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Abstract

The objective of this paper is an analytical and numerical study of the transient dynamics of a
beam–mass system carrying multiple masses moving along an initially curved beam. An attention is given
to the phenomena arising due to the initial curvature, initial imperfection, of a beam and the motion
produced by the existence of multiple moving masses.

The method used in the analysis is Newtonian. The mechanics of the interface between the masses and
the beam is determined by modeling the masses as rigid bodies that are rolling on an initially curved flexible
structure when the moving masses are set on motion. Based on the Euler–Bernoulli beam theory, the
mechanics, including effects due to friction and convective accelerations, of the interfaces between the
moving masses and the beam are obtained.

Result of present study shows that the initial curvature of a beam can result significant effects to the
dynamics of the system even if the initial imperfection of the beam is small. The magnification of the
amplitude of response of the system due to the initial deviation of beam depends on the initial speed of
mass, the applied forward/retard force on the mass, and the friction between the mass and the beam.
r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Vibrations of flexible structures with attached moving masses have been the subject of many
studies [1–13]. Steele [1,2] investigated the response of a simple supported finite beam with and
without elastic foundation under a moving load. He pointed out that the existence of a truly
critical speed and the impossibility of the occurrence of a steady-state occur when the load speed is
equal to either the shear or the bar velocity.
Ting et al. [3] studied the problem regarding the interaction between the moving mass and the

supporting structure. They concluded that if ‘‘correct’’ formulation is desired the convective
acceleration terms should be included.
An attention is given to the phenomenon produced by the existence of negative displacement of

a beam due to the motion of an attached moving mass. Lee [4] investigated the occurrence and
relative conditions of the separation between flexible structures and riding masses.
Recently, sophisticated effects, such as longitudinal deflections, inertia, nonlinearity of the flexible

structure, the variation of moving masses to the response, and the occurrence of instability of the
response have been the subjects of many studies [5–7]. Adams [5] studied the critical speeds and the
response of a tensioned beam due to the motion of attached cyclic moving loads. Wang [6] employed
the method of multiple time scales to study the growth of small amplitude vibrations into large motion
regime of a beam–mass system due to the occurrence of two-component parametric resonance.
Kononov and Borst [7] analyzed the occurrence of instability of the response of four different

flexible structures under elastic foundation due to the motion of a riding mass moving with
constant velocity. Their result indicated that negative damping might occur when the mass
velocity exceeded the smallest phase velocity of the waves in the system. This could cause the
solutions became unstable.
Mofid and Shadnam [8] studied the response of beams with internal hinges when a moving mass

sliding on it. They examined the transient dynamics of the system due to various boundary conditions.
Wang [9] considered a model that a moving mass may increase or decrease its speed during

operation. A single mass moving on a perfect straight beam on a uniform elastic foundation was
assumed in the modeling.
Although, the problem of moving mass has been studied by many authors, however, the dynamics

of multiple accelerating/decelerating masses rolling on an initially curved beam has not been studied
yet. Hence, in this study, the purpose is to present a methodology to evaluate the transient dynamics
of a beam–mass system carrying multiple accelerating/decelerating masses riding on a beam with
initial curvature, geometric imperfection. Unlike other papers, in which a single mass with either
constant velocity or acceleration moving along a perfect straight beam is assumed, in this paper the
equations of motion of a beam–mass system carrying multiple traveling masses rolling on an initially
curved beam are derived. Various effects, such as the initial deviation of a beam, the initial speed of
moving masses, the friction and et al., to the motion of the system are examined.
2. Basic formulas

In this study, multiple moving masses rolling on a finite, simple supported, initially curved
beam is considered. The beam rests on a uniform elastic foundation and is of length ‘ and initial
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variation v̄0ðsÞ: Here v̄0ðsÞ; v̄0ðsÞ ¼ v�0 sin ps=‘; is the initial deviation of the beam measured from
straight axis with v�0 being the amplitude of initial deviation. The static state of the beam is
obtained by assuming that the gravity of the beam and the foundation preload are in the state of
equilibrium.
From Fig. 1, the equations governing the motion of the system can be derived from the dynamic

equilibrium of forces and momenta and are given as

F;s þ
Xm

i¼1

f i ¼ m̄r;tt; 0osol; t40; (1a)

M̄;s � V ¼ 0; (1b)

M̄ ¼ �EIv;ss; (1c)

with the inextensibility constraint r;s � r;s ¼ 1: The force F is given by

F ¼ Hiþ Pj

¼ ½T cosðyþ y0Þ � V sinðyþ y0Þ	iþ ½T sinðyþ y0Þ þ V cosðyþ y0Þ	j: ð1dÞ

In the above equations, i and j represent the unit vectors of the coordinate system in the x and y

directions, respectively. M̄ is the bending moment acting on the element. T and V are the axial and
the transverse forces in the beam, respectively. m denotes the number of traveling masses riding on
the beam. m̄ represents the mass per unit length of the beam. y0 and y indicate the initial angle
between the neutral axis of the beam and the x-axis and the dynamic angle from the static state,
respectively. E is the Young’s modulus and I is the area moment of inertia of the beam. The
subscript s and t denote the s and t differentiation. rðs; tÞ is the Cartesian position vector of point s
along the beam at time t and has the form

rðs; tÞ ¼ ½xðsÞ þ uðs; tÞ	iþ ½vðs; tÞ þ v̄0ðsÞ	j; (2)

where uðs; tÞ and vðs; tÞ are the axial and the transverse displacements of the beam from the
undeformed state, respectively.
The force f i represents the external forces including the weight and the moving reaction of the

ith mass upon the beam and can be stated by

f i ¼ �kvjþ ðNinþ mNiŝÞd̄ðs � s̄iðtÞÞ; (3)

where Ni; d̄ðs � s̄iðtÞÞ; and s̄iðtÞ denote the reaction of beam on the ith mass, the Dirac delta
function, and the position of the ith mass along the arc of the beam at time t, respectively; m is the
coefficient of friction between the mass and the beam and k is the foundation stiffness per unit
length.
The equation of motion of the ith mass obeys (Fig. 1)

Mia
i
M ¼ Migþ f i

M � mNiŝ � Nin; (4)

where Mi ¼ the mass of the ith moving mass, ŝ ¼ cosðyþ y0Þiþ sinðyþ y0Þj 
 ½ð1þ u;sÞ �
v;sv̄0;s	iþ ðv;s þ v̄0;sÞj; n ¼ � sinðyþ y0Þiþ cosðyþ y0Þj; g ¼ gj: Note that here it is assumed that
whenever the ith mass is being driving by a force along the beam, the force on the mass will be
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along the tangent to the vibrating beam. Hence, f i
M ¼ Mif iŝ and f i is a prescribed function of

time. For example, f i may be a positive constant to increase the speed or a negative constant to
decrease the speed of the ith mass.
The acceleration of the ith moving mass ai

M is obtained from

ai
M ¼

d2

dt2
½rðs̄iðtÞ; tÞ	 ¼ r;ssðs̄i;tÞ

2
þ 2r;sts̄i;t þ r;ss̄i;tt þ r;tt: (5)
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The corresponding boundary conditions for the finite, simple supported Euler–Bernoulli beam
are

uð0; tÞ ¼ vð0; tÞ ¼ vð‘; tÞ ¼
q2vð0; tÞ
qs2

¼
q2vð‘; tÞ
qs2

¼ 0; (6)

Hð‘; tÞ ¼ Tð‘; tÞ½ð1þ u;sÞ � v;sv̄0;s	 þ EI v;sssðv;s þ v̄0;sÞ ¼ 0; at s ¼ ‘; (7)

where Eq. (7) is obtained under the condition that the resultant in the i direction vanished at s ¼ ‘:
Introducing the following dimensionless quantities

t ¼

ffiffiffiffiffiffiffiffiffiffi
EI

m̄l‘4

r
t; M̂ ¼

M

m̄‘
; T̂ ¼

‘2

EI
T ; f̂ ¼

m̄‘3

EI
f ; ĝ ¼

m̄‘3

EI
g;

k̂ ¼
k‘3

EI
; Z ¼

s

‘
; xi ¼

s̄i

‘
; v̂ ¼

v

‘
; û ¼

u

‘
; ^̄v0 ¼

v̄0

‘
; (8)

and substituting Eqs. (1b)–(8) with the inextensibility constraint into Eq. (1a), the equation of
motion of the combined system in directions i and j yields, in dimensionless form,

fT̂ ½ð1þ û0
Þ � v̂0 ^̄v

0

0	 þ v̂000ðv̂0 þ ^̄v
0

0Þg
0 þ

Xm

i¼1

M̂if̂ i½ð1þ û0Þ � v̂0 ^̄v
0

0	ÞdðZ� xiÞ

¼ €̂u þ
Xm

i¼1

M̂if½û
00
� ðv̂0 ^̄v

0

0Þ
0
	ð_xiÞ

2
þ 2ð _̂u

0
� _̂v0 ^̄v

0

0Þ
_xi

þ ½ð1þ û0
Þ � v̂0 ^̄v

0

0	½
€xi þ

€̂u	dðZ� xiÞ; 0oZo1; t40; ð9aÞ

fT̂ðv̂0 þ ^̄v
0

0Þ � v̂000½ð1þ û0
Þ � v̂0 ^̄v

0

0	g
0 þ

Xm

i¼1

M̂i½f̂ iðv̂
0
þ ^̄v

0

0Þ þ ĝ	dðZ� xiÞ

¼ €̂v þ k̂v̂ þ
Xm

i¼1

M̂i½ðv̂
00
þ ^̄v

00

0Þð
_xiÞ

2
þ 2 _̂v

0 _xi þ ðv̂0 þ ^̄v
0

0Þ
€xi þ

€̂v	dðZ� xiÞ;

0oZo1; t40; ð9bÞ

where a superposed prime and a dot denote the Z and t differentiation and ^̄v0 ¼ v̄0=‘ ¼
v�0=‘ sinpZ � v0 sin pZ:
Considering small deformations and assuming that the variation of axial force is to remain

continuous at Z ¼ xiðtÞ; i ¼ 1; 2; . . . ; the axial force T̂ can first be determined by integrating Eq.
(9a) and using the boundary condition, Eq. (7). This result then is inserted into Eq. (9b). After
manipulating these equations and neglecting nonlinear terms in the displacement field when
compare these terms to the linear term of v̂ðZ; tÞ and unity, Eq. (9b) yields

€̂v þ v̂000
0
þ k̂v̂ þ

Xm

i¼1

M̂ifðv̂
00
þ ^̄v

00

0Þð
_xiÞ

2
þ 2_̂v

0 _xi þ ðv̂0 þ ^̄v
0

0Þ
€xi

þ €̂v � ½f̂ iðv̂
0
þ ^̄v

0

0Þ þ ĝ	gdðZ� xiÞ; 0oZo1; t40: ð10Þ
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Similarly, considering the equation of motion of the ith mass, Eq. (4), one has

€xi � ½mðv̂00 þ ^̄v
00

0Þð
_xiÞ

2
� 2m _̂v

0 _xi ¼ f̂ � ĝ½m� ðv̂0 þ ^̄v
0

0Þ	 þ m €̂v; Z ¼ xi; t40: (11)

Note that Eq. (11) was obtained by eliminating the normal reaction force Ni of beam on the ith
mass between the two equations in directions i and j of Eq. (4) and using the inextensibility
constraint. Therefore, Eqs. (9a), (9b), (10) and (11) with the inextensibility constraint account for
ûðZ; tÞ; v̂ðZ; tÞ; T̂ and xi when M̂i; m; ĝ; ^̄v0; and the boundary conditions, Eqs. (6) and (7), are
specified. Hence, examination of the transient dynamics governed by Eqs. (10) and (11) is the
main purpose in this study.
By representing v̂ as a continuous function and letting v̂ ¼

P1

n¼1 AnðtÞ sin npZ; 0oZo1; t40;
the boundary condition, Eq. (6), then is satisfied. The approximate solution of the beam–mass
system can be obtained by employing the Galerkin‘s method. Using Galerkin’s procedure for
removal of spatial dependence, Eq. (10) is multiplied by sin jpZ and then it is integrated with
respect to Z from zero to one. The approximate solutions of the beam–mass system carrying
multiple traveling masses are given as

€AjðtÞ þ o2
j AjðtÞ þ 2

Xm

i¼1

M̂i

X1
n¼1

fð€xi � f̂ iÞRijnðxiÞAnðtÞ � ð_xiÞ
2SijnðxiÞAnðtÞ

þ 2_xiRijnðxiÞ
_AnðtÞ þ ŜijnðxiÞ

€AnðtÞg

¼ 2
Xm

i¼1

M̂i½ĝŜijðxiÞ � ð€xi � f̂ iÞRij1ðxiÞv0 þ ð_xiÞ
2Sij1ðxiÞv0	; 0oZo1; t40: ð12Þ

Also the equation of motion of the ith mass, Eq. (11), becomes

€xi þ m
X1
n¼1

SinðxiÞAnðtÞ þ Si1ðxiÞv0

" #
ð_xiÞ

2
� 2m

X1
n¼1

CinðxiÞ
_AnðtÞ_xi

¼ ðf̂ i � mĝÞ þ ĝ
X1
n¼1

CinðxiÞAnðtÞ þ Ci1ðxiÞv0

" #
þ m

X1
n¼1

ŜinðxiÞ
€AnðtÞ; t40; ð13Þ

where

o2
j ¼ ½ðjpÞ4 þ k̂	;

v0 ¼
v�0
‘
;

RijnðxiÞ ¼ ðnpÞ sin jpxi cos npxi;

ŜijnðxiÞ ¼ sin jpxi sin npxi;

SijnðxiÞ ¼ ðnpÞ2ŜijnðxiÞ;

ŜinðxiÞ ¼ sin npxi;
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CinðxiÞ ¼ ðnpÞ cos npxi:

To write the equations of motion in matrix form, it allows the parameters j and n in Eqs. (12)
and (13) to have the range

j ¼ 1; 2; 3; . . . ;N;

n ¼ 1; 2; 3; . . . ;N;

and let

y ¼ ðA1;A2; . . . ;ANÞ
T: (14)

Then Eq. (12) can be written as

MðxiÞ€yðtÞ þ
Xm

i¼1

_xiNiðxÞ_yðtÞ þ K1ðxiÞyþ
Xm

i¼1

€xiK2iðxiÞy

þ
Xm

i¼1

_x
2

i K3iðxiÞyþ
Xm

i¼1

€xi ~ci þ
Xm

i¼1

_x
2

i ~si ¼ hðxiÞ ð15Þ

and Eq. (13) is given as

€xi þ ½piðxi; yÞ þ p̄iðxi; v0Þ	_x
2

i þ qiðxi; _yÞ_xi þ dTi ðxiÞ€yþ eTi ðxiÞy ¼ f �
i : (16)

The initial conditions are

_yð0Þ ¼ yð0Þ ¼ 0; _xið0Þ ¼ _x
0

i and xið0Þ ¼ x0i ; (17)

where _x
0

i and x0i are the initial speed and the position of the ith mass along the beam, respectively.
The components of the previously defined matrices, vectors and scalars in Eqs. (15) and (16), i.e.,
M; K1; Ni; K2i; K3i; ~ci; ~si; h; pi; p̄i; qi; di; ei and f �

i are given in the appendix.
Now, introducing new state vectors z into Eqs. (15) and (16) to obtain the numerical integration

scheme of the system with the associated initial conditions as specified in Eq. (17), let

z ¼ ð_yT; _n
T
; yT; nTÞT; (18)

where z is the 2N þ 2m vector with _n ¼ ð_x1; . . . ; _xi; . . . ; _xmÞ
T and n ¼ ðx1; . . . ; xi; . . . ; xmÞ

T: The
initial condition of z in Eq. (18) is zð0Þ ¼ ð0T; _n

T

0 ; 0
T; nT0 Þ

T; where 0 is N � 1 zero matrix. _n0 and n0
are m � 1 initial velocity and position matrices, respectively. Hence, Eqs. (15) and (16) can be
written as

~M_zþ ~Nzþ ~f ¼ 0: (19)

In Eq. (19), ~M and ~N are ð2N þ 2mÞ � ð2N þ�2mÞmatrices and ~f is the ð2N þ 2mÞ vector defined
by

~M ¼

M K̄2m N̄ ½0̄m	
T

D̄
T

m Im ½0̄m	 I_xp

½0	 ½0̄m	
T I ½0̄m	

T

½0̄m	 ½0m	 ½0̄m	 Im

2
66664

3
77775;
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~N ¼

½0	 S̄m K̄ ½0̄m	
T

½0̄m	 Iq Ēm ½0m	

�I ½0̄m	
T ½0	 ½0̄m	

T

½0̄m	 �Im ½0̄m	 ½0m	

2
66664

3
77775;

~f ¼ ð�hT;�f̄
T

m; 0
T; 0TmÞ

T;

where I ¼ N � N unit matrix, ½0	 ¼ N � N zero matrix, 0 ¼ N � 1 zero matrix, Im ¼ m � m unit
matrix, ½0̄m	 ¼ m � N zero matrix, ½0m	 ¼ m � m zero matrix, and 0m ¼ m � 1 zero matrix. Other
sub-matrices are given as follows:

K̄2m ¼ N � m matrix ¼ ½K21yþ ~c1; . . . ;K2iyþ ~ci; . . . ;K2myþ ~cm	;

D̄m ¼ N � m matrix ¼ ½d1; . . . ; di; . . . ; dm	;

Ēm ¼ m � N matrix ¼ ½e1; . . . ; ei; . . . ; em	
T;

I_xp ¼ m � m diagonal matrix ¼ diag½_x1ðp1 þ p̄1Þ; . . . ; _xiðpi þ p̄iÞ; . . . ; _xmðpm þ p̄mÞ	;

N̄ ¼ N � N matrix ¼ ½N1; . . . ;Ni; . . . ;Nm	 � ðx1; . . . ; xi; . . . ; xmÞ
T;

K̄ ¼ N � N matrix ¼ K1 þ ½K31; . . . ;K3i; . . . ;K3m	 � ð_x
2

1; . . . ;
_x
2

i ; . . . ;
_x
2

mÞ
T;

S̄m ¼ N � m matrix ¼ ½_x1~s1; . . . ; _xi~si; . . . ; _xm~sm	;

Iq ¼ m � m diagonal matrix ¼ diag½q1; . . . ; qi; . . . ; qm	;

fm ¼ m � 1 matrix ¼ ðf �
1; . . . ; f

�
i ; . . . ; f

�
mÞ

T:
3. Numerical results and discussions

For studying the transient dynamics produced by the motion of multiple moving masses, the
number of moving masses used in the numerical examples is set to be one and two. The transient
phenomena generated by more than two moving masses can be obtained by similar ways.
In order to evaluate the influence of initial curvature of the beam to the dynamic response of the

system, unless otherwise specified, three small values of dimensionless amplitude of initial
curvature of the beam are chosen; they are v0 ¼ 0:0 (initially straight), 0.025, and 0.05. In
addition, the quantity EI=m̄l4 is set to be ð9:4=pÞ2:
For numerical integration of the system, Eq. (19), the Runge–Kutta method with sixth-order

accuracy is used. The accuracy of the model and the dimension N of z in Eq. (19) that is necessary
to retain for sufficient accuracy is shown in Fig. 2. As illustrated in Fig. 2, the accuracy of the
model, with an attached single mass, was tested by comparison of its results with the results of
Ting et al. [3] (lower plot). The parameters used in this figure are exactly the same as those used in
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Fig. 2. Rate of convergence of solutions and the trajectory of mass vs. the position of mass along the beam with the

same parameters as used in Ref. [3] for _x ¼ 0:75p and _x ¼ 0:5p:
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Ting et al. [3]. Those are €x ¼ f̂ ¼ 0; M̂ ¼ 0:5; v̂st ¼ M̂ĝ=48; and _x ¼ 0:5p and _x ¼ 0:75p: The
dimension N of z is set to be 30 to get convergent solutions (upper plot).
In the following four figures, Figs. 3–6, a single mass rolling on a beam under different

conditions is considered. Fig. 3 shows the deflection at mass (trajectory of mass) vs. the position of
mass along the beam due to the influence of geometric imperfection of beam when the mass is set
on motion with constant forward force, f̂ ¼ 0:25: Three different values of initial speed of the
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Fig. 3. Deflection at mass vs. the position of mass along the beam due to the influence of geometric imperfection of

beam for three different values of initial speed of the mass, _xð0Þ ¼ 0:0 (top plot), 0:25p (middle one), and 0:75p (bottom

plot).
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mass are chosen; they are _xð0Þ ¼ 0:0 (top plot), 0:25p (middle plot), and 0:75p (lowest plot); other
parameters used are M̂ ¼ 0:5 and m ¼ k̂ ¼ 0:0: Fig. 4 indicates similar information to that shown
in Fig. 3, except in this figure the initial speed of the mass is zero (_xð0Þ ¼ 0:0) and the mass is
accelerated by three different values of forward thrust, respectively; they are f̂ ¼ 0:25(top plot),
0.5 (middle one), and 0.75 (bottom plot). Other parameters applied in this figure are M̂ ¼ 0:5 and
m ¼ k̂ ¼ 0:0: Figs. 3 and 4 clearly indicate that the initial curvature of beam plays an important
role to the response of the system. In general, the initial imperfection amplifies the amplitude of
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Fig. 4. Deflection at the mass vs. the position of mass along the beam due to the influence of the initial curvature of

beam for three different values of forward force, f̂ ¼ 0:25 (top plot), 0.5 (middle one), and 0.75 (lowest plot).
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deflection at mass even if the initial deviation is small. From these two figures, it can be concluded
that the enlargement of the amplitude of deflection at mass due to the initial curvature of beam
increases with the increase of initial speed and forward thrust of the mass.
As mentioned, the mass can be accelerated by a forward force. Meanwhile, it is capable of

reducing speed by applying a reverse force to the mass and/or increasing the friction between the
mass and the beam. The friction then can be served as another braking unit of the system. Hence,
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the following two figures present the influence of geometric imperfection of beam to the response
of the system under the condition when the speed of mass decreases.
Fig. 5 indicates the manner in which the deflection at mass develops as a function of the

position of mass along the beam for M̂ ¼ 0:5; m ¼ k̂ ¼ 0:0; and _xð0Þ ¼ 0:5p: Three different values
of retard force are selected; those are f̂ ¼ �0:75 (top plot), �1:0 (center one), and �1:3 (lowest
plot). Fig. 6 indicates the same information as does Fig. 5, except in this figure the retard force
Fig. 5. Deflection at the mass develops as a function of the position of mass along the beam due to the influence of the

initial curvature of beam when retard force is applied on the mass. Three different values of retard force are used,

f̂ ¼ �0:75 (top plot), �1:0 (middle one), and �1:3 (lowest plot).
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Fig. 6. Deflection at the mass develops as a function of the position of mass along the beam due to the influence of the

initial curvature of beam for three different values of the friction m; m ¼ 0:0 (top plot), 0.15 (middle one), and 0.3 (lowest

plot).
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applied on the mass is constant, f̂ ¼ �1:1; and three different values of the coefficient of friction
are chosen; they are m ¼ 0:0 (top plot), 0.15 (middle one), and 0.3 (floor plot). Other parameters
used are M̂ ¼ 0:5; _xð0Þ ¼ 0:5p; and k̂ ¼ 0:0: The result of these two figures indicates that under
certain conditions, negative displacement at mass, which implies the separation of beam and mass,
may exist if the mass is going to stop near the right end of the beam. In general, the amplitude of
negative displacement increases as the magnitude of retard force and the friction increase. The
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result also shows that the geometric imperfection of beam amplifies the amplitude of negative
displacement.
Fig. 7 shows a comparison of the deflection profile of beam between a single mass (upper plot)

and two masses (lower one) rolling on a straight beam (v̂0 ¼ 0), respectively. Four instant
positions of the mass are chosen; for a single mass they are x ¼ 0:2; 0.5, 0.8, and 1.0; for two
masses the four instant positions are selected at the first mass. The parameters used for a single
mass are M̂ ¼ 0:5; f̂ ¼ 0:1; m ¼ k̂ ¼ 0:0; and _xð0Þ ¼ 0:25p; for two masses the parameters used are
m ¼ k̂ ¼ 0:0; M̂1 ¼ M̂2 ¼ 0:25; x1 � x2 ¼ 0:5; f̂ 1 ¼ f̂ 2 ¼ 0:1; and _x1ð0Þ ¼ 0:25p: The result
indicates that the phenomena produced by a single mass and two masses may be different. As
an example, for a single moving mass (upper plot) it is seen that negative displacement occurs
when the mass is at the right end of the beam (x ¼ 1:0). However, for two traveling masses (lower
Fig. 7. A comparison of the deflection profile of beam between a single mass (upper plot) and two masses (lower plot)

rolling on a straight beam (v0 ¼ 0:0) for four instant positions of the mass. The four instant positions are: x ¼ 0:2; 0.5,
0.8, and 1.0. For the lower plot, the four instant positions are measured at the first mass.
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plot), not only no negative displacement is found, but also the amplitude of deflection of beam is
largest when the first mass travels to the right end of the beam (x1 ¼ 1.0). Although, this is
expected because under this condition, the second mass is just at the midpoint of the beam
(x1 � x2 ¼ 0:5), however, it is seen that the phenomena generated by a single mass and two masses
may be different. Hence, in the following, a beam–mass system carrying two moving masses will
be studied.
Fig. 8. Deflection at the first mass vs. the position of the first mass along the beam due to the influence of geometric

imperfection of beam for three different values of initial speed of the mass, xð0Þ ¼ 0:0 (top plot), 0:25p (middle one), and

0:75p (bottom plot).
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Fig. 8 shows the manner in which the deflection at the first mass is plotted as a function of the
position of the first mass along the beam. Three different values of initial speed of the first mass
are chosen; they are _x1ð0Þ ¼ 0:0 (top plot), 0:25p (middle one), and 0:75p (lowest plot). Other
parameters used are M̂1 ¼ M̂2 ¼ 0:25; f̂ 1 ¼ f̂ 2 ¼ 0:25; k̂ ¼ m ¼ 0; and x1 � x2 ¼ 0:1: Fig. 9
indicates similar information to that shown in Fig. 8, except in this figure _x1ð0Þ ¼ 0:75p and three
different values of the distance between the two masses are chosen, x1 � x2 ¼ 0:1 (top one), 0.3
Fig. 9. Deflection at the first mass vs. the position of the first mass along the beam due to the influence of geometric

imperfection of beam for three different values of the distance between the two masses, x1 � x2 ¼ 0:1 (top plot), 0.3

(middle one), and 0.5 (bottom plot). The initial speed is _x1 ¼ 0:75p:
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(center plot), and 0.5 (bottom one). The result indicates that the deflection at mass is significantly
affected by the initial speed of the mass and the initial curvature of beam. The amplitude of
deflection at the first mass increases with the increase of the initial speed of the mass and the initial
deviation of beam.
Figs. 10 and 11 illustrate the influence of geometric imperfection of beam to the response of the

system at the first mass when the speed of mass decreases. In Fig. 10, the parameters used are
m ¼ k̂ ¼ 0:0; M̂1 ¼ M̂2 ¼ 0:25; f̂ 1 ¼ f̂ 2 ¼ �1:3; _x1ð0Þ ¼ 0:5p; and three different values of the
Fig. 10. The influence of geometric imperfection of beam to the deflection at the first mass when retard force is applied

on the mass (f̂ 1 � f̂ 2 ¼ �1:3). Three different values of x1 � x2 are used, x1 � x2 ¼ 0.1 (top plot), 0.3 (middle one), and

0.5 (lowest plot). The initial speed is _x1ð0Þ ¼ 0:5p:
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Fig. 11. Deflection at the first mass vs. the position of the first mass along the beam due to the influence of geometric

imperfection of beam when the speed of mass decreases. Three different values of the friction are selected, m ¼ 0:0 (top

plot), 0.15 (middle one), and 0.3 (bottom plot).
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distance between the two masses; they are x1 � x2 ¼ 0:1 (top plot), 0.3 (middle one) and 0.5
(bottom plot). In Fig. 11, the parameters selected are x1 � x2 ¼ 0:1; k̂ ¼ 0:0; M̂1 ¼ M̂2 ¼ 0:25;
f̂ 1 ¼ f̂ 2 ¼ �1:1; _x1ð0Þ ¼ 0:5p , and three different values of the friction; they are m ¼ 0:0 (top
plot), 0.15 (middle one), and 0.3(bottom plot). It clearly indicates that the retard force and the
friction can serve as a simulated braking system and can be used to bring the moving masses to a
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halt at desired point on the beam. In addition, it is interesting to note that the friction and the
initial curvature of beam may amplify the amplitude of negative displacement at the first mass.
The comparison of the deflection at the first mass and the second mass is given in Figs. 12 and

13. In Fig. 12, the lower plot presents the deflection at the first mass vs. the position of the first
mass along the beam. The lower diagram indicates the deflection at the second mass vs. the
position of the second mass along the beam. The parameters used are v0 ¼ 0; m ¼ k̂ ¼ 0:0; _x1ð0Þ ¼
0:5p; M̂1 ¼ M̂2 ¼ 0:4; x1 � x2 ¼ 0:2; and three different values of the retard force, f̂ 1 ¼ f̂ 2 ¼

�0:5; �1:0 and �1:5: Fig. 13 illustrates the effect of elastic foundations to the deflection at the
masses. This figure shows the same information as does Fig. 12, except in the figure three different
values of the stiffness of elastic foundation are selected; they are k̂ ¼ 0; 100, and 200. The retard
force applied on the masses is f̂ 1 ¼ f̂ 2 ¼ �1:0:
Fig. 12. Deflection at the first mass (lower plot) and at the second mass (upper one) rolling on a straight beam

(v0 ¼ 0:0) for three different values of retard force. They are f̂ 1 ¼ f̂ 2 ¼ �0:5;�1:0; and �1:5: Other parameters used are
_x1ð0Þ ¼ 0:5p; M̂1 ¼ M̂2 ¼ 0:4; m ¼ 0:0; and x1 � x2 ¼ 0:2:
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Fig. 13. Deflection at the first mass (lower plot) and at the second mass (upper one) rolling on a straight beam

(v0 ¼ 0:0) for three different values of elastic foundation. They are k̂ ¼ 0; 100, and 200. Other parameters used are
_x1ð0Þ ¼ 0:5p; M̂1 ¼ M̂2 ¼ 0:4; f̂ 1 ¼ f̂ 2 ¼ �1:0; m ¼ 0:0; and x1 � x2 ¼ 0.2.
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From Figs. 12 and 13, it is found that the dynamic behaviors at the first mass and the second
mass are generally different. As an example, when the first mass is near the right end, no negative
displacement is found. This is expected since the second mass is still riding on the beam when the
first mass is close to the right end. The result of Fig. 13 also indicates that, as expected, the
increase of the foundation stiffness diminishes the amplitude of deflection at the masses.
4. Conclusions

In this study, the transient dynamics of multiple accelerating/decelerating masses traveling
along an initially curved beam are studied. In the modeling, the coupled equations of motion of
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multiple moving masses rolling on a beam with initial curvature are derived. In the numerical
analysis, the transient dynamics of a beam–mass system carrying one and two traveling masses
traveling on an initially curved beam are studied.
Result of present study shows that the initial curvature of a beam can result significant effects to

the dynamics of the system even if the initial imperfection of the beam is small. In general, the
initial imperfection of beam amplifies the amplitude of vibration of the system. It can be
concluded that for accelerating case, the magnification of the amplitude of response at mass due
to the initial deviation of beam grows with the increase of initial speed and forward force. For
decelerating condition, the growth of the deflection at mass caused by the initial imperfection of
beam increases with the increase of initial speed, applied retard force, and the friction between the
mass and the beam.
In this study, the traveling mass may reduce its speed by applying a retard force and/or

increasing the friction between the mass and the beam. The retard force and the friction then can
serve as a simulated braking system. Under certain conditions, negative displacement at mass may
occur if the mass approaches to stop near the right end of the beam. The result indicates that the
amplitude of negative displacement at mass increases with the increase of the initial curvature of
beam.
In addition, under the condition when multiple traveling masses is considered, the response of

the system at different masses are distinct. As shown in Figs. 12 and 13, negative displacement at
the second mass occurs when the second mass is near the right end of the beam. However, no
negative displacement at the first mass is observed.
Appendix

M ¼ ½Mjn	; Mjn ¼ djn þ 2
Xm

i¼1

M̂iŜijnðxiÞ;

Ni ¼ ½Nijn	; Nijn ¼ 4M̂iRijnðxiÞ;

K1 ¼ ½K1jn	; K1jn ¼ ððjpÞ4 þ k̂Þdjn � 2
Xm

i¼1

M̂if̂ iRijnðxiÞ;

K2i ¼ ½Ki
2jn	; Ki

2jn ¼ 2M̂iRijnðxiÞ;

K3i ¼ ½Ki
3jn	; Ki

3jn ¼ �2M̂iSijnðxiÞ;

~ci ¼ ð ~CijÞ; ~Cij ¼ 2M̂iv0Rij1ðxiÞ;

~si ¼ ð ~SijÞ; ~Sij ¼ �2M̂iv0Sij1ðxiÞ;

h ¼ ðhjÞ; hj ¼ 2
Xm

i¼1

M̂i½ĝŜijðxiÞ þ f̂ iv0Rij1ðxiÞ	;

si ¼ ðSinÞ; Sin ¼ SinðxiÞ ¼ ðnpÞ2 sin npxi ¼ ðnpÞ2ŜinðxiÞ;

ci ¼ ðCinÞ; Cin ¼ CinðxiÞ ¼ ðnpÞ cos npxi;

di ¼ �ĝðŜinÞ;
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ei ¼ �mðCinÞ;

piðxi; yÞ ¼ msTi y; si ¼ ðSinÞ; Sin ¼ SinðxiÞ ¼ ðnpÞ2 sin npxi ¼ ðnpÞ2ŜinðxiÞ;

qiðxi; yÞ ¼ �2mic
T
i _y; ci ¼ ðCinÞ; Cin ¼ CinðxiÞ ¼ ðnpÞ cos npxi;

f �
i ¼ ðf̂ i � mĝÞ þ ĝv0Ci1:
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