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Abstract

The vibration generated by industrial machines always contains nonlinear and non-stationary signals.
Recently, a number of new methods have been proposed to analyse these signals. One of the promising
methods is the Hilbert–Huang Transform (HHT). The HHT is derived from the principals of empirical
mode decomposition (EMD) and the Hilbert Transform. When applying the HHT, first, the EMD will
decompose the acquired signal into a collection of intrinsic mode functions (IMF). The IMF is a kind of
complete, adaptive and almost orthogonal representation for the analysed signal. Since the IMF is almost
monocomponent, it can determine all the instantaneous frequencies from the nonlinear or non-stationary
signal. Second, the local energy of each instantaneous frequency can be derived through the Hilbert
Transform. Hence, the result is an energy–frequency–time distribution of the signal. Since applying the
process of HHT is not computational intensive, the HHT becomes a promising method to extract the
properties of nonlinear and non-stationary signal. However, after the completion of a thorough
experiment, the result generated by the HHT has its deficiency. First, the EMD will generate undesirable
IMFs at the low-frequency region that may cause misinterpretation to the result. Second, depends on the
analysed signal, the first obtained IMF may cover too wide a frequency range such that the property of
monocomponent cannot be achieved. Third, the EMD operation cannot separate signals that contain low-
energy components. In this study, new techniques have been applied to improve the result of HHT. In the
improved version of HHT, the wavelet packet transform (WPT) is used as preprocessing to decompose the
signal into a set of narrow band signals prior to the application of EMD. With the help from WPT, each
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IMF derived from the EMD can truly become monocomponent. Then, a screening process is conducted to
remove unrelated IMFs from the result. Both simulated and experimental vibration signals of having a
rotary system with the fault of rubbing occurred have proven that the improved HHT does show the
rubbing symptoms more clear and accurate than the original HHT. Hence, the improved HHT is a precise
method for nonlinear and non-stationary signal analysis.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Signal analysis has always been an important and indispensable part in vibration-based
machine fault diagnosis as well as in many other practical applications. In the application of
vibration-based machine fault diagnosis, the signal analysis often serves two purposes: to
investigate the dynamical characters of machines under different fault types, and to extract fault
features if a fault occurs and then identify the cause of fault. Hitherto, the technique of Fourier
Transform has been dominated in the field of signal analysis because of its prowess and simplicity.
However, there are some crucial restrictions on the use of Fourier transform [1]. The signal
generated by the inspected machine must be linear and temporally stationary; otherwise, the
resulting Fourier spectrum will have little physical sense. Unfortunately, in vibration-based
machines fault diagnosis, the signals to be analysed are often non-stationary and nonlinear. The
resulting frequency components are not always consistent as the patterns of the acquired signals
often change with time. Therefore, Fourier Transform cannot fulfil the requirements of fault
diagnosis, particularly in real applications.

From the past decade, wavelet transform has become one of the fast-evolving mathematical
and signal processing tools [2]. Wavelet transform is complete, orthogonal (in the discrete
form), local and adaptive. All these are vital for forming a basis to analyse nonlinear
and non-stationary signals. The basic operation of wavelet transform involves the operations
of dilation and translation, which lead to a multiscale analysis of the signal. Hence, it
can extract both the time and frequency features of the inspected signal effectively. Although
wavelet transform is capable of analysing nonlinear and non-stationary signals and deemed
suitable for vibration-based machine fault diagnosis, many deficiencies have been reported
in the use of wavelet transform [3]. The inevitable deficiencies include the interference terms,
border distortion and energy leakage. These deficiencies may generate a lot of undesired
small spikes all over the frequency scales and make the results confusing and difficult to be
interpreted. Basically, wavelet transform can be categorized into continuous wavelet transform
and discrete wavelet transform. The process of continuous wavelet transform is computationally
intensive. It is very time-consuming in analysis if the acquired data are numerous. On the
other hand, the discrete wavelet transform has good computing efficiency. However, the
resolution in frequency at a high-frequency range is poor. Hence, it may be applicable to many
applications, such as data compression and noise removal, but not for frequency analysis in high-
frequency range.

Due to the deficiencies of wavelet transform, a new type of time–frequency analysis called
Hilbert–Huang transform (HHT) has been proposed for analysing nonlinear and non-stationary
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signals [4,5]. The HHT is derived from the principals of empirical mode decomposition (EMD)
and the Hilbert Transform. When applying the HHT, first, the EMD will decompose the acquired
signal into a collection of intrinsic mode functions (IMF). The IMF is a kind of complete,
adaptive and almost orthogonal representation for the analysed signal. Since the IMF is almost
monocomponent, it can determine all the instantaneous frequencies from the nonlinear or non-
stationary signal. Second, the local energy of each instantaneous frequency can be derived
through the Hilbert Transform. Hence, the result is a HHT spectrum which has an
energy–frequency–time distribution of the signal. From the HHT spectrum, one can localize
any event on its occurring time as well as its instantaneous frequency. Comparing wavelet
transform to the EMD, which is the most computational intensive process in the HHT, the EMD
does not involve any convolution. Hence, for EMD, the time used for computation is less and
deemed suitable for analysing numerous data or signals. The technique of HHT has been used for
vibration signal analysis in a number of applications. Yang and Sun [6] used the HHT to interpret
the nonlinear response of a crack-induced rotor. Yang and Lei [7] proposed an HHT-based
damage identification approach and applied it to the ASCE structural health monitoring
benchmark structure.

Although the HHT may become a promising method to extract the properties of nonlinear and
non-stationary signal, like other signal analyses, HHT also suffers from a number of
shortcomings. First, the EMD will generate undesirable IMFs at the low-frequency region that
may cause misinterpretation to the result. Second, it depends on the analysed signal, the first
obtained IMF may cover too wide a frequency range that the property of monocomponent cannot
be achieved. Third, the EMD operation cannot separate signals that contain low-energy
components. To solve these shortcomings, an improved HHT is presented here. The improved
HHT uses the wavelet packet transform (WPT) [8] as a preprocessor to separate the inspected
signal into a set of narrow band signals. Hence, frequency components that contain low energy
are easier to be identified at different narrow bands. Then the process of EMD will be applied to
decompose these narrow band signals as the original EMD will do. The resultant IMFs will be in
narrower bands and become easier to satisfy the condition of monocomponent. By applying both
WPT and the EMD, the second and the third shortcomings aforementioned can be avoided.
Then, a screening process will be conducted to select the vital IMFs from the unrelated IMFs.
This can be achieved by calculating the correlation coefficients of the IMFs with the inspected raw
signal. Based on the values of the coefficients, unrelated IMFs that may cause distortion to the
results, particularly in low-frequency range as mentioned in the first shortcoming, can be
minimized. Simulated signals of rubbing occurring between a rotor and a stator, and real signals
generated from a rotary machine that has the fault of rubbing, have been used to verify the
effectiveness of the improved HHT.

The definition of instantaneous frequency, the deficiency of Hilbert transform, and the principal
of HHT, which consists of the EMD and the Hilbert transform, are introduced in Section 2.
Section 3 discussed the rationale to develop the improved HHT, the theory of the improved HHT,
and its formation. The construct of the simulated data, the experimental set-up for generating
faulty vibration from a real rotary machine that has the symptom of rubbing, and the comparison
between the improved HHT and the original HHT in the capability of detecting rubbing, are
presented in Section 4. The conclusion and the potential of the improved HHT are stated in
Section 5.
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2. Instantaneous frequency and Hilbert–Huang transform

2.1. Definition of instantaneous frequency and capability of Hilbert transform

Although the definition of instantaneous frequency is always controversial, it is tenable to
define that for a given length of signal, there is only one frequency value within the length of the
signal, or the signal is monocomponent. To extract the instantaneous frequency of a
monocomponent signal, the Hilbert transform can be used. For an arbitrary signal x(t), its
Hilbert transform y(t) is defined as

yðtÞ ¼
P

p

Z þ1

�1

xðtÞ
t � t

dt, (1)

where P is the Cauchy principal value. From Eq. (1), it can be seen that the Hilbert transform is
defined as the convolution of the signal x(t) with 1=t [1]. Therefore, the Hilbert transform is
capable of identifying the local properties of x(t). Coupling the x(t) and y(t), we can have the
analytic signal z(t) of x(t), as

zðtÞ ¼ xðtÞ þ iyðtÞ ¼ aðtÞeijðtÞ, (2)

where

aðtÞ ¼ ½x2ðtÞ þ y2ðtÞ�1=2; jðtÞ ¼ arctanðyðtÞ=xðtÞÞ. (3)

The a(t) is the instantaneous amplitude of x(t), which can reflect how the energy of the x(t)
varies with time, and the jðtÞ is the instantaneous phase of x(t). The controversial instantaneous
frequency oðtÞ is defined as the time derivative of the instantaneous phase jðtÞ , as follows:

oðtÞ ¼
djðtÞ
dt

. (4)

The temporal waveform of a chirp signal, which is a linear frequency modulation signal, and its
instantaneous frequency calculated by Eq. (4) are shown in the top and bottom diagram of Fig. 1,
respectively. The scale of x-axis in both diagrams is in a number of sample points. The scale of y-
axis in the instantaneous frequency spectrum is in normalized frequency. Similar orientation and
scaling, that is, the sample point represents the scale in time and the normalized frequency
represents the scale in frequency, will be applied to the rest of the figures in this paper. From the
instantaneous frequency spectrum, the frequency of the chirp signal changes linearly from 0 to 0.5
in its lifespan. That is, the calculated instantaneous frequencies can truly reveal the frequency
properties of the chirp signal. Therefore, Eq. (4) is useful in extracting instantaneous frequencies
from the non-stationary chirp signal. However, Eq. (4) is only valid in obtaining the instantaneous
frequency of a signal in a given time frame if the signal is monocomponent within the time frame.
If the inspected signal is multicomponent within the defined time frame signals, the result of the
instantaneous frequency will be distorted.

The top diagram of Fig. 2 shows a multicomponent signal, which contains two frequency
components. Its instantaneous frequency has been calculated by Eq. (4) and displayed in the
bottom diagram of Fig. 2. As shown in the bottom diagram, the calculated instantaneous
frequency ranges from 0.25 to 0.5, instead of only two frequency components. Hence, Eq. (4) fails
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Fig. 1. A chirp signal and its calculated instantaneous frequency.

Fig. 2. A multicomponent signal and its calculated instantaneous frequency.
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to reflect the instantaneous frequency of the multicomponent signal. Unfortunately, in almost all
of the practical applications, the inspected signals are hardly monocomponent but multi-
component. The signals usually have more than one instantaneous frequency at a time, and the
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Hilbert transform fails to reveal the true frequency content of the inspected signals. Therefore, to
make the instantaneous frequency applicable, the key is the ability to decompose a signal into
some individual monocomponent signals to which the basic definition of the instantaneous
frequency can be applied. The EMD provides such decomposition ability to separate
multicomponent signal into some almost orthogonal, nearly monocomponent signals, or in other
terms, into different IMF components. Then, the Hilbert transform can be applied to identify the
instantaneous frequencies. Therefore, the HHT, which utilizes the EMD as a preprocessor and
then obtain the instantaneous frequency by the Hilbert transform, can be applicable to any
nonlinear and non-stationary signal.

2.2. Empirical mode decomposition and intrinsic mode function

Huang et al. [1] presented the use of EMD to decompose any multicomponent signal into a set
of nearly monocomponent signals and are referred as IMFs. Once the IMFs are obtained, then
the instantaneous frequency of each IMF can be determined. Physically, the necessary conditions
to define a meaningful instantaneous frequency are that the inspected signal must be symmetric
with respect to the local zero mean, and have the same numbers of zero crossings and extrema.
That is, in an IMF function, the number of extrema and the number of zero crossings must either
equal or differ at most by one in whole data set, and the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima is zero at every point. However, the
determined IMF may not satisfy these conditions precisely. Therefore, the resulting IMF is nearly
a monocomponent signal, but not perfectly.

The EMD is developed based on the assumption that any signal consists of many different
IMFs. The procedures to decompose a given signal x(t) to different IMFs can be categorized into
the following steps. First, identify all the local extrema from the given signal, and then connect all
the local extrema with a cubic spline line as the upper envelope. Second, repeat the first step for
the local minima to produce the lower envelope. The upper and lower envelopes should cover the
entire signal between them. Third, designate their mean as m1, and the difference between the
signal x(t) and m1 as the first component h1, that is,

xðtÞ � m1 ¼ h1. (5)

Ideally, after the sifting operation of Eq. (5), h1 should be an IMF. The construction of h1

described above seems to have satisfied all the requirements of IMF. However, during the process,
overshoots and undershoots may exist and could be classified as new extrema. A few overshoots
and undershoots may shift or exaggerate the existing ones, ultimately distorting the means.
Moreover, the envelope mean may be different from the true local mean for nonlinear signal,
which may make h1 asymmetric. To eliminate riding waves and make the wave profiles more
symmetric, Huang et al. repeated the sifting process of Eq. (5) as many times as required to reduce
the extracted signal to an IMF. Therefore, the fourth step is to repeat the sifting process by
treating h1 as the signal and repeat Eq. (5) as

h1 � m11 ¼ h11. (6)

The sifting process will be repeated k times, until h1k becomes a true IMF, that is,

h1ðk�1Þ � m1ðk�1Þ ¼ h1k, (7)
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then it is designated as

c1 ¼ h1k. (8)

Finally, we obtained the first IMF component from the signal.
Huang et al. also suggested a criterion for stopping the sifting process. This is accomplished by

limiting the size of the standard deviation, denoted as S.D., which is calculated from two
consecutive sifting results as

S:D: ¼
XN

t¼0

h1ðk�1ÞðtÞ � h1kðtÞ
�� ��2

h2
1ðk�1ÞðtÞ

" #
. (9)

According to Huang et al., the S.D. value of 0.2–0.3 for the sifting process is a very rigorous
limit for the difference between two consecutive siftings.

Generally, c1 should contain a component that has the finest scale or the shortest period of the
signal. Removing c1 from the rest of the signal by

xðtÞ � c1 ¼ r1 (10)

then we will have the residue of the signal r1, which contains a component with a longer period
than the previous component. Treating r1 as a new signal and repeating the same sifting process as
described above, we can then obtain the second IMF c2. Similarly, we can obtain a series of IMFs
ciði ¼ 1; 2; . . . ; nÞ and the final residue rn. The sifting process can be stopped by any of the
following predetermined criteria: either when the component cn or the residue rn becomes less than
the predetermined value of substantial consequence, or when the residue rn becomes a monotonic
function from which no more IMF can be extracted. Summing up all the IMFs and the final
residue rn, we should be able to reconstruct the original signal x(t) by

xðtÞ ¼
Xn

i¼1

ci þ rn. (11)

After obtaining all the IMFs, the Hilbert Transform can be applied to each IMF and calculate
the instantaneous frequency according to Eqs. (3) and (4). Now the original signal x(t) can be
expressed as

xðtÞ ¼
Xn

j¼1

ajðtÞ exp i

Z
ojðtÞdt

� �
. (12)

Eq. (12) enables us to represent the inspected signal in its instantaneous amplitude, frequency,
and time in a three-dimensional plot or a contour map. The distribution of the signal’s amplitude
in a time–frequency plot is designated as the Hilbert spectrum, Hðo; tÞ:
3. The principal of the improved Hilbert–Huang transform

The fundamental theory of the improved HHT has been presented in an authors’ paper which
presents a comparison study between the improved HHT and wavelet transform in roller bearing
fault diagnosis [9]. Nevertheless, the detailed theory and formation of the improved HHT are
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Fig. 3. The IMFs and the residue of the multicomponent signal described in Fig. 2.

Z.K. Peng et al. / Journal of Sound and Vibration 286 (2005) 187–205194
described in this section. As mentioned in Section 2, the HHT could be a promising tool for
analysing non-stationary and nonlinear signals. However, after conducting a comprehensive
study, shortcomings of the HHT have been found. The three major shortcomings include the
EMD generating undesirable IMFs at the low-frequency region, the first obtained IMF may cover
too wide a frequency range such that the property of monocomponent cannot be achieved, and
some signals that contain low-energy components are inseparable. Fig. 3 displays the results after
applying the original HHT to the signal as shown in the top diagram of Fig. 2. The signal has been
decomposed into five IMFs and its residues. Note that prior to decomposition, the inspected
signal only contained two frequency components. Therefore, the first two IMFs (IMF1 and
IMF2) are real components of the signal, whilst, the others are pseudo-components in low-
frequency range (IMF3, IMF4, and IMF5). Such pseudo-components may mislead inexperienced
machine operators in using the decomposed signals for vibration-based fault diagnosis. These
undesirable IMFs can be removed by applying a screening process, which will retain the essential
IMFs that are relevant to the inspected signal.

Since the combined IMFs and its residue should be an orthogonal representation of the
inspected signal, the relevant IMFs should have strong correlation with the signal, whilst, the
irrelevant IMFs should posses weak correlation with the signal. Based on the above argument,
the correlation coefficient m for each IMF with the inspected signal will be calculated and acted as
a criterion for selecting relevant IMFs. The calculated correlation coefficients will be normalized
to avoid accidental removing of some low-amplitude but relevant IMFs. A threshold can be set
for the screening process. For all correlation coefficients mi where i=1,yn; n is the number of
IMF), the threshold l is set by the ratio of the maximal mi; which is

l ¼ maxðmiÞ=Z; ði ¼ 1; . . . ; nÞ, (13)

where Z is a ratio factor. In this study, Z ¼ 10:0 is used. Any IMF that has a correlation coefficient
equal or higher than l will be retained, whilst, other IMFs will be removed and added to the
residue rn.
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For the signal that contains only two frequency components, the first two IMFs have a
correlation coefficient above 0.7 while the other three IMFs have a correlation coefficient below
0.05. Hence, the screening method will select the first two IMFs, which are IMF1 and IMF2, and
add the other remaining IMFs to the residue. The result of the first two IMFs and the residue is
shown in Fig. 4. Note that the new residue, which has significant swings at both ends of the
residue, is substantially different than the one shown in Fig. 3. It is mainly because the irrelevant
IMFs have been added to the residue.

As refers to the bottom diagram of Fig. 2, the original HHT fails to identify the instantaneous
frequency in the Hilbert spectrum. After applying the screening method for selecting relevant
IMFs, the improved Hilbert spectrum can now display the two frequency components as expected
from the inspected signal as shown in Fig. 5. Even the change of frequency in time can be
highlighted on the Hilbert spectrum. Although the appearance of the Hilbert spectrum is similar
to the scalogram generated by wavelet transform, the Hilbert spectrum does not involve the
dilemma of fine frequency resolution but poor time resolution, or fine time resolution but poor
frequency resolution as often occurs in wavelet scalogram. The Hilbert spectrum will only reveal
the real pattern of instantaneous frequency for the inspected signal.

The second shortcoming of the original HHT is the first generated IMF may cover too wide a
frequency range that the property of monocomponent cannot be achieved. The top left-hand and
right-hand-side diagrams of Fig. 6 show the temporal waveform of a simulated faulty signal
caused by rubbing and its FFT spectrum, respectively. The decomposed IMF1 to IMF3 and their
FFT spectra are shown in the successive left-hand- and right-hand-side diagrams, respectively.
Note that the temporal waveform of the first IMF (second row left-hand-side diagram) contains
more than one frequency component. Such phenomenon reflects in its FFT spectrum (second row
right-hand-side diagram) by having a number of FFT lines. Obviously, the IMF1 fails to satisfy
the property of monocomponent. Nevertheless, the waveforms of IMF2 and IMF3 and their FFT
spectra displayed in the successive diagrams show that they are nearly monocomponent.
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Fig. 5. The improved Hilbert spectrum can clearly show the two frequency components of the inspected signal and their

changes in time.

Fig. 6. A simulated rubbing signal demonstrated the first IMF fails to maintain the property of monocomponent.
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The third shortcoming is during the EMD operation, some low-energy components may be
missing. As shown in the FFT spectrum of the IMF1 (second row right-hand-side diagram of
Fig. 6), some low-energy components do exist. When the simulated signal is required to be
reconstructed by its decomposed IMFs and residue, the low-energy components may be masked
by other high-energy components (some of them are shown in the IMF2 and IMF3 diagrams).
Hence, these low-energy components will not be shown as expected in the frequency–time plane of
the reconstructed signal.

From the property of monocomponent, each decomposed IMF should represent a simple
oscillatory mode that is embedded in the inspected signal. Within each cycle, defined by the zero
crossing, the decomposed IMF should involve only one mode of oscillation without complex
riding waves. According to the above definition, each IMF is not restricted to a narrow band
signal. It can be a signal that has been both amplitude and frequency modulated. To ensure the
property of monocomponent is valid for each decomposed IMF, a suggestion is to decompose the
signal into some narrow band signals first. Then the operation of EMD will be applied to each
narrow band signal. Hence, the obtained IMFs will be in narrow frequency bands and their
instantaneous frequencies can be calculated by Eq. (4).

There are a number of methods that can be used to act as a preprocessor to separate the
inspected signal into various narrow band signals. Among them, the WPT can be a proper
preprocessor due to its well-known properties of being orthogonal, complete, and local. As
illustrated in Fig. 7, during the operation of WPT, an inspected signal, x(t), will be split into an
approximation portion (A1) and a detail portion (D1) through a couple of low-band filter (LF)
and high-band filter (HF), respectively. The approximation portion (A1) will then further split
into a second-level approximation portion (AA2) and a detail portion (DA2) by the LF and HF,
respectively. Similarly, the first-level detail portion (D1) will also split into a second-level
approximation portion (AD2) and a detail portion (DD2). The process will be continued until a
stopping criterion has been reached. For an n-level decomposition, the signal will be decomposed
into 2n narrow band signals. Note, indifference to the energy content of the component, each
component will be decomposed into its bands. That is, even a component has low energy content,
unlike the EMD operation, the WPT process will retain its property.

The HHT with the WPT as preprocessor plus the IMFs selection method is here called the
improved HHT. Its effectiveness will be verified in the coming section by using both signals
generated from a simulated rubbing fault and a real rotary system with a rubbing fault occurring
in the system. The operation procedures of the improved HHT can be summarized in the
flowchart as shown in Fig. 8.
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4. The use of improved HHT in rubbing vibration signal analysis

For any rotary machine, rubbing often occurs between the surface of a rotor and a stator. The
symptom of rubbing occurs at the position if the clearance between a rotor and a stator is too
tight. If the symptom of rubbing has been ignored by the machine operator, the damage of
rubbing will be amplified and finally lead to a catastrophic breakdown of the rotary machine. For
example, the continuous rubbing between a motor’s rotor and its stator could cause fatal
breakdown of a motor. Rubbing between a blade and its seals could result in a broken seal. The
dynamic behaviour of the vibration signal generated by rubbing is often nonlinear and
complicated [10]. In order to minimize the damage caused by rubbing, a number of methods have
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been proposed to detect rubbing at its early stage of occurrence [11–13]. In order to compare the
effectiveness of the original HHT and the improved HHT, vibration signals generated by a
simulated rubbing and a real rotary system that has the fault of rubbing, have been used for
verification.

4.1. Comparison in analysing simulated rubbing signals

Three sets of rubbing vibration signals, which include slight, moderate, and serious rubbing
conditions, were generated from a simulated single-disk rub-impact rotor model [14]. Fig. 9 shows
the temporal signal (bottom left diagram) and its FFT spectrum (bottom right diagram) simulated
under slight rubbing condition. The scale of x-axis is the time that the number of sample points
required to be collected. The scale of y-axis is the nominated amplitude of the inspected signal.
The results generated by applying the original HHT and the improved HHT to the signal are
shown in the top left and top right diagrams, respectively. The scale of x-axis is the same as before,
and the scale of y-axis is the nominated frequency of the inspected signal. The contours shown in
the diagrams represent the amplitude of the results. The greyer the colour, the higher the
amplitude of the result. Hereinafter, similar labels, notations, and scales will be used for all the
figures and their diagrams.

As mentioned in Section 3, the original HHT will produce the first IMF (IMF1) that will cover
too wide a frequency range and fails to be treated as a monocomponent signal. Due to this
deficiency, the instantaneous frequency calculated by Eq. (4) cannot fully represent the real
Fig. 9. The temporal waveform of a simulated vibration signal with slight rubbing condition, its FFT spectrum, and the

results of the original HHT and the improved HHT.
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frequency pattern of the IMF1. Sequentially, the Hilbert spectrum obtained by the original
HHT fails to reflect the true frequency pattern of the inspected signal. In the result of the original
HHT as shown in the top left diagram of Fig. 9, the frequency patterns from the frequency
range of 0.07–0.15 are hardly being identified. The results only show that the change of
frequency is periodic; similarly the temporal signal as shown in the original raw signal in the
bottom left diagram. However, the detailed change of each instantaneous frequency is
difficult to be revealed as it cannot be separated from others. On the other hand, from the
results generated by the improved HHT spectrum as shown in the top right diagram of Fig. 9,
the detailed change of each instantaneous frequency can be clearly revealed. Starting from the
frequency range of 0.07–0.15, the high-frequency portion of the inspected signal, each frequency
component embedded in the signal and its instantaneous changes are well separated from other
component. Hence, the operators can easily identify the patterns of the signal both in time and
frequency. Such ability will definitely help the operators in determining any anomaly occurring in
the signal.

Another important discovery here is that the improved HHT can recover frequency
component that contains low energy. As mentioned in Section 3, the original HHT has difficulty
in recovering such frequency component. The improved HHT can enhance this ability. As shown
in the top right diagram of Fig. 9, a low-frequency and low-energy component at round 0.01,
which has been missed in the results generated by the original HHT, has been recovered
by the improved HHT. In the rubbing fault diagnosis, low-frequency component may contribute
the sign of a rotary system starting to deteriorate due to rubbings. From another study
conducted by the authors, when rubbings occur in a rotary system, two symptoms can be
observed [11]. First, the low-frequency components of the rubbing signal often have relative
constant frequency values in time. Second, the high-frequency components will have fluctuated
values that is often changing periodically in time. Such symptoms can be revealed from the results
of the improved HHT as shown in the top right diagram of Fig. 9. The high-
frequency components from 0.07 to 0.15 are changing periodically with time, whilst, the
low-frequency components from 0.01 to 0.05 are not having much change in time. Hence, even a
low-frequency component that has low energy content, it cannot be ignored, as it may contribute
an early warning of the occurrence of rubbings.

The temporal waveform of the vibration signal simulated by a moderate rubbing condition, its
analysed FFT spectrum, and the comparison results of different HHTs are shown in Fig. 10.
Similar remarks observed from Fig. 9 can also be found in Fig. 10. Both details of the
instantaneous frequencies in the high-frequency range and components that have low energy
content in the low-frequency range can be revealed in the results of the improved HHT as shown
in the top right diagram of Fig. 10. Again, the improved HHT can present the true frequency
patterns of the instantaneous frequencies. This time, the low-energy frequency component around
0.01 also appears in the original HHT’s results. Actually, this component around 0.01 is a
fractional harmonic of the fundamental frequency of the rotary system. It is often used to evaluate
the severity in rubbings. As rubbings continue to increase, the harmonic becomes more obvious.
Hence, it appears in the original HHT’s results as the rubbing condition has deteriorated to
moderate. Note that in the improved HHT’s results, the high-frequency components from 0.07 to
0.17 change their frequency values periodically, particularly for the components near 0.07, 0.12
and 0.14, whilst, the low-frequency components change their amplitudes periodically by showing
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Fig. 10. The temporal waveform of a simulated vibration signal with moderate rubbing condition, its FFT spectrum,

and the results of the original HHT and the improved HHT.
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different grey scale of amplitude in time. An obvious one is the low-frequency component at
around 0.05.

Fig. 11 shows the waveform of the inspected signal and the results for a simulated signal under
serious rubbing condition. Compared to the analysed results for slight and moderate rubbing
conditions, the analysed results for serious rubbing condition have more frequency components
that are closely packed to each other. Again, the results generated by the original HHT (top left
diagram) fail to present the details of instantaneous frequencies, particularly, in the high-
frequency range. On the other hand, the results of the improved HHT reveal all the details clearly.
Even the high-frequency components that are closely packed to each other can also be separated
by the improved HHT, such as the components near 0.14.

A distinct observation from the original HHT’s results is the low-frequency components also
show periodic changes for the components located within the frequency range of 0.03–0.05. Such
a phenomenon is not supposed to have happened for low-frequency component in rubbing. On
the other hand, in the results of the improved HHT (top right diagram), in the frequency range
from 0.04 to 0.06, there are two frequency components instead of one component as shown in the
original HHT’s results. Hence, the original HHT has distorted the true results. Such distortion
will definitely affect the accuracy in vibration signal analysis, which may lead to an incorrect
conclusion in fault diagnosis. Note that, when the rubbing condition becomes serious, more
notable high-frequency components change themselves with time. Such an observation is an
accordance with the two symptoms previously defined for monitoring the deterioration of
rubbing.
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Fig. 11. The temporal waveform of a simulated vibration signal with serious rubbing condition, its FFT spectrum, and

the results of the original HHT and the improved HHT.

Z.K. Peng et al. / Journal of Sound and Vibration 286 (2005) 187–205202
4.2. Comparison in detecting rubbings occurred in a real rotary system

To further verify the performance of the improved HHT, vibration signals were collected from
a real rotary system that had a moderate and later a serious rubbing condition. The rotary system
consists of a rotor and a stator, a driving motor, journal bearings and couplings. Different
conditions of rubbings were created by increasing the tightness between the rotor and the stator so
that both the surfaces and the severity of rubbings increased. More detailed information on the
rotary system and the construction of rubbings can be found in Ref. [11]. Vibration signals were
collected from the rotary system using non-contact eddy-current transducers at a sampling rate of
1.6 kHz. The rotational speed of the rotary system was set at 3000 rev/min.

Fig. 12 shows the temporal waveform of the vibration signal acquired from the rotary system
suffered from a moderate rubbing condition, its analysed and the FFT spectrum, and the
comparison results of the original HHT and the improved HHT. The labels, notations, and scales
used for previous figures also apply here. Similar to previous comparison results, except for the
frequency component near 0.05, the results generated by the original HHT (the top left diagram)
cannot present the true frequency patterns of the inspected signal collected under the moderate
rubbing condition. Again, the high-frequency components are so vague that they are hardly being
identified. The frequency component near 0.025 is missing because of its low energy content. On
the contrary, the results of the improved HHT (the top right diagram) show more frequency
components and separate the high-frequency components clearly. The missing low-frequency
component near 0.025 can easily be identified.
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Fig. 12. The temporal waveform of a real vibration signal collected from moderate rubbings, its FFT spectrum, and the

results of the original HHT and the improved HHT.
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The two symptoms of rubbing also become obvious in the results of the improved HHT. The
high-frequency components fall within the range of 0.15–0.3 change their frequency values
periodically, whilst, the low-frequency components adjacent to 0.05 change their amplitudes
periodically, but hold their frequency values relatively constant in time. Therefore, the two
symptoms for determining rubbings occurred to appear in both simulated and real experimental
tests.

The temporal waveform of the vibration signal collected from serious rubbings occurring in the
rotary system, the signal’s FFT spectrum, and the results of the original HHT and the improved
HHT, are shown in Fig. 13. Compared with the signal acquired during the rotary system suffered
from moderate rubbings, the results of the improved HHT (the top left diagram) show more high-
frequency components, such as the one at around 0.27. Similar to the simulated results, the low-
frequency component near 0.025, which has been missing in the results of the original HHT as in
Fig. 12, appears in the results of the original HHT because of the increased severity in rubbings.
Nonetheless, the high-frequency components are still very difficult to be identified in the results of
the original HHT (the top right diagram). Again, the results of the improved HHT present the
true frequency patterns of the inspected signal. The two major symptoms for confirming the
existence of rubbings also appeared in the results of the improved HHT, with both the changes of
frequency for high-frequency components locate within 0.18–0.3 and the changes of amplitude for
the low-frequency components near 0.05 appear nearly periodically with time.

Both the experimental and the simulated results confirm that the improved HHT can provide a
clear diagnosis on the symptoms of rubbings. Hence, it is a promising signal analysing for
detecting the occurrence of rubbing fault and monitoring its deterioration. On the contrary, the



ARTICLE IN PRESS

Fig. 13. The temporal waveform of a real vibration signal collected from serious rubbings, its FFT spectrum, and the

results of the original HHT and the improved HHT.
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results of the original HHT do not reveal these symptoms clearly; hence, it is not a qualified tool
for rubbing type of signal analysis. Even worst, it may mislead the operators in making incorrect
conclusion in rubbing fault diagnosis.
5. Conclusions

In this research, a novel time–frequency analysis method named as HHT has been introduced in
detail. Three major shortcomings of the HHT have been put forward. They include the first
obtained IMF may cover too wide a frequency range that may induce the HHT fails to produce
an accurate frequency pattern for the inspected signal, the generation of undesirable
pseudocomponents to the result that may cause misinterpretation to the result, and the loss of
frequency components that have low energy content. To solve these shortcomings, an improved
HHT has been suggested in this paper. The improved HHT utilizes the WPT to act as a
preprocessor to decompose the raw signal into a set of narrow band signals. Then the EMD will
be applied to these narrow band signals and extract sets of IMFs. After the IMFs have been
obtained, then a simple prescreening process will be applied to retain those vital IMFs that are
related to the raw signal. Both the original HHT and the improved HHT have been used to
analyse simulated and experimental vibration signals generated from different degree of severity
in rubbings. The results confirmed that the improved HHT is a promising tool for analysing
rubbing vibration signal that exhibited nonlinear and non-stationary properties. Moreover, from
the test results, two major symptoms have been identified for confirming the occurrence of
rubbing fault and monitoring its deterioration. The two symptoms include (1) the high-frequency
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components will change their frequency values periodically when rubbings occur, and (2) the low-
frequency components will change their amplitudes periodically if the fault of rubbing becomes
serious. Besides the fault of rubbing, other types of fault signals that exhibit nonlinear and non-
stationary properties will be used to further verify the effectiveness of the improved HHT.
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