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Abstract

We present an exact method for calculating eigenmodes and eigenfrequencies for an acoustic enclosure
(AE) defined by two confocal parabolic cylinders and two plane surfaces using parabolic cylinder
coordinates. Rigid-wall boundary conditions are assumed; however, the model can easily be extended to
include the more general case with mixed boundary conditions. A discussion of eigenmode symmetry
properties and mode frequency dependence on AE shape is given. The latter problem is addressed by
considering a series of symmetrical and asymmetrical AEs having the same volume.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The Helmholtz equation is known to be separable in 11 coordinate systems including the
parabolic cylinder coordinates (PCC) [1,2]. In this paper, an exact method is applied to determine
eigenmodes and eigenfrequencies in an acoustic enclosure (AE) defined by two confocal parabolic
cylinders and two plane surfaces subject to rigid-wall boundary conditions (rP � n ¼ 0; where P
is the acoustic pressure and n is a surface normal vector). The medium confined by the AE
is assumed to be an ideal fluid with spatially uniform properties. The problem is solved
see front matter r 2004 Elsevier Ltd. All rights reserved.
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quasi-analytically using the Frobenius power series expansion technique based on the separability
of the eigenfunction. In contrast to numerical methods such as the finite-element method (FEM)
and the boundary-element method (BEM) [3–6], the present analytical method allows eigenmodes
and eigenfrequencies to be obtained exactly including the full parameter dependencies and
symmetry properties. The corresponding cases with AEs of rectangular, spherical, and cylindrical
shapes are well-known from textbook examples. The reason for studying the AE problem in PCC
is motivated by the need to understand better the sound field in AEs (and waveguides) with lens-
shaped cross-sections at intermediate frequencies where both geometrical acoustical and ray-
tracing models fail to provide accurate results. There has been previous work on elliptic cylinders
[7,8], motivated in part by application to mufflers and ducts. We show here that the parabolic
cylinder problem is, in fact, even easier to solve. Since the cross-section is determined by two
surfaces, a parabolic cylinder also allows a higher degree of engineering.
In the next section, we show how the Helmholtz equation is separated using PCC and present a

series solution of the resulting ordinary differential equations. We then present numerical results
for various AEs.
2. Theory

2.1. Helmholtz equation in PCC

In this section, we show how to calculate the eigenmodes and eigenfrequencies for an AE
defined by two confocal parabolic cylinders (jnj ¼ n0 and m ¼ m0) and two plane surfaces z ¼ z1
and z ¼ z2 (Fig. 1). The relation between the PCC and cartesian coordinates is as follows:

x ¼ 1
2
ðm2 � n2Þ;

y ¼ mn;

z ¼ z;

0pmo1; �1onoþ1; �1ozoþ1: ð1Þ
z x

y
ν

µ0

L

H
R

0

Fig. 1. Geometry of AE (cross-sectional view in z plane).
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We have chosen the range of n to include negative values in order to cover the yo0 region. The
expressions for the various geometrical parameters given in Fig. 1 are as follows:

R ¼ xmax � xmin ¼
1
2
ðm20 þ n20Þ; ð2Þ

H ¼ 1
2
ðymax � yminÞ ¼ m0n0; ð3Þ

V ¼ 2
3

Lm0n0ðm
2
0 þ n20Þ ¼

4
3

LRH; ð4Þ

where L is the axial length of the AE (along the z-axis), R is the radius (along the x-axis), H is the
height (along the y-axis), and V is the AE volume. The volume is obtained by integrating a volume
element in PCC:

V ¼

Z z2

z1

Z m0

0

Z n0

�n0
ðm2 þ n2Þdzdmdn (5)

and use is made of L ¼ z2 � z1:
The eigenmodes P and eigenfrequencies f of an AE are obtained by solving the Helmholtz

equation

r2PðrÞ þ k2PðrÞ ¼ 0; (6)

subject to the rigid-wall boundary condition

rP � njðm¼m0;jnj¼n0;z¼z1;z¼z2Þ ¼ 0; (7)

where k ¼ o=c; o is the angular frequency ð¼ 2pf Þ; and c is the speed of sound in the medium
inside the AE. The Laplacian in PCC reads:

r2P ¼
1

m2 þ n2
q2P
qm2

þ
q2P
qn2

� �
þ

q2P
qz2

: (8)

Helmholtz’s equation is known to be separable in PCC [1]. Writing

Pðm; n; zÞ ¼ MðmÞNðnÞZðzÞ; (9)

one gets the following separated ordinary differential equations:

d2M

dm2
� ðaþ bm2ÞM ¼ 0; ð10Þ

d2N

dn2
þ ða� bn2ÞN ¼ 0; ð11Þ

d2Z

dz2
þ ðk2 þ bÞZ ¼ 0; ð12Þ

where a and b are separation constants to be determined in the following.
Series solutions to the ordinary differential equations (10)–(12) can be found using the

Frobenius method [2]. Since there are no singular points in Eqs. (10)–(12), two independent and
well-behaved solutions exist for each separated equation. Consider the differential equation in M
first. Expanding M about m ¼ 0 one writes:

MðmÞ ¼
X1
n¼0

anmnþk; (13)
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where k is a constant to be specified as follows. Inserting Eq. (13) in Eq. (10) and equating terms
proportional to mk�2 and mk�1 gives two equations:

kðk� 1Þa0 ¼ 0; ð14Þ

kðkþ 1Þa1 ¼ 0: ð15Þ

Thus, k ¼ 0 or 1 if we choose a0 ¼ 1 and a1 ¼ 0: The two choices for k will give us two
independent series solutions as we will prove next. Applying the identity theorem for power series
to terms mkþn where n ¼ 0; 1; 2; . . . give the recursion formula:

a2 ¼
a
2
; a3 ¼ 0;

anþ4 ¼
aanþ2 þ ban

ðn þ 4Þðn þ 3Þ
where n ¼ 0; 1; 2; 3; . . . ð16Þ

if k ¼ 0: This solution for MðmÞ 
 M1ðmÞ is clearly even in m:
Similarly, for the second solution for M corresponding to k ¼ 1; the following recursion

formula is obtained:

b0 ¼ 1; b1 ¼ 0; b2 ¼
a
6
; b3 ¼ 0;

bnþ4 ¼
abnþ2 þ bbn

ðn þ 5Þðn þ 4Þ
where n ¼ 0; 1; 2; 3; . . . ð17Þ

and the associated solution forMðmÞ 
 M2ðmÞ is an odd function of m: The general solution to Eq.
(10) is accordingly

MðmÞ ¼ Mða;b;mÞ ¼ AM1ðmÞ þ BM2ðmÞ; (18)

where A and B are arbitrary constants, and

M1ðmÞ ¼ M1ða; b; mÞ ¼
X1
n¼0

a2nm2n; ð19Þ

M2ðmÞ ¼ M2ða; b; mÞ ¼
X1
n¼0

b2nm2nþ1: ð20Þ

Consider next the differential equation in N (Eq. (11)). This differential equation is analogous
to the differential equation in M (Eq. (10)) except that a must be replaced by �a: We obtain

NðnÞ ¼ Nða;b;mÞ ¼ CN1ðnÞ þ DN2ðnÞ; (21)

where C and D are arbitrary constants, and

N1ðnÞ ¼ N1ða; b; mÞ ¼
X1
n¼0

c2nn2n; ð22Þ

N2ðnÞ ¼ N2ða; b; mÞ ¼
X1
n¼0

d2nn2nþ1: ð23Þ
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The coefficients cn satisfy the recurrence relations

c0 ¼ 1; c2 ¼
�a
2

;

cnþ4 ¼
�acnþ2 þ bcn

ðn þ 4Þðn þ 3Þ
where n ¼ 0; 1; 2; 3; . . . : ð24Þ

For dn we obtain

d0 ¼ 1; d2 ¼
�a
6

;

dnþ4 ¼
�adnþ2 þ bdn

ðn þ 5Þðn þ 4Þ
where n ¼ 0; 1; 2; 3; . . . : ð25Þ

The remaining differential equation in Z can be solved immediately so as to give the general
solution

ZðzÞ ¼ E sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ b

q� �
z

� �
þ F cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ b

q� �
z

� �
; (26)

where E and F are arbitrary constants.
The rigid-wall boundary condition (Eq. (7)) now becomes:

dM

dm
ða;b;m0Þ ¼ 0; ð27Þ

dN

dn
ða; b; n0Þ ¼

dN

dn
ða;b;�n0Þ ¼ 0; ð28Þ

dZ

dz
ðk; b; z1Þ ¼

dZ

dz
ðk;b; z2Þ ¼ 0; ð29Þ

where ðm0; n0; z1; z2Þ defines the AE boundary. It turns out that Eqs. (27)–(29) together with
normalization are not sufficient to solve the eigenvalue problem. This is due to the vanishing of
the Jacobian for the transformation to PCC. It was shown by Lebedev [9] that one also requires
that rP is finite everywhere inside the AE region. Using this result and

ðrPÞ2 ¼
1

m2 þ n2
qP

qm

� �2
þ

qP

qn

� �2" #
þ

qP

qz

� �2
(30)

leads to

qP

qm

� �2
þ

qP

qn

� �2" #�����
m¼n¼0

¼ 0: (31)

Eigenstates and associated frequencies f (or k) will be found by imposing the six conditions given
by Eqs. (27)–(29) and (31). These conditions clarify that a and b are determined by solving a set of
coupled equations instead of a single dispersion relation.
Combining the general solution (Eq. (21)) with Eq. (28) and making use of the fact that N1 and

N2 are even and odd, respectively, allows us to write

dN

dn
ða; b; n0Þ þ

dN

dn
ða;b;�n0Þ ¼ 2D

dN2

dn
ðn0Þ ¼ 0: (32)
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This condition can be fulfilled either if

D ¼ 0 (33)

or

dN2

dn
ðn0Þ ¼ 0: (34)

However, if D ¼ 0; then Ca0 for P to be non-trivial. Thus, dN1=dnðn0Þ ¼ 0 so as to satisfy Eq.
(28). Instead, if dN2=dnðn0Þ ¼ 0; we obtain dN=dnðn0Þ ¼ CdN1=dnðn0Þ ¼ 0 leaving two possibi-
lities open: C ¼ 0 or dN1=dnðn0Þ ¼ 0:
The condition in Eq. (31) can be restated as

B2C2 þ A2D2 ¼ 0 (35)

by use of

Nð0Þ ¼ C;

Mð0Þ ¼ A;

dM

dm

� �2�����
m¼0

¼ B2;

dN

dn

� �2�����
n¼0

¼ D2: ð36Þ

The latter set of relations follow immediately from Eqs. (18) and (21) and the series expansions of
M1ðmÞ; M2ðmÞ; N1ðnÞ; and N2ðnÞ:
Next, let us consider the three possible cases (a) Ca0; D ¼ 0; (b) Da0; C ¼ 0; and (c) Ca0;

Da0; separately.
Case (a) (Ca0 and D ¼ 0): Eq. (34) then implies dN1=dnðn0Þ ¼ 0: The condition that rP is

finite at m ¼ n ¼ 0 now gives B ¼ 0 (refer to Eq. (35)). If B ¼ 0 then Aa0 and dM1=dmðm0Þ ¼ 0 so
as to satisfy Eq. (27). In conclusion, case (a) demands

dN1

dn
ðn0Þ ¼ 0;

dM1

dm
ðm0Þ ¼ 0: ð37Þ

Case (b) (Da0 and C ¼ 0): Thus dN2=dnðn0Þ ¼ 0 (refer to the discussion following
Eqs. (33) and (34)). The condition that rP is finite at m ¼ n ¼ 0 now gives A ¼ 0 (refer to
Eq. (35)). If A ¼ 0 then Ba0 and dM2=dmðm0Þ ¼ 0 so as to satisfy Eq. (27). In conclusion,
case (b) demands

dN2

dn
ðn0Þ ¼ 0;

dM2

dm
ðm0Þ ¼ 0: ð38Þ
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Case (c): It follows immediately from the discussion following Eqs. (33) and (34) that when
Ca0; Da0; the two conditions

dN1

dn
ðn0Þ ¼ 0;

dN2

dn
ðn0Þ ¼ 0; ð39Þ

must be imposed. If dM1=dmðm0Þ ¼ 0 by chance then dM2=dmðm0Þ ¼ 0 so as to satisfy Eqs. (27)
and (35) (Eq. (35) forces B ¼ 0 if A ¼ 0; Ca0; and Da0; which is not possible for a non-trivial
solution). Similarly, if dM2=dmðm0Þ ¼ 0 by accidence then dM1=dmðm0Þ ¼ 0: These two special
cases therefore require four conditions to be fulfilled: dM1=dmðm0Þ ¼ dM2=dmðm0Þ ¼ dN1=dnðn0Þ ¼
dN2=dnðn0Þ ¼ 0: If instead both dM1=dmðm0Þa0 and dM2=dmðm0Þa0; it is always possible to find
non-zero (complex) coefficients A and B such that Eqs. (27) and (31) are satisfied simultaneously.
In the latter case, the two conditions given by Eq. (39) are the only conditions that must be
satisfied for an eigenstate to be found.

2.2. Relation between k and b

Consider next the Z equation (Eq. (26)) and the associated boundary conditions (Eq. (29)). Two
possible cases can occur if we choose the origin of the z-axis such that z2 ¼ �z1 ¼ L=2: (i) E ¼ 0
or (ii) F ¼ 0: If E ¼ 0; then the following relation between k and b must hold:

k2 ¼ ð2pÞ2
p
L

� 
2
� b where p ¼ 0; 1; 2; 3; . . . : (40)

If, instead, F ¼ 0; we find

k2 ¼ �b or

k2 ¼ ð2p þ 1Þ2
p
L

� 
2
� b where p ¼ 0; 1; 2; 3; . . . : ð41Þ

Eqs. (41) and (40) can be restated in terms of the eigenfrequency as follows:

f ¼
c

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ2

p
L

� 
2
� b

r
where p ¼ 1; 2; 3; . . . (42)

if E ¼ 0; and

f ¼
c

2p

ffiffiffiffiffiffiffi
�b

p
or

f ¼
c

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2p þ 1Þ2

p
L

� 
2
� b

r
where p ¼ 0; 1; 2; 3; . . . ð43Þ

if F ¼ 0: The procedure for determining eigenstates is as follows. For each case (a), (b), and (c),
solution sets ða;bÞ are found by solving Eqs. (37), (38), and (39), respectively. The values found for
b can finally be inserted in Eqs. (43) and (42) to get f.
Let us also briefly comment on the case where the parabolic cylinder enclosure is excited by an

external force with known frequency. Eigenvalues are then found by using the following
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procedure. Consider case (a) for which B ¼ D ¼ E ¼ 0; a typical eigenmode is:

cpnðm; n; zÞ ¼ M1ðapn;bp; mÞN1ðapn;bp; nÞ cosð2ppz=LÞ; (44)

where bp ¼ ð2pp=LÞ2 � k2; p ¼ 0; 1; 2; . . . ; and k is known. Under such circumstances what is of
interest is the eigenvalues apn; p ¼ 0; 1; 2; . . . ; n ¼ 0; 1; 2; . . . : These can be found by first taking
p ¼ 0 and solving Eq. (37). This procedure can then be repeated for p ¼ 1; 2; 3; . . . :

3. Results and discussion

3.1. Shapes studied

Different structures were modelled, including symmetrical and asymmetrical AEs. The
symmetrical AE is obtained when m0 ¼ n0 while asymmetrical dots correspond to any AE with
parameters m0an0: In Fig. 2, three AE cross-sections are shown. The three AEs are of the same
volume (1:333m2 � L) with parameters (i) m20 ¼ 1m; n

2
0 ¼ 1m; (ii) m

2
0 ¼ 1:3m; n

2
0 ¼ 0:7396m; and

(iii) (i) m20 ¼ 0:8m; n20 ¼ 1:222m; corresponding to the upper, middle, and lower figures,
respectively. For the symmetrical AE, the height and radius are the same. The medium in the
enclosure is considered to be air with a sound speed equal to 343m/s.
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

y [m]
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[m

]

−1 −0.8 −0.6 −0.4 −0.−2 0 0.2 0.4 0.6 0.8 1
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−0.5

0

0.5

1

y [m]

x 
[m

 ]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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−0.5

0

0.5

1

y [m]

x 
[m

]

Fig. 2. Plot of three AEs having the same volume (cross-sectional view in z plane). The upper figure shows the AE with

parameters: m20 ¼ n20 ¼ 1m: The middle figure is for m
2
0 ¼ 1:3m and the lower figure is for m

2
0 ¼ 0:8m:
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3.2. Frequencies

In searching for frequencies, we started with a and scanned in b for zeroes of dM1=dm and
dN1=dn; dM2=dm and dN2=dn; and dN1=dn and dN2=dn corresponding to case (a), (b), and (c)
(refer to Section 2), respectively. This technique is illustrated in Fig. 3 for the symmetrical AE. In
Fig. 3a, ða; bÞ values are plotted where dM1=dm and dN1=dn have zeroes corresponding to case (a).
Line codings for zeroes of dM1=dm and dN1=dn are squares and diamonds, respectively. The
simultaneous zeroes are the intersection points in a ða; bÞ plot; the solutions are even about y ¼ 0:
In a similar way, Fig. 3b shows the ða;bÞ values where dM2=dm and dN2=dn are zero
corresponding to case (b). Again, the simultaneous zeroes are the intersection points in a ða;bÞ
plot; the solutions are odd about y ¼ 0: In Fig. 3c, zeroes of dN1=dn and dN2=dn are plotted as a
function of ða;bÞ corresponding to case (c). Evidently, no simultaneous zeroes are found (a close
inspection of the curves will show that the dN1=dn and dN2=dn curves do not intersect). Thus,
there will be no eigenstates of the type considered in case (c). This is to be expected on the basis of
symmetry since the solutions must have definite parity about y ¼ 0:
As mentioned earlier, it follows from Eqs. (10) and (11) that

M1ða;b; gÞ ¼ N1ð�a; b; gÞ; ð45Þ

M2ða;b; gÞ ¼ N2ð�a; b; gÞ ð46Þ

for any value g: Thus,

M1ða;b; gÞN1ða; b; gÞ ¼ N1ð�a;b; gÞM1ð�a;b; gÞ; ð47Þ

M2ða;b; gÞN2ða; b; gÞ ¼ N2ð�a;b; gÞM2ð�a;b; gÞ: ð48Þ

The latter relation applied to the case of a symmetric AE (g ¼ m0 ¼ n0) shows that if ða;bÞ is a
simultaneous zero point for dM1=dm and dN1=dn (or dM2=dm and dN2=dn) then ð�a; bÞ is also a
simultaneous zero point for dM1=dm and dN1=dn (or dM2=dm and dN2=dn). Applied to an
asymmetric AE, it shows that the ðm0; n0Þ dot has the same frequency spectrum as the ðn0; m0Þ; as
expected from the mirror image shapes.

3.3. Eigenmodes and symmetry

Examples of eigenmodes for the symmetrical AE are given in Fig. 4. A trivial solution to the
Helmholtz equation with Neumann boundary conditions always exists. This is the solution
corresponding to case (a) with a ¼ b ¼ 0: In this case, it follows from Eqs. (19) and (22) and the
recursive relations (16) and (24) that M1ðmÞ and N1ðnÞ both are constant functions and so
Neumann boundary conditions are trivially satisfied. Notice also that in this particular case (with
a ¼ b ¼ 0), it follows from Eqs. (43) and (42) that

f ¼ p
c

2L
where p ¼ 0; 1; 2; 3; . . . : (49)

The first non-trivial solution (with smallest absolute value of b excluding the trivial solution) for
the symmetrical AE occurs in case (b) with parameters ða; bÞ ¼ ð0;�4:4817Þ found by close
inspection of the results shown in Fig. 3b. The degeneracy of this eigenfrequency is 1 and the
corresponding eigenmode is shown in Fig. 4a. The second and third eigenmodes are degenerate
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Fig. 3. Plot of the ða;bÞ values where dM1=dm and dN1=dn (a), dM2=dm and dN2=dn (b), and dN1=dn and dN2=dn (c),
respectively, are zero for a symmetric AE.
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Fig. 4. Plots in three dimensions (left) and in contour (right) of the first three non-trivial eigenmodes for a symmetric

AE. The upper plot shows the groundstate ða;bÞ ¼ ð0;�4:4817Þ (corresponding to case (b)), and the other two (middle
and lower plots) are the second and third eigenmodes (both corresponding to case (a)) with parameters ða; bÞ ¼
ð�6:037;�13:47Þ:

M. Willatzen, L.C. Lew Yan Voon / Journal of Sound and Vibration 286 (2005) 251–264 261
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states (i.e., they have the same b value) corresponding to case (a) with parameters ða; bÞ ¼
ð6:037;�13:47Þ and ða; bÞ ¼ ð�6:037;�13:47Þ; respectively. The two eigenmodes are shown in
Figs. 4b and c. Conclusions as to the symmetry properties of the eigenmodes can be deduced using
the results in Section 2. For instance, states corresponding to case (a) where B ¼ D ¼ 0 is imposed
satisfy

cðx; y; zÞ ¼ cðm; n; zÞ ¼ M1ðmÞN1ðnÞZðzÞ ¼ M1ðmÞN1ð�nÞZðzÞ

¼ cðm;�n; zÞ ¼ cðx;�y; zÞ ð50Þ

and (if a ¼ 0),

cðx; y; zÞ ¼ cðm; n; zÞ ¼ M1ðmÞN1ðnÞZðzÞ ¼ N1ðmÞM1ðnÞZðzÞ

¼ cðn; m; zÞ ¼ cð�x; y; zÞ; ð51Þ

where use has been made of Eq. (45) in obtaining the third equality. Similarly, states
corresponding to case (b) for which A ¼ C ¼ 0 are antisymmetric with respect to mirror
reflections in the y ¼ 0 plane, because:

cðx; y; zÞ ¼ cðm; n; zÞ ¼ M2ðmÞN2ðnÞZðzÞ ¼ �M2ðmÞN2ð�nÞZðzÞ

¼ � cðm;�n; zÞ ¼ �cðx;�y; zÞ: ð52Þ

In addition, if a ¼ 0; states corresponding to case (b) will be symmetric with respect to reflections
in the x ¼ 0 plane:

cðx; y; zÞ ¼ cð�x; y; zÞ; (53)

following steps analogous to those used in deriving Eq. (51).
Thus, the first non-trivial solution is symmetric (antisymmetric) with respect to a mirror

reflection in the x ¼ 0 (y ¼ 0) plane since ða; bÞ ¼ ð0;�4:4817Þ as this state belongs to case (b) in
agreement with Fig. 4a. The second and third non-trivial solutions have a values different from
zero (and belong to case (a)). These solutions are therefore symmetric with respect to a mirror
reflection in the y ¼ 0 plane but they show no symmetry with respect to a mirror reflection in the
x ¼ 0 plane. This is in agreement with Figs. 4b and c.

3.4. Shape dependence of frequencies

We next consider the frequency dependence on AE asymmetry—as specified by m0—for a
given volume equal to the volume of a symmetrical AE with parameters m20 ¼ n20 ¼ 1m (Fig. 5).
It is evident that the groundstate of the symmetrical AE has a lower eigenfrequency as
compared to the asymmetrical AEs although the variation in eigenfrequency is small
(ranging from 115.6Hz when m20 ¼ 1m to 116.6Hz (117.4Hz) when m20 ¼ 0:8m (1.3m)). The
shape dependence is quite different from, for example, a parabolic rotational lens, where the
latter has a local maximum for the symmetrical structure surrounded by two minima [10]. We
also note that in the case of a circular cylinder enclosure of the same volume, the groundstate
frequency is

f cyl ¼
cj11
2prc

; (54)
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Fig. 5. Plot of the groundstate frequency for a series of AEs having the same volume. Parameters for the symmetrical

AE are: m20 ¼ n20 ¼ 1m:
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where j11 is the smallest non-zero root (equal to 1:841) of the Bessel function derivative: J 0
m and rc

is the radius of a circle having the same cross-sectional area as the PCC enclosure considered in
Fig. 5, i.e., rc ¼ 0:6515m: Inserting these values in Eq. (54) gives

f cyl ¼ 154Hz; (55)

i.e., the minimum (non-trivial) frequency for a circular cylinder rigid enclosure is higher than the
minimum (non-trivial) frequency for a parabolic cylinder enclosure of the same volume. This is
expected due to the larger degree of asymmetry in the latter (PCC) enclosure.
4. Conclusions

An exact method for finding eigenmodes and eigenvalues in an acoustic enclosure with
rigid walls defined by two confocal parabolic cylinders and two plane surfaces using parabolic
cylinder coordinates is presented. Eigenmode symmetry properties are discussed along with
the fundamental-mode frequency dependence on AE asymmetry for a series of AEs having
the same volume. It is concluded that the symmetrical AE has the lowest groundstate
frequency.
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