the bending moments is

f̄ ðx; yÞ ¼
q2M̄x

qx2
þ

q2M̄y

qy2
: (30)
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Substituting Eq. (29) into Eq. (30) and then inserting to Eq. (27), the vibration amplitude of the
plate is obtained, which is

W̄ mn ¼
4

asbstsrsðo2
mn � o2Þaman

�fa3mðM̄xa sin amxa � M̄x0 sin amx0Þðcos anyb � cos any0ÞÞ

þ a3nðM̄yb sin anyb � M̄y0 sin any0Þðcos amxa � cos amx0Þg: ð31Þ

In the case of vibration of the plate driven by the area actuation given by Eq. (22), the spatial
components of bending moments are expressed as follows:

M̄x ¼ M̄px½Hðx � xp0Þ � Hðx � xpaÞ�½Hðy � yp0Þ � Hðy � ypbÞ�;

M̄y ¼ M̄py½Hðx � xp0Þ � Hðx � xpaÞ�½Hðy � yp0Þ � Hðy � ypbÞ�: ð32Þ

Similarly, the vibration amplitude of the plate produced by piezoelectric area actuators are solved
from Eq. (32) by using Eq. (32), which is

W̄ mn ¼
4ðMpxa2m þ Mpya2nÞ

asbstsrsðo2
mn � o2Þaman

�ðcos amx0 � cos amxaÞðcos any0 � cos anybÞ: ð33Þ

Eqs. (31) and (33) actually give solutions for forced vibration of the thin plate driven by dual
piezoelectric actuator via lines and via areas, respectively.
In the following, we deal with the continuity conditions between the actuators and the plates, so

that the equivalent electric networks for the piezoelectric actuators and the thin plate will be
accomplished. At first, we assume two approximate hypotheses as follows:
Hypothesis 1. At the interfacial surfaces between the thin plate and the piezoelectric actuators

shown in Fig. 4, the actual distributed activations are approximately equivalent to the activation
given by Eq. (14) or (19) as shown in Fig. 3a or 3b. In other words, the representations of average
bending moments per unit length or per unit area have a good simulation of actual distributed
bending activations given by Eq. (13). It will be found in the numerical examples of Section 4 that
this hypothesis leads to quiet accurate results and is more convenient to analysis.
Hypothesis 2. The displacement continuity conditions are approximately satisfied at the

interface between thin plates and piezoelectric actuators, which can be analyzed according to the
following procedures. At first, according to the theory of thin plates [22], the relationships
between the in-plane displacements and the deflection of the plate are

us ¼ �z
qws

qx
; vs ¼ �z

qws

qy
: (34)

It is recognized that Eq. (34) are fulfilled everywhere inside the thin plate, i.e., �ts=2pzpts=2: But
we approximately expand Eq. (34) into the region of �ðts þ tpÞ=2pzpðts þ tpÞ=2: Therefore, the
displacements of the actuators can be related with the deflection of the thin plate, i.e.,

up ¼ �
ts þ tp

2

qws

qx
; vp ¼ �

ts þ tp

2

qws

qy
: (35)
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At last, the velocities at the four points on the interfacial lines between the plate and actuators can
be defined as mechanical flows,

Us1 ¼ �
ts þ tp

2

q2ws

qxqt

����
y¼yn

x¼x0

; Us2 ¼ �
ts þ tp

2

q2ws

qxqt

����
y¼yn

x¼xa

;

Us3 ¼ �
ts þ tp

2

q2ws

qyqt

����
y¼y0

x¼xn

; Us4 ¼ �
ts þ tp

2

q2ws

qyqt

����
y¼yb

x¼xn

ð36Þ

where xn ¼ ðx0 þ xaÞ=2 and yn ¼ ðy0 þ yaÞ=2 are the x- and y-axial coordinate of A, B, C and D
points shown in Fig. 4. In short, this hypothesis says that the extension (or contraction) velocity of
piezoelectric actuators equals to product of the rotating velocity of the thin plate and the distance
between the mid-plane of the top or bottom actuator and the thin plate. A, B, C and D points
shown in Fig. 4 are approximately representative of the displacements continuity conditions, so
that the following relations of the displacements continuity conditions are implied, that is,

Us ¼ Ua; (37)

where

Ua ¼ fU1;U2;U3;U4g
T;

Us ¼ fUs1;Us2;Us3;Us4g
T: ð38Þ

In the above equations, Ui; ði ¼ 1; 2; 3; 4Þ are defined by Eq. (4) for piezoelectric actuators while
Usi; ði ¼ 1; 2; 3; 4Þ are defined as mechanical flows by Eq. (36) in terms of the deflection of the
plate.
In the remains of this section, the system impedance of the thin plate containing the 2D

piezoelectric actuators will be analyzed. At first, using Eqs. (31) and (36), a linear relationship
between the mechanical efforts and the mechanical flows of the thin plate is obtained, in
admittance form,

Us ¼ YBFpb; (39)

where YB is a 4� 4 admittance matrix; or in impedance form,

Fpb ¼ ZSBUs; (40)

where ZSB is a 4� 4 impedance matrix. The equivalent electric circuit of the thin plate is a four-
port network show in Fig. 5a.
Similarly, the impedance matrices of the thin plate activated by the area activation bending can

be obtained by using Eqs. (33) and (36), that is a 2� 4 primitives matrix,

Us ¼ YCFpc; (41)

or a 2� 4 impedance matrix,

Fpc ¼ ZSCUs: (42)

Eq. (41) or (42) shows that the equivalent electric circuits of the thin plate is a four-port network
with two short circuit as shown in Fig. 5b in this case. In the two equations of Eqs. (39) and (41),
YB and YC can be conveniently calculated using Eqs. (31) and (33) with a certain number of m and
n, respectively.
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Fig. 5. Equivalent electric networks for the thin plate: (a) vibration driven by the piezoelectric actuators producing line

bending moments; (b) vibration driven by the piezoelectric actuators producing area bending moments.
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In order to obtain the system impedance, we will solve the combined equations of the
impedance of piezoelectric actuators and thin plate in the following.
The impedance equation of dual line actuators shown in Eq. (16) can be rewritten in forms of

block arrays,

Fpb

V

� 	
¼

ZBaa ZBab

ZBba ZBbb

" #
Ua

I

� 	
; (43)

where ZBaa; ZBab; ZBba and ZBbb are sub-blocks of ZB and of 4� 4; 4� 1; 1� 4 and 1� 1
impedance matrices, respectively. Solving the equations of Eqs. (43) and (39) together with Eq.
(37) yields

Pn ¼ ZBbaYBðI� ZBaaYBÞ
�1ZBab þ ZBbb; (44)

where I is a 4� 4 unit array, and Pn denotes the system impedance, which is defined as

Pn ¼ V=I : (45)

Similarly, the impedance equation shown in Eq. (21) of dual 2D piezoelectric area actuators is
rewritten in forms of block arrays,

Fpc

V

� 	
¼

ZCaa ZCab

ZCba ZCbb

" #
Ua

I

� 	
; (46)

where ZCaa; ZCab; ZCba and ZCbb are sub-blocks of ZC and of 2� 4; 2� 1; 1� 4 and 1� 1
impedance matrix. Solving the equations of Eqs. (46) and (41) with the consideration of Eq. (37)
leads to

Pn ¼ ZCbaYCðI� ZCaaYCÞ
�1ZCab þ ZCbb; (47)

where I is a 2� 2 unit array. In fact, Eqs. (44) and (47) give two equivalent electric circuit
representations for thin plate with 2D piezoelectric actuators. Once the system impedance is
obtained, all physical fields in the thin plate and the piezoelectric actuators can be calculated,
using Eqs. (7) and (31) or Eq. (33), if necessary.
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4. Numerical examples

Let us consider a rectangle thin steel plate; two pieces of piezoelectric actuators are adhered on
the upper and the lower surface of the plate. The analysis will be focused on the dynamic behavior
of the smart plate under the conditions, where the actuators will be placed on different positions
of the plate. The geometric configurations of the thin plate actuated by dual 2D piezoelectric
actuators are shown in Fig. 6, which were investigated by Dimitriadis, Rogers and their co-
workers [8] before. The materials and geometry parameters concerned are listed in Table 1. The
thin plate is simply supported along the four edges of the plate. The resonant frequencies of this
steel plate are calculated using Eq. (28) and listed in Table 2.
Firstly, the dynamic behavior of the structure corresponding to configuration A, in which

x0 ¼ 0:32m;xa ¼ 0:36m; y0 ¼ 0:04m; yb ¼ 0:26m are calculated using Eqs. (44) and (47),
respectively. The frequency response is drawn in Fig. 7 as the working frequency range from
100 to 2000 rad/s. It can be seen from Fig. 7 that the actuation will induce the resonant vibration
near the frequency at 300, 940 and 1790 rad/s. Comparing with the frequencies listed in Table 2,
Fig. 6. The configurations of the numerical examples.

Table 1

The parameters of thin steel plate and piezoelectric polymer

Density (kg/m3Þ Young’s modules (GPa) Poisson’s ratio Length (m) Width (m) Thickness (mm)

Plate 7870 207 0.292 0.38 0.30 1.5876

PVDF 2700 2.0 0.25 0.05

d31 ¼ d32 ¼ 151� 10�7 V=m m33 ¼ 0:1062� 10�9 F=m
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Table 2

The resonant frequenies of simply supported plate omn(rad/s)

n (m)

1 2 3 4 5

1 437.5 1246.0 2592.5 4480.0 6905.5

2 941.4 1749.9 3097.4 4982.9 7409.4

3 1781.2 2589.7 3937.2 5822.7 8249.2

4 2957.0 3765.5 5112.0 6999.5 9425.0

5 4468.8 5277.3 6624.8 8511.3 10936.7

Fig. 7. The system impedance of the thin plate with a pair of PVDF actuators (Configuration A).
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the corresponding resonant vibration modes should be (m; nÞ ¼ ð1; 1Þ; (2,1) and (3,1). These results
are completely in agreement with the results shown by Figs. 4 and 7 in Ref. [8]. It is said that the
vibration along y-axis direction will remain a peak during working frequency that varied from 100
to 2000 rad/s while the vibration along x-axis direction will change from one peak to three peaks
at the same time.
Secondly, the dynamic characteristic of this plate in Configuration B is investigated. The piezoelectric

actuators in Configuration B are rotated 90� in clockwise direction from Configuration A, that is in the
position: x0 ¼ 0:04m;xa ¼ 0:34m; y0 ¼ 0:23m; yb ¼ 0:27m: Following the same solving procedure,
the system impedance is obtained in Fig. 8 using line-bending actuator formulation Eq. (44) and area-
bending actuator formulation Eq. (47), respectively. In the frequency under investigation, the two
piezoelectric actuators in Configuration B only produce two resonant frequencies near 430 and
1240 rad/s. Thus, there will be two types of resonant vibrations. By examining Table 2, these two x–y
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Fig. 8. The system impedance of the thin plate with a pair of PVDF actuators (Configuration B).
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resonant modes should be (1,1) and (1,2), respectively, this conclusion was also shown in Fig. 8 of
Ref. [8]. It can be found that the vibration along x-axis direction keeps one peak during the working
frequency at 930 rad/s. In the other words, although the resonant frequency of the plate
941 rad/s corresponding to (2,1) is lower than the frequency 1246 rad/s corresponding to (1,2) in
Table 2, the actuators in Configuration B cannot produce the thin plate vibration at the (m ¼ 2, n ¼ 1)
mode.
The third example is that two small piezoelectric actuators are centered in the thin plate shown

in Configuration C of Fig. 6. The position and the size of the actuators are defined as x0 ¼

0:16m;xa ¼ 0:22m; y0 ¼ 0:13m; yb ¼ 0:17m: The dynamic response curve is drawn in Fig. 9 of
this paper. It is seen from the figure that these actuators actuate the thin plate an intensive
resonant at the ðm ¼ 1; n ¼ 1Þ mode. Another resonant frequency is near 1780 rad/s. It has been
found that the vibration along x direction has already shown two peaks while o ¼ 600 rad=s; i.e.
m ¼ 2: Examining Table 2, the resonant modes in this case should be (1,1) and (2,2) modes,
respectively. But, as far as the vibration mode of ðm ¼ 2; n ¼ 1Þ is concerned, the position of the
actuators are center located and are across the line of vibration mode (2,1). Therefore, most of the
response is still accumulated on the vibration mode (1,1) although the working frequency
approaches the resonant frequency for mode (2,1). The results shows that the actuators
located in Configuration C cannot produce resonant vibration for mode (2,1) or (1,2). As the
working frequency jumps to a frequency higher than 600 rad/s, the centered located actuators
will actuate the symmetry vibration modes such as ðm ¼ 1; 3; 5 . . . n ¼ 1; 3; 5 . . .Þ which will
almost produce no contribution to the vibration at the anti-symmetry vibration modes such as
ðm ¼ 2; 4; 6 . . . n ¼ 2; 4; 6 . . .Þ:
At last, the vibration of a simply supported thin plate driven by a pair of PZT-5A actuators are

restudied here, which has been theoretically and experimental studied by Zhou, Rogers and their
co-workers [9]. The thin plate is made of aluminum, whose size is 305mm� 203mm� 1:53mm;
and the two PZT patches are of 51mm� 51mm� 0:19mm in size, which is located in the
position: x0 ¼ 0:025m, xa ¼ 0:067; y0 ¼ 0:051m; yb ¼ 0:102m. More information about the
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Fig. 9. The system impedance of the thin plate with a pair of PVDF actuators (Configuration C).

Fig. 10. The velocity response of a PZT actuator-driven plate at sensor location ]1:
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material properties and the experimental setup of this example can be found in Ref. [9].
During their vibration test, they measured the dynamic response using non-contact laser sensor
at two different locations, that is, location ]1: x ¼ 152mm, y ¼ 102mm, and location ]2:
x ¼ 229mm, y ¼ 102mm. We picked up the data from Ref. [9] in the coordinate system shown
in Fig. 4 and then calculated the velocity response at sensor location ]1 and sensor location ]2
using Eqs. (47) and (33). The results obtained are plotted in Figs. 10 and 11, for vibration



ARTICLE IN PRESS

Fig. 11. The velocity response of a PZT actuator-driven plate at sensor location ]2:
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amplitude at sensor location ]1 and sensor location ]2; respectively. It can be seen from these
figures that the models and computational methods proposed in this paper are quiet reliable and
accurate.
5. Conclusions and discussions

Electric equivalent circuits for a thin plate with two-dimensional piezoelectric actuators are
presented in this paper. The dynamical characteristics of 2D actuators producing forces actuation
can be represented by a five-port electric network, and characteristics of a pair of 2D actuators
producing pure bending actuation should be electrically equivalent to a five-port electric circuit
with or without short close circuits. Under two approximate hypotheses, the actual activations
and the displacement continuity on the contact surfaces between thin plate and 2D actuators are
simply modeled. The results of numerical examples reveal that the two hypotheses we proposed in
this paper are reasonable and practicable. The equivalent electric circuits for a thin plate with 2D
piezoelectric actuators are finally obtained. The results of numerical examples show that the
frequency characteristics of the considered problems coincide with the results reported earlier by
other researchers. These facts demonstrate that it is capable of simulating complex
electromechanical systems such as plates and shells with 2D piezoelectric actuators using
equivalent electric circuits.
Although the concise formulations presented in this paper is only for the simply supported thin

plates with 2D piezoelectric actuator, the method proposed here is capable of analyzing thin plates
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with various kinds of boundary conditions. For the plates with clamped or free boundary
conditions, some numerical methods such as FEM may be used to calculate the impedance matrix
of the plate shown in Eqs. (40) and (42), and the framework of the equivalent electric network
model we presented is applicable as well.
Further study on the equivalent electric network models for smart structures with

piezoelectric elements will be needed to improve its accuracy and completeness. For examples,
the two explicit hypotheses proposed here are the key to establish the equivalent electric
networks, and the study on experimental verification of displacement continuous conditions
shown in Eq. (34) should be a good job in the future. However, the advantage of the equivalent
electric network models for smart structures are obvious. Since the analogy relationships
between the real system and the virtual equivalent system are explicitly defined in the models,
it is potential to develop equivalent electric simulation experiments for the smart structures
mentioned above. Lastly, it will be more convenient to analyze and control the equivalent
electric system using modern control theories including cybernetics than to do it directly on real
smart structures.
Acknowledgements

This research was supported by the National Natural Science Foundation of China (No.
10172036). The authors wish to thank Prof. Yu-Ying Huang and Shu-Ping Liang for their
valuable suggestion and Mr. Peng Hu and Dr. Ding-Gen Li for their help in analyzing electric
networks in numerical examples.
Appendix A

The relation between electric current and the mechanical flows is

I ¼ joCpV þ N1ðU2 � U1Þ þ N2ðU4 � U3Þ; (A.1)

where

Cp ¼
apbp

tp

m33 �
Y E

p

1� n2p
ðd31 � npd32Þd31 �

Y E
p

1� n2p
ðd32 � npd31Þd32

" #
; (A.2)

with

N1 ¼
Y E

p bp

1� n2p
ðd31 � npd32Þ;

N2 ¼
Y E

p ap

1� n2p
ðd32 � npd31Þ: ðA:3Þ
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The elements of the impedance matrix ZA are:

area

ZA11 ¼ ðtpkpc1Cp=s1 þ N1daÞC0Y 0;

ZA12 ¼ ð�tpkpCp=s1 þ N1daÞC0Y 0;

ZA13 ¼ ðtpnpCp=bp þ N2daÞC0Y 0;

ZA14 ¼ ð�tpnpCp=bp þ N2daÞC0Y 0;

ZA21 ¼ ð�2tpkpc21Cp=s1 þ tpkpCp=s1 þ N1daÞC0Y 0;

ZA22 ¼ ðtpkpc1Cp=s1 þ N1daÞC0Y 0;

ZA23 ¼ ð�2tpnpc2Cp=bp þ tpnpCp=bp þ N2daÞC0Y 0;

ZA24 ¼ ðtpnpCp=bp þ N2daÞC0Y 0;

ZA31 ¼ ðtpnpCp=ap þ N1dbÞC0Y 0;

ZA32 ¼ ð�tpnpCp=ap þ N1dbÞC0Y 0;

ZA33 ¼ ðtpkpc2Cp=s2 þ N2dbÞC0Y 0;

ZA34 ¼ ð�tpkpCp=s2 þ N2dbÞC0Y 0;

ZA41 ¼ ð�2tpnpc1Cp=ap þ tpnpCp=ap þ N1dbÞC0Y 0;

ZA42 ¼ ðtpnpCp=ap þ N1dbÞC0Y 0;

ZA43 ¼ ð�2tpkpc22Cp=s2 þ tpkpCp=s2 þ N2dbÞC0Y 0;

ZA44 ¼ ðtpkpc2Cp=s2 þ N2dbÞC0Y 0;

ZA15 ¼ ZA25 ¼ daC0Y 0; ZA35 ¼ ZA45 ¼ �dbC0Y 0;

ZA51 ¼ �ZA52 ¼ N1C0; ZA53 ¼ �ZA54 ¼ N2C0;

ZA55 ¼ C0;

(A.4)

where

Y 0 ¼
Y p

1� n2p
; C0 ¼ �

i

oCp

;

da ¼ d31 þ npd32; db ¼ npd31 þ d32;

s1 ¼ sinðapkpÞ; s2 ¼ sinðbpkpÞ;

c1 ¼ cosðapkpÞ; c2 ¼ cosðbpkpÞ: ðA:5Þ

The elements of the impedance matrix ZC are:

ZC11 ¼ �ð2tpc1Cp=ap � tpCp=ap � N1daÞC0Y 0;

ZC12 ¼ ðtpCp=ap þ N1daÞC0Y 0;

ZC13 ¼ �ð2tpnpc2Cp=bp � tpnpCp=bp � N2daÞC0Y 0;

ZC14 ¼ ðtpnpCp=bp þ N2daÞC0Y 0;

ZC21 ¼ �ð2tpnpc1Cp=ap � tpnpCp=ap � N1dbÞC0Y 0;
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ZC22 ¼ ðtpnpCp=ap þ N1dbÞC0Y 0;

ZC23 ¼ �ð2tpc2Cp=bp � tpCp=bp � N2dbÞC0Y 0;

ZC24 ¼ ðtpCp=bp þ N2dbÞC0Y 0;

ZC15 ¼ �daC0Y 0; ZC25 ¼ �dbC0Y 0;

ZC31 ¼ �ZC32 ¼ N1C0; ZC33 ¼ �ZC34 ¼ N2C0;

ZC35 ¼ C0: ðA:6Þ
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