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Abstract

Structures characterized by non-coincident center of mass and center of stiffness, referred to herein as
eccentric structures, develop a coupled lateral–torsional response when subjected to dynamic excitation.
This phenomenon is particularly important for seismic isolated structures due to the potentially large
deformations imposed on the seismic isolators by the earthquake ground motion.
A careful examination of the governing equations of motion of linear elastic, one-story eccentric systems

sheds new light and new insight into the coupled lateral–torsional dynamic behavior of such systems and
leads to the identification of a basic system parameter, the ‘‘alpha’’ parameter, which controls the maximum
rotational response of such systems under free and forced vibrations. The ‘‘alpha’’ parameter is defined as
the mass radius of gyration of the structure multiplied by the ratio of the maximum rotational to the
maximum longitudinal displacement response developed by a one-story eccentric system under free
vibration from a given initial deformation. Closed-form exact and approximate solutions for the ‘‘alpha’’
parameter are provided for undamped and damped eccentric systems, respectively, for a wide range of
system parameters. A new basic result is that the ‘‘alpha’’ parameter has an upper bound of unity, thus
physically limiting the maximum rotational response of an eccentric system in free vibration from an initial
imposed deformation. A new physically based, simplified analysis procedure is developed, based on the
‘‘alpha’’ parameter to effectively estimate the maximum rotational response of a given eccentric system
under seismic excitation. The extensive numerical and experimental verification of the simplified ‘‘alpha’’
see front matter r 2004 Elsevier Ltd. All rights reserved.
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method performed demonstrate that the proposed ‘‘alpha’’ method is accurate enough for design purposes,
is robust and is significantly more accurate than the current International Building Code (IBC) design
provisions.
The experimental verification was performed through a suite of 88 shaking table tests performed on a

versatile, carefully designed, one-story small-scale building model able to represent the dynamic
characteristics of a wide range of eccentric systems.
The dimensionless ‘‘alpha’’ parameter, bounded between zero and unity, can also be used as a formal

index for the inherent property of a given structure to develop a rotational response under dynamic
excitation. Sensitivities of the ‘‘alpha’’ parameter to various physical system characteristics are investigated
and provide valuable guidance for eccentric system design.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic behavior of eccentric structures has been the object of extensive research since the
late 1970s both in the linear and nonlinear domains. In spite of these research efforts, a number of
issues remain unresolved in the areas of (1) inelastic response [1], and (2) development of
simplified, yet accurate and physically based simplified design procedures.
The research in lateral–torsional coupling performed to date can be subdivided into three

categories:
(1)
 Investigation of the linear elastic response of full 3D laterally–torsionally coupled
structural systems [2–7]. These studies focus on the fundamentals of the dynamic
behavior of linear elastic eccentric systems and on the identification of their controlling
parameters.
(2)
 Investigation of the nonlinear inelastic dynamic response of 3D single and multi-story
eccentric structural systems [1,8–14]. This body of research focuses mainly on the fundamental
issue of evaluating the influence of the plan-wise distributions of stiffness and strength on the
inelastic response of asymmetric building structures.
(3)
 Analysis and evaluation of design code provisions for torsional effects in building structures
[1,7,15–22]. These studies include comparative analyses of different design code provisions
[21,22] and development of improved rational design code provisions [7,22].
The analysis of the coupled lateral–torsional dynamic response of base-isolated building
structures can be fairly simplified for the following reasons:
�
 Most common seismic isolators are cylindrical in shape with a well-defined lateral stiffness that
is generally independent of the direction of deformation [6].
�
 It has been shown [6] that the dynamic behavior of seismic isolated structures can be fairly well
captured through a simplified equivalent linear analysis in spite of the inherent nonlinear
force–deformation relationship of most common seismic isolators.
�
 Under strong motion excitation, the deformations of a seismic isolated structure are localized
mainly in the seismic isolators and are only marginally influenced by the dynamic interaction
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with the superstructure [6,23,24]. This is especially true under design earthquake conditions
with fully softened isolator stiffness. However, caution must be exercised in the case of small-to-
moderate earthquakes for which a higher effective stiffness of the isolators leads to dynamic
excitation of the superstructure [25].

For conceptual design purposes, the dynamic analysis of seismic isolated structures can be
effectively reduced to that of a one story 3D linear structural system with a roof diaphragm/slab
assumed infinitely stiff in its own plane (i.e., rigid diaphragm assumption). Since the maximum
isolator deformation is the basic design parameter considered in design codes, it is essential to
develop a simple, rational and reliable method to determine the local increase (as compared to the
non-eccentric case) in the maximum isolator deformation due to eccentricity-induced rotational
response.
Nagarajaiah et al. [24] confirmed that the superstructure has a small influence on the maxi-

mum deformation of base isolators and investigated the effects of selected parameters of
eccentric structures on the dynamic coupled lateral–torsional response of base isolated systems.
These results, however, are presented for a specific structural system and are not extended
into a general purpose simplified theory. The new insight presented in this paper and the result-
ing simplified dynamic analysis procedure apply to a wide range of linear elastic base isolated
systems and provide both a qualitative understanding and an effective quantitative estimate
(for practical design purposes) of the effect of torsional coupling on their seismic response.
The proposed approach provides a new simple, physically based formula to estimate the
maximum rotational response of a given eccentric linear elastic one-story system in terms
of few identified dimensionless controlling parameters of the system. The paper also provides
extensive numerical and experimental (through shaking table tests) verifications of the proposed
simplified approach referred to as the ‘‘alpha’’ method over a wide range of controlling system
parameters.
The experimental verification is based on a large set of shaking table tests performed on a small-

scale one-story building model carefully designed to accommodate a wide range of eccentricity of
the center of stiffness relative to the center of mass of the system.
2. The eccentric dynamic system and its modes of vibration

Consider the 3D one-story system idealization with rigid in-plane diaphragm of a general base
isolated structure with non-coincident center of mass and center of stiffness as shown in Fig. 1. In
this idealization, the effects of rocking are neglected and the seismic isolators are considered
axially inextensible. Also shown in this figure are the 3 dofs used in formulating the equations of
motion. Note that these dofs are attached to the center of mass of the system.
Under the following two assumptions:
�
 the lateral stiffness (ki; i ¼ 1; . . . ;N) of each of the N base isolators does not depend on the
direction of deformation; and
�
 the rotational response uy developed under dynamic (e.g., seismic) excitation is small enough so
that uy ffi sinðuyÞ ffi tanðuyÞ;
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the dynamic coupled lateral–torsional response of the system considered is governed by the
following set of coupled differential equations of motion [26,27]:
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where uxðtÞ; uyðtÞ; uyðtÞ are the translations along the x- and y- directions and rotation along the z-

axis, respectively, of the base isolated system, m the total mass of the superstructure, i.e., total
mass resting over the base isolators, Ip the polar mass moment of inertia of the superstructure

with respect to the z-axis which passes through the center of mass, r ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ip=m

p
the mass radius of

gyration (or radius of inertia) of the superstructure with respect to the z-axis, xi; yi the x- and y-
coordinates of the ith base isolator, ki the lateral stiffness (in any direction) of the ith base

isolator, k ¼
PN

i¼1 ki the lateral stiffness (in any direction) of the total base isolation system,

Ex ¼
PN

i¼1 kixi

h i
=k;Ey ¼

PN
i¼1 kiyi

h i
=k the eccentricity in the x- and y-direction, respectively, of

the center of stiffness of the total base isolation system with respect to the center of mass,

kyy ¼
PN

i¼1 kiðx
2
i þ y2i Þ the rotational stiffness (about the z-axis) of the total base isolation system,

pxðtÞ; pyðtÞ; pyðtÞ are the external dynamic forces/moment applied along the x-, y- and z-directions,

respectively, ½C� the damping matrix, oL ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
the uncoupled lateral (longitudinal or
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transversal) natural circular frequency of vibration, oL the lateral natural circular frequency of
vibration of a structure similar to the one considered, but with coincident center of mass and

center of stiffness, oy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kyy=IP

p
the natural circular frequency of rotational vibration of a

fictitious non-eccentric structure having the same rotational stiffness and mass moment of inertia

(with respect to the z-axis) as the eccentric system considered here, g ¼ oy=oL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kyy=r2k

p
the

ratio of oy defined above to the lateral uncoupled natural circular frequency, De ¼ r
ffiffiffiffiffi
12

p
the

‘‘equivalent diagonal’’ of the system,1ex ¼ Ex=De; ey ¼ Ey=De the relative eccentricity in the x-

and y-direction, respectively.
In the case of a rectangular base isolated structure of size Lm � Ln with identical isolators

located at the nodes of a regular rectangular m � n grid, the parameter g can be shown to be [28].
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s
: (2)

For base-isolated structures characterized by a 5m� 5m grid of regularly spaced isolators, g can
be fairly well estimated as g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 13=De

p
with De expressed in meters [27]. Parameter g;

generally larger than one, tends to one as the number of base isolators increases within the given
planar dimensions of the base isolation system (and assuming a fairly uniform distribution of the
mass of the structure over its base).
Given the linear nature of the problem, it is possible, for undamped or classically damped

systems, to uncouple the equations of motion in Eq. (1) through (second-order) modal analysis
[29]. Considering that both the stiffness and damping of the system are derived from the isolators
and that the stiffness and damping of an isolator, for a given height, are proportional to its size, it
follows that, assuming viscous material damping, the damping matrix derived is proportional to
the stiffness matrix. Therefore, classical damping is a reasonable assumption. Furthermore, it was
shown that for nonclassically damped asymmetric-plan structures, the classical damping
assumption can be used without introducing significant errors in the simulated response [30].
The solution of the eigenvalue problem governing the undamped free vibrations of the system
gives the following natural circular frequencies o1;o2; and o3; normalized with respect to oL and
squared:2

O1 ¼
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2
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e

2
Y1; (3a)

O2 ¼
o2

oL

� �2

¼ 1; (3b)
1The ‘‘equivalent diagonal’’ is a useful standard measure used herein to characterize the planar dimensions of the

system. It is equal to
ffiffiffiffiffi
12

p
times the radius of inertia of the system. This length, for systems of rectangular shape and

uniform mass distribution, coincides with the actual length of the diagonal of the system.
2In this paper, we considered and used for all plots the following ranges for the ‘‘e’’ and ‘‘g’’ parameter values:

0pep0:22 and 1:0pgp1:8: However, most structures have a relative eccentricity ‘‘e’’ in the range between 0.03

(accidental eccentricity) and 0.07, and a ‘‘g’’ parameter in the range between 1.1 and 1.3, leading to a parameter ‘‘F ’’

ranging between 0.1 and 0.3.
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Fig. 2. Normalized undamped natural frequencies O1;O2; and O3 versus structural parameters ‘‘e’’ and ‘‘g’’.
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e
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; (4)
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The parameter ‘‘F ’’ in Eq. (4) will reveal fundamental in characterizing the coupled
lateral–torsional dynamic response behavior of eccentric systems. Careful examination of
Eqs. (3a)–(3c), and of Fig. 2, which plots the normalized frequencies O1;O2 and O3 as functions of
‘‘e’’ and ‘‘g’’, reveals that O1 is generally close to unity, while O3 can be quite larger than one.
Thus, it is found that in most practical cases, the first and second natural modes of vibration of
the system have closely spaced frequencies, namely o1 ffi o2 ¼ oL: The following vibration mode
shapes are also obtained as solution of the eigenvalue problem for undamped free vibration:3
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3The analytical expressions for the mode shapes and natural frequencies given here apply only to laterally–torsionally

coupled systems characterized by a non-zero eccentricity (i.e., e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2x þ e2y

q
a 0). In the case of zero eccentricity, there

are repeated eigenvalues and the degree of freedom uxðtÞ; uyðtÞ and uyðtÞ are already uncoupled.
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Careful examination of the analytical expressions for the three mode shapes in Eq. (6) shows that
in the first and third modes, the translations are coupled with the rotation, while the second mode
shape is purely translational in the direction defined by the center of mass and the center of
stiffness. Fig. 3 provides a graphical representation of the mode shapes.
3. Undamped free vibration response

Undamped free vibrations of the eccentric system are governed by the set of coupled
homogeneous differential equations given by Eq. (1) without the damping term, with zero right
hand side and with the following initial conditions:
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where ‘‘a’’ represents the initial deformation along the y-direction. Hereafter, the x- and y-axis are
referred to as the transversal and longitudinal direction, respectively. The equations governing the
free vibration response can be solved using the classical mode superposition method [29], which
yields the following free vibration response histories along the original dofs:

uyðtÞ ¼ a
e2x
e2

Y3

Y3 	Y1
cosðo1tÞ þ

e2y

e2x
cosðo2tÞ þ

Y1

Y1 	Y3
cosðo3tÞ

( )
; (7a)

uxðtÞ ¼ a
exey

e2
	

Y3
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� �
; (7b)

uyðtÞ ¼
affiffiffiffiffi
48

p
r

ex

e
Y1

Y3

Y3 	Y1
fcosðo1tÞ 	 cosðo3tÞg: (7c)

Inspection of the expressions in Eqs. (7a)–(7c) leads to the following observations regarding the
free vibration of eccentric systems induced by an initial displacement along the longitudinal (y-)
direction:
�

4

In the absence of longitudinal eccentricity ðey ¼ 0Þ; the second mode of vibration is not excited
in free vibration. On the other hand, both the first and third modes of vibration respond only if
the system has a non-zero eccentricity ‘‘ex’’ along the transversal (x-) direction.
�
 In order to have a non-zero free vibration response of the center of mass in the transversal (x-)
direction, the structure must have eccentricities in both the x- and y- directions.
�
 In order to have free vibration displacement response histories with the same maximum
amplitude in the longitudinal (y-) and transversal (x-) directions, it is necessary that ex ¼ ey:

4

�
 For a given transversal eccentricity ‘‘ex’’, it can be shown that the system develops the largest
rotational response when the longitudinal eccentricity is null (ey ¼ 0). This can be deduced from

the factor ex=eðY1Y3=ðY3 	Y1ÞÞ ¼ 24ex=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 	 1Þ2 þ 48e2

q
which controls the amplitude of

the torsional response uyðtÞ in Eq. (7c).

�
 The longitudinal displacement, transversal displacement and rotational responses consist
of the sum of trigonometric functions (harmonics) of various amplitudes and circular
frequencies.
4. Fast and slow modes in free vibration response of undamped systems—beating phenomenon

To gain further insight into Eqs. (7a)–(7c), it is convenient to rewrite them as

uyðtÞ ¼ a
e2x
e2

A1 cosðo1tÞ þ A2

e2y

e2x
cosðo2tÞ þ A3 cosðo3tÞ

( )
; (8a)
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f	A1 cosðo1tÞ þ A2 cosðo2tÞ 	 A3 cosðo3tÞg; (8b)
exey
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2 ) ðex 	 eyÞ
2
¼ 0 ) ex ¼ ey:
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uyðtÞ ¼
a

r
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e
A4fcosðo1tÞ 	 cosðo3tÞg; (8c)
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s
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It is worth mentioning the following properties of coefficients A1 through A4:
(a) 0:5pA1p1 and, as shown in Fig. 4, for the most common values of ‘‘e’’ and ‘‘g’’ parameters,

A1 lies in the range (0.72–0.90); (b) 0pA3p0:5 and, as shown in Fig. 4, for the most common
values of ‘‘e’’ and ‘‘g’’ parameters, A3 lies in the range (0.10–0.28); (c) A1 þ A3 ¼ 1; and (d)
0pA4p0:5:
Analysis of Eqs. (8a)–(8c), in the light of the above remarks concerning the values of coefficients

A1;A2 and A3; leads to the following observations about the rotational, transversal and
longitudinal components of the free vibration response of the system.
4.1. Rotational response uyðtÞ

From Eq. (8c), the rotational response uyðtÞ is given by the sum of two harmonics of equal
amplitude and well-separated circular frequencies o1 and o3: This results in a harmonic5 (fast
mode) with harmonically modulated (slow mode) amplitude or envelope. The fast mode has the
circular frequency of y ¼ ðo1 þ o3Þ=2 (also called sum frequency), while the slow mode has the
circular frequency osy ¼ ðo1 	 o3Þ=2 (also called difference frequency).
4.2. Transversal displacement response uxðtÞ

From Eq. (8b), the transversal displacement response uxðtÞ is given as the sum of three
harmonics. Two of them, of circular frequencies o1 and o2; have similar amplitudes (A2 ¼ 1 and
A1 is usually between 0.7 and 0.9), while the third one, of circular frequency o3; has an amplitude
A3 always smaller than 0.5 and most often in the range between 0. and 0.20. Neglecting this third
harmonic (whose contribution to the total transversal motion can be seen as a small
perturbation), the transversal displacement uxðtÞ can be approximated by the sum of two
5cosðo1tÞ þ cosðo3tÞ ¼ 2 cos o1þo3

2 t
� �

cos o1	o3

2 t
� �

:
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harmonics of equal amplitude and circular frequencies o1 and o2: This results in a fast mode
frequency ofx ¼ ðo1 þ o2Þ=2 and a slow mode frequency osx ¼ ðo1 	 o2Þ=2:

4.3. Longitudinal displacement response uyðtÞ

The algebraic expression for the longitudinal displacement response uyðtÞ in Eq. (8a) is similar
to that for the transversal displacement response uxðtÞ in Eq. (8b). The main difference lies in the
fact that the amplitude of the second harmonic (of circular frequency o2) is equal to ðey=exÞ

2 in the
case of uyðtÞ and to one in the case of uxðtÞ: Thus, in the case of equal longitudinal and transversal
eccentricities ðex ¼ eyÞ; the longitudinal and transversal displacement responses have the same
frequencies of the fast and slow modes, i.e., ofy ¼ ofx and osy ¼ osx: Further, in the case of null
longitudinal eccentricity ðey ¼ 0Þ; the longitudinal displacement response has the same fast and
slow mode frequencies as the rotational displacement response, i.e., ofy ¼ of y;osy ¼ osy:
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4.4. Beating phenomenon

Fig. 5a shows the free vibration responses, uyðtÞ; uxðtÞ and uyðtÞ; from an initial longitudinal
displacement a¼0:10m; of an eccentric system with parameters e¼0:1; g¼1:4; and oL ¼ p rad/s,
for the special case of equal longitudinal and transversal eccentricities ðey ¼ exÞ: It can be observed
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Fig. 5. Free vibration response (uyðtÞ; uxðtÞ and uyðtÞ): (a) system characterized by ex ¼ ey; e ¼ 0:1; g ¼ 1:4;
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that: (a) the longitudinal and transversal displacements responses have a slow modulation
of their amplitude due to the closeness of o1 and o2 given in Eqs. (3a) and (3c), while the
rotational response exhibits a fast modulation of its amplitude due to the fact that o1 and o3

are well separated; (b) when the envelope of the longitudinal displacement reaches its maxi-
mum, that of the transversal displacement is at its minimum and vice versa, and (c) the rota-
tional response has a high amplitude–modulation frequency due to the fact that o1 and o3

are well separated, which results in a strong interaction between the fast and the slow modes
(due to the relative closeness of the fast and slow mode frequencies). Note that even though
the initial displacement is imposed in the longitudinal (y-) direction, a longitudinal eccentri-
city (ey) induces a mutual energy/motion transfer, which is maximized when ey ¼ ex (see foot-
note 4), between the longitudinal and transversal directions through the rotational response.
As the parameter g decreases, ðo3 	 o1Þ increases and therefore the amplitude–modu-
lation frequency of the responses uxðtÞ and uyðtÞ increases. Fig. 5b displays the free
vibration response of a structure with the same parameters as the one in Fig. 5a, but for the
special case of null longitudinal eccentricity ðey ¼ 0Þ: Observe (a) the fast amplitude modu-
lation of the rotational response uyðtÞ with interaction between fast and slow modes; (b) the
null transversal response due to ey ¼ 0 according to Eq. (8b); and (c) the very limited ampli-
tude modulation of the longitudinal response uyðtÞ due to the small value of the coeffi-
cient A3 relative to the coefficient A1 in Eq. (8a). Fig. 4c shows indeed that for most common
values of ‘‘F ’’ (i.e., between 0.10 and 0.30), the ratio A3=A1 lies in the range (0.10–0.40). Note that
in this case a mutual energy/motion transfer occurs between the longitudinal and rotational
responses.
5. Special case of zero longitudinal eccentricity

For the special case of zero longitudinal (y-direction) eccentricity ðey ¼ 0Þ; which is of particular
interest since for a given ex it gives the maximum rotational response in free vibration initiated by
a deformation along the y-direction, Eqs. (8a)–(8c) reduce to

uyðtÞ ¼ afA1 cosðo1tÞ þ A3 cosðo3tÞg; (10a)

uxðtÞ ¼ 0; (10b)

uyðtÞ ¼
a

r
A4 fcosðo1tÞ 	 cosðo3tÞg: (10c)

5.1. Argand diagram representation of free vibration response

Fig. 6 shows the Argand diagram (or rotating vector) representation of the free vibration
response given in Eqs. (10a) and (10c). The longitudinal displacement response, uyðtÞ; is given by

OS0
��!

; the sum of the horizontal projections, OC0
��!

and C0S0
��!

; of rotating vectors OC
�!

; and CS
�!

of
magnitude (aA1) and ðaA3Þ and circular frequencies o1 and o3; respectively. The rotational
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response uyðtÞ is proportional to vector OT 0
��!

6which corresponds to the horizontal projection of the

sum of rotating vectors OC
�!

and CT
�!

ð¼ 	CR
�!

Þ: The fact that the radiuses OC
�!

and CT
�!

have equal

length ð¼ aA1Þ; while the radius CS
�!

ð¼ aA3Þ is generally quite smaller (see Fig. 4c) leads to the
following observations regarding free vibration of laterally–torsionally coupled systems from an
initial longitudinal displacement a:
(a)
6
u

The maximum longitudinal displacement magnitude, juyjmax ¼ aðA1 þ A3Þ ¼ a; is
developed for o1t ¼ np and o3t ¼ mp (with n and m both odd or both even), and
for these conditions the rotational response uyðtÞ is always zero. However, due to the
small value of A3 relative to A1; when o1t ffi np; the longitudinal displacement response
uyðtÞ is close to its maximum value. More precisely, when o1t ¼ np; we have that
apjuyðtÞjpaðA1 	 A3Þ:
(b)
 The maximum rotational response is developed when o1t ¼ np and o3t ¼ ðm þ 1Þp; with n

and m both even or odd. In these conditions, the longitudinal displacement magnitude is equal
to ‘‘aðA1 	 A3Þ’’, and is therefore close to juyjmax for small values of A3 (which are common).
Thus, it is possible to state that, for structures with small values of A3; rotational and
longitudinal displacement responses are close to their maxima at the same time. This is a
fundamental observation that will be used in the development of the simplified analysis
procedure presented in Sections 7–9.
yðtÞ ¼
Y1

r
ffiffiffiffiffi
48

p OT 0
��!

¼
A4

A1r
OT 0
��!

:
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(c)
7T
When o1t ¼ p=2þ np; the magnitude of the longitudinal displacement response is bounded by
ðaA3Þ:
(d)
 Considering the special case in which o1t ¼ p=2� arcsin ðA3=A1Þ þ np; it is possible to state
that, when the longitudinal displacement response is zero, the magnitude of the rotational
response is bounded by 1

2
juyjmaxð1þ A3=A1Þ: Given the small value of the ratio A3=A1 (see

Fig. 4c), this bound approximates to 1
2
juyjmax:
5.2. Fast and slow modes

Eq. (10a) shows that, due to the relatively small value of A3=A1; the longitudinal displacement
response uyðtÞ is well approximated by a single harmonic of circular frequency o1: On the other
hand, the rotational response uyðtÞ is a harmonic motion with harmonically modulated amplitude
and slow mode circular frequency osy ¼ ðo3 	 o1Þ=2: Noting that the slow mode of a beating
phenomenon reaches its maximum (i.e., envelope maximum) twice during one period of the slow
mode, it follows that the time necessary for the slow mode of the rotational response to develop a
full modulation of the response amplitude is 1

2
Tsy ¼ p=osy: Therefore, the number of longitudinal

(y-) response cycles necessary to develop a full modulation of the rotational response amplitude is
approximately equal to

1

2

Tsy

T1
¼
1

2

o1

osy
¼

o1

o3 	 o1
¼ 1	

ffiffiffiffiffiffi
O3

O1

r� �	1

; (11)

where T1 ¼ 2p=o1 denotes the approximated period of the longitudinal response uyðtÞ and O1 and
O3 are defined in Eqs. (3a) and (3c), respectively.
Fig. 7 plots the exact closed-form solution for Tsy=2T1 and indicates that, for most values of

‘‘e’’ and ‘‘g’’ parameters considered here, only about one cycle of longitudinal response is
necessary to develop a full modulation of the rotational response amplitude. Only for a restricted
range of the ‘‘e’’ and ‘‘g’’ parameters, namely for small values of ‘‘e’’ and ‘‘g’’, the number of
longitudinal cycles necessary to develop a full modulation of the rotational response amplitude
reaches values of about 4. Thus, the free vibration rotational response of undamped most
common eccentric systems is characterized by a fast modulation of its amplitude resulting in a
strong interaction between the fast and slow modes.
Figs. 8a and b show the history of the rotational response uyðtÞ versus the longitudinal

displacement response uyðtÞ of an undamped eccentric system in free vibration (from an initial
displacement a ¼ 0:1m along the y-direction) for the special case of zero longitudinal eccentricity
ðey ¼ 0Þ: Careful examination of these plots reveals that for every longitudinal cycle of vibration, the
rotational response reaches a value close to its maximum, juyjmax; at an instant when the
longitudinal displacement response is close but not equal to its maximum, juyjmax: It can also be
observed that, as predicted by the Argand diagram representation of the response in previous
section, (a) when the maximum longitudinal displacement response is developed, the rotational
response is zero, (b) when the maximum rotational response is developed, the longitudinal
displacement response is equal to7 juyjmaxð1	 2A3Þ where juyjmax ¼ a ¼ 0:1m, and (c) when the
longitudinal displacement is zero, the rotational response is smaller or equal to 1

2
juyjmaxð1þ A3=A1Þ:
his longitudinal displacement response, due to the small value of A3; is close to juyjmax:
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6. Damped free vibration response

The free vibration response histories of classically damped eccentric systems (from a given
initial displacement ‘‘a’’ along the y-direction and assuming equal8 viscous damping ratios, i.e.,
x1 ¼ x2 ¼ x3 ¼ x) are given by

uyðtÞ ¼ a
e2x
e2

LExpð	xo1tÞ A1 cosðoD1t þ yÞ þ A2 Expð	xðo2 	 o1ÞtÞ
e2y

e2x
cosðoD2t þ yÞ

(

þ A3 Expð	xðo3 	 o1ÞtÞ cosðoD3t þ yÞ

)
; ð12aÞ

uxðtÞ ¼ a
exey

e2
LExpð	xo1tÞf	A1 cosðoD1t þ yÞ þ A2 Expð	xðo2 	 o1ÞtÞ cosðoD2t þ yÞ

	 A3 Expð	xðo3 	 o1ÞtÞ cosðoD3t þ yÞg; ð12bÞ

uyðtÞ ¼
a

r
ex

e
A4LExpð	xo1tÞfcosðoD1t þ yÞ 	 Expð	xðo3 	 o1ÞtÞ cosðoD3t þ yÞg; (12c)

where oDi ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 x2

p
; i ¼ 1; 2; 3; are the modal damped natural circular frequencies;

L ¼ 1þ
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 x2
p

 !1=2

and y ¼ 	atan
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 x2
p

 !
; i ¼ 1; 2; 3:
8For base isolated structures, as all three modes involve deformations of resisting elements (base isolators) having in

general similar characteristics, the assumption of equal effective modal damping ratios is reasonable.
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Fig. 8. Time evolution of uy versus uy (Eqs. (7a) and (7c)) for an undamped eccentric structure characterized by

ey ¼ 0;De ¼ 28m;oL ¼ p rad=s and a ¼ 0:1m: (a) g ¼ 1:3; ex ¼ 0:05; (b) g ¼ 1:7; ex ¼ 0:1:
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Note that for zero modal damping ratios ðx ¼ 0Þ;L ¼ 1 and y ¼ 0; Eqs. (12a)–(12c) reduce to
Eqs. (8a)–(8c), respectively. Also note that Eqs. (12a)–(12c) are very similar to the corresponding
Eqs. (8a)–(8c) for undamped systems, the main difference being: (a) an overall response decay in
time, and (b) a relative amplitude decay in time of the harmonics at frequencies oD2 and oD3 with
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respect to the amplitude of the harmonic at frequency oD1: This relative amplitude decay is larger
for the oD3 harmonic than for the oD2 harmonic.
The observed similar structure of the governing equations of motion for both undamped and

damped eccentric systems and response history simulation studies indicate that damped and
undamped eccentric systems in free vibration follow similar behavioral patterns. Fig. 9 compares
the damped (assuming x ¼ 5%) and undamped free vibration responses in the ‘‘uy 	 uy’’ space of
two eccentric structures of parameter g ¼ 1:3 and g ¼ 1:7; respectively, for the special case of zero
longitudinal eccentricity ðey ¼ 0Þ: Note that the damping-induced reduction (as compared to the
undamped case) of the maximum rotational response developed in the first few cycles is larger for
the system with the smaller parameter g: This is due to the fact that, as shown in Section 5.2, for
structures characterized by small (close to one) values of the g parameter, it takes a relatively
larger number of longitudinal oscillations to develop the maximum rotational response amplitude
juyjmax:
Fig. 10a shows the Argand diagram representation of the free vibration response [Eqs. (12a)–(12c)]

of a damped eccentric system for the special case ey ¼ 0: Note that in the damped case, the
amplitude of the three rotating vectors decays exponentially in time, but with faster relative decay
for the two vectors rotating at frequency oD3: As a result, for the damped case, an even stronger
correlation exists between the longitudinal and rotational responses as compared to the
undamped case.
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Fig. 9. Time evolution of uy versus uy for an undamped structure (Eqs. (7a) and (7c)—dotted line) and a 5% damped

structure (Eqs. (12a) and (12c)—solid line), both characterized by ey ¼ 0;De ¼ 28m;oL ¼ p [rad/s], and a ¼ 0:1m : (a)

g ¼ 1:7; ex ¼ 0:1; (b) g ¼ 1:3; ex ¼ 0:05:
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(a)

(b)

Fig. 10. Argand diagram (rotating vector) representation of free vibration of damped eccentric systems (Eqs. (12a) and

(12c)), for the special case of null longitudinal eccentricity ðey ¼ 0Þ: (a) general representation; (b) representation at

t ¼ ðp	 yÞ=oD1
s:
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Fig. 10(b) shows the Argand diagram representation of the longitudinal and rotational free
vibration responses of a damped eccentric system with zero longitudinal eccentricity at time
t ¼ ðp	 yÞ=oD1: At this instant of time, it is seen that the response quantities uyðtÞ and
ðA1r=A4ÞuyðtÞ are closer than in the corresponding situation (i.e., at t ¼ p=o1) without damping.
7. Maximum rotational to maximum longitudinal displacement response ratio of undamped and

damped eccentric systems in free vibration

In the previous sections, it was shown that eccentric systems (in the special case of zero
longitudinal eccentricity) develop, almost simultaneously and almost once per longitudinal
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oscillation, a rotational and longitudinal response close to their respective maxima. This behavior
suggested that the maximum rotational and maximum longitudinal displacement responses of
eccentric systems might be strongly correlated, their ratio representing a basic property of
eccentric systems, which controls their dynamic response also under general forced vibration
conditions. On this basis, the ratio of the maximum rotational to maximum longitudinal
displacement response, ðjuyjmax=juyjmaxÞfv; developed by eccentric structures in free vibration from
a given initial longitudinal displacement ‘‘a’’ is investigated below for the special case of zero
longitudinal eccentricity.9

For undamped eccentric structures, the ratio ðjuyjmax=juyjmaxÞfv;u can be expressed in closed-
form from Eqs. (7a) and (7c) as

juyjmax
juyjmax

� �
fv;u

¼
4e

ffiffiffi
3

p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 	 1Þ2 þ 48e2

q ¼
1

r

ffiffiffiffiffiffiffiffiffiffiffi
48F2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48F2 þ 1

p : (13)

Eq. (13) shows that ðjuyjmax=juyjmaxÞfv;u is inversely proportional to the mass radius of gyration r
of the structure; thus suggesting the following dimensionless rotational parameter:

au ¼ r
juyjmax

juyjmax

� �
fv;u

¼
4e

ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 	 1Þ2 þ 48e2

q ¼

ffiffiffiffiffiffiffiffiffiffiffi
48F2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48F2 þ 1

p : (14)

From the graphical representation of the above rotational parameter au given in Fig. 11, it is
observed that for the same initial longitudinal displacement, eccentric systems can develop very
different values of maximum rotational response depending on the system characteristics. Eq. (14)
and Fig. 11 indicate that the rotational parameter is bounded between zero and one ð0paup1Þ;
thus limiting the maximum rotational response juyjmax that can be developed in free vibration by
any eccentric linear elastic system to

juyjmaxp
juyjmax

r
¼

a

r
¼

ffiffiffiffiffi
12

p
juyjmax

De

: (15)

This is a fundamental result. Note also that for g ¼ 1; the maximum rotational response reaches
this upper bound independently of the eccentricity ‘‘e’’. The rotational parameter au depends on
the pair of system parameters ‘‘e’’ and ‘‘g’’ or, even better, on the single structural parameter
F ¼ e=ðg2 	 1Þ:
Due to the exponential decay in time of the amplitude of the various harmonic components of

the damped free vibration response in Eqs. (12a) and (12c), unlike in the undamped case it is not
possible to obtain a simple exact closed-form expression for the maximum rotational to maximum
9In the case eya0; the value of the ratio is given by

juyjmax

juyjmax

� �
fv;u

¼
1

r
ex

e

ffiffiffiffiffiffiffiffiffiffiffi
48F2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48F2 þ 1

p :

Recall that for a given eccentricity ex; the largest maximum rotational response is obtained for ey ¼ 0 as shown in

Section 4.
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longitudinal displacement ratio. However, an upper bound analysis yields the following result:

ad ¼ r
juyjmax

juyjmax

� �
fv;d

pL
1

2
au Max 1;Exp 	x

p
2

ffiffiffiffiffiffi
O1

O3

s !
þ Exp 	x

p
2

� �( )
: (16)

For the ranges of parameters considered in this study ð0:02pep0:22; 1:05pgp1:80Þ; the above
upper bound is governed by the second argument of the Max() function for values of modal
damping ratio up to 0.30. Note also that for zero damping the above upper bound reduces to au;
the analytically exact value of rðjuyjmax=juyjmaxÞfv;u for undamped free vibration. Due to the lack of
an exact analytical expression for the rotational parameter ad ; this ratio was obtained, for the
special case of ey ¼ 0; through extensive numerical simulations carried over a wide range of
system parameter values, namely 0:02pep0:22; 1:05pgp1:80; and 0:02pxp0:12: The following
empirical analytical expressions were obtained for ad through least-squares fitting:

ad ¼ 	1:74e þ 15:71
e

g2
	 51:17

e2

g4
; x ¼ 2%; (17a)

ad ¼ 	1:11e þ 12:55
e

g2
	 39:18

e2

g4
; x ¼ 4%; (17b)

ad ¼ 	0:88e þ 11:30
e

g2
	 34:58

e2

g4
; x ¼ 5%; (17c)

ad ¼ 	0:70e þ 10:25
e

g2
	 30:70

e2

g4
; x ¼ 6%; (17d)

ad ¼ 	0:46e þ 8:64
e

g2
	 24:95

e2

g4
; x ¼ 8%; (17e)
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Fig. 12. Values of the alpha parameter ad given by Eqs. (16) (approximate analytical solution) compared with the

corresponding values obtained through numerical simulation: (a) x ¼ 2%; (b) x ¼ 5%; (c) x ¼ 10%; (d) x ¼ 12%:
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ad ¼ 	0:31e þ 7:45
e

g2
	 20:95

e2

g4
; x ¼ 10%; (17f)

ad ¼ 	0:23e þ 6:59
e

g2
	 18:19

e2

g4
; x ¼ 12%: (17g)

Fig. 12 compares the values of ad provided by Eq. (16) with the numerically simulated values of ad

and indicates a good fit due to the smoothness of function ad ðe; gÞ:
8. Maximum rotational to maximum longitudinal displacement response ratio for undamped and

damped eccentric systems in forced vibration

The study of the free vibration of eccentric systems has shown that the ratio of the maximum
rotational to the maximum longitudinal displacement response has a smooth but strong
dependence on only a few system parameters. These interesting results suggested to investigate the
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values taken by this response ratio under forced vibration conditions. Extensive numerical
earthquake response simulations were performed for eccentric systems over a wide range of
system parameters, namely 0:02pep0:24; 1:05pgp1:80; 0:02pxp0:15; and using a set of 125
historical ground motion records (20 of which are near-field records defined by a site-to-source
distance smaller than 10 km) as earthquake forcing functions. These records include the El Centro
record (N–S comp.) of the 1940 Imperial Valley earthquake, the Taft record (E–W comp.) of the
1952 Kern County earthquake, the Cholame record (E–W comp.) of the 1966 Parkfield
earthquake, the Lucern record (E–W comp.) of the 1992 Landers Earthquake, the Rancho Palos
Verdes record (N–S comp.) of the 1994 Northridge earthquake, and the Oka record (N–S comp.)
of the Kobe 1995 earthquake. As in the analyses performed in the previous section, the systems
here analyzed are characterized by a null longitudinal eccentricity ðey ¼ 0Þ and an excitation
applied in the longitudinal (y-) direction. The results obtained show that the response ratio
rjuyjmax=juyjmax for earthquake excitation remains close to its counterpart for damped free
vibration, i.e.,

r
juyjmax

juyjmax

� �
eqke

ffi ad : (18)

Fig. 13 shows the results obtained for eccentric structures with 4% modal damping ratios and
parameter g ¼ 1:18; 1:41; 1:73: This figure compares the mean value and the mean � one standard
deviation of the response ratio rjuyjmax=juyjmax over the selected set of 125 earthquake ground
motions with the corresponding rotational response parameters au and ad under free vibration
conditions. It is seen that the mean value of the response ratio is relatively close to ad : It is also
observed that the rotational parameter au; available in closed-form from Eq. (14) and function of
parameter ‘‘F ’’ only defined in Eq. (5), appears to provide a good upper bound for the response
ratio rjuyjmax=juyjmax induced by earthquake excitation. The following small differences were
obtained between the results for the far- and near-field records, respectively: the mean value of the
response ratio rjuyjmax=juyjmax is about 15%, 8%, and 0% larger for the near-field records than
for the far-field records for g ¼ 1:18; 1:41; and 1.73, respectively.
Also, numerical dynamic simulations were performed for eccentric systems subjected to a sum

of two harmonic excitations

pyðtÞ ¼ AL cosðoLtÞ þ Ay cosðoytÞ: (19)

A representative set of the results obtained is given in Fig. 14. It is observed that for AL=Ay ¼ 1;
the response ratio rjuyjmax=juyjmax almost coincides with the rotational parameter ad : Also in this
case, parameter au represents an upper bound for the response ratio rjuyjmax=juyjmax:
9. Alpha-method for prediction of maximum rotational response of eccentric systems

The results presented in previous sections strongly indicate that the response ratio
rjuyjmax=juyjmax is a robust, low-variability response parameter, which is only weakly excitation
dependent and therefore strongly system dependent. This fundamental property forms the basis of
the proposed simplified analysis procedure presented in this section. Hereafter, the dimensionless
response ratio rjuyjmax=juyjmax obtained for free vibration conditions and termed au and ad for
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simulations based on a set of 125 historical earthquake input records (all structures are characterized by x ¼ 4%): (a)
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(undamped); - - - - -, alpha (damping ¼ 4%).
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undamped and damped eccentric systems, respectively, will be referred to as the ‘‘a’’ parameter.
Structures characterized by large values of ‘‘a’’ have a predisposition for developing large
rotational response.
The limited difference between ‘‘a’’ and the corresponding value of the ratio rjuyjmax=juyjmax

developed under forced vibration conditions suggests the following simple relationship between
juyjmax and juyjmax:

juyjmax ffi a
juyjmax

r
: (20)



ARTICLE IN PRESS

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Al/At = 10           
Al/At = 4            
Al/At = 2            
Al/At = 1            
Al/At = 1/2          
Al/At = 1/4          
Al/At = 1/10         
alpha (damping = 4 %)
alpha (undamped)     

AL/A
AL/A
AL/A
AL/A
AL/A
AL/A
AL/A

u (alph a undamped)

d (alpha damped)

Eccentricity “e”

ρ.
 _

__
__

_
 |u

θ| m
ax

 |u
y|

m
ax

Fig. 14. Response parameter rjuyjmax=juyjmax versus ‘‘e’’ for eccentric structures subjected to the driving force defined in

Eq. (19): g ¼ 1:18; x ¼ 4%; —,—, AL=Ay ¼ 10; —�—, AL=Ay ¼ 4; —�—, AL=Ay ¼ 2; —&—, AL=Ay ¼ 1; —n—,

AL=Ay ¼
1
2; ; AL=Ay ¼

1
4; —%—, AL=Ay ¼

1
10; —�—, au (alpha undamped); - - - - -, ad (alpha damped).

T.L. Trombetti, J.P. Conte / Journal of Sound and Vibration 286 (2005) 265–312288
Other research work [23,24] shows that the maximum longitudinal displacement response, juyjmax;
of an eccentric structure does not differ significantly from the maximum longitudinal
displacement, juyjmax	ne; developed by a structure having equivalent dynamic characteristics,
but with no eccentricity. As an illustration of this fact, selected numerical results are plotted in
Fig. 15 (for ey ¼ 0 and g ¼ 1:18) showing that for increasing values of eccentricity ‘‘e’’, the
maximum longitudinal displacement response does not change significantly. Thus,

juyjmax ffi juyjmax	ne (21)

which, when used in conjunction with Eq. (20) yields the following formula for maximum
rotational response prediction:

juyjmax ffi a
juyjmax	ne

r
: (22)

Eq. (22), provides a powerful tool for simplified (code-like) analysis of the torsional response
of eccentric structures. The maximum longitudinal displacement response of the equivalent
non-eccentric structure, juyjmax	ne; is readily obtained as the maximum deformation of an sdof
oscillator of undamped natural period TL ¼ 2ðpÞ=oL; damping ratio x; and mass equal to the
total mass of the structure (e.g., response spectrum [29]).
Base isolated structures represent one of the main applications of the proposed ‘‘a’’ method for

simplified analysis of 3-dof laterally–torsionally coupled systems. For these structures,
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determination of the maximum isolator deformation is a key design parameter. It is useful to note
that for rectangular base-isolated structures, a

ffiffiffi
3

p
represents the ratio of the displacement at the

corner of the structure (along the direction orthogonal to the diagonal) caused by the maximum
rotational response, juy;maxj; to the maximum longitudinal displacement response at the center of
mass of the structure, juy;maxj; as shown in Fig. 16. This observation provides a clear geometric
interpretation of the parameter ‘‘a’’. A fundamental result presented in Section 8 is that parameter
‘‘a’’ is bounded by one from above. It follows that the maximum corner displacement (along the
direction orthogonal to the diagonal) caused by the maximum rotational response is bounded byffiffiffi
3

p
juy;maxj ¼ 1:73juy;maxj:
10. Comparison between IBC provisions and proposed ‘‘alpha’’ method

According to the provisions of the International Building Code (IBC) (formerly Uniform
Building Code (UBC)) and the Structural Engineers Association of California [6,31,32], the total
maximum design displacement of the isolators DTM (including torsional effects) can be estimated
as (Eqs. (16–83) and (16–84) of IBC)

DTM ¼ DM 1þ y
12E

b2 þ d2

� �
; (23)
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where DM is the maximum displacement at the center of rigidity of the isolation system
in the direction under consideration, E the actual (absolute) system eccentricity (including 5%
accidental eccentricity), y the distance between the center of rigidity of the isolation system
and the element of interest, measured perpendicular to the direction of seismic loading
under consideration; and b; d are the shortest and longest plan dimensions of the structure,
respectively.
Assuming a rectangular plan of dimensions b � d and a uniform distribution of the isolators, it

can be shown that

juyjmax	IBC ¼
12DME

b2 þ d2
ffi

12E

b2 þ d2
juyjmax ¼

ffiffiffiffiffi
12

p
e
juyjmax

r
¼ aIBC

juyjmax

r
; (24)

where

aIBC ¼
ffiffiffiffiffi
12

p
e: (25)

It is observed that unlike the proposed rotational ‘‘alpha’’ parameter, the one implied by the IBC
provisions depend only on the relative eccentricity ‘‘e’’ and not on structural parameter ‘‘g’’.
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Using Eqs. (14), (17c) and (17f), the ratios of the undamped ðauÞ and damped ðadÞ rotational
‘‘alpha’’ parameter of the proposed method to that implied by the IBC provisions are obtained as

au=aIBC ¼
2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg2 	 1Þ2 þ 48e2
q ; (26)

ad=aIBC ¼ 	0:25þ
3:26

g2
	
10e

g4
ðfor x ¼ 5%Þ; (27)

ad=aIBC ¼ 	0:1þ
2:15

g2
	
6e

g4
ðfor x ¼ 10%Þ: (28)

The above three ratios are plotted in Fig. 17. It is observed that for large values of ‘‘g’’ and
especially for large values of ‘‘g’’ combined with large values of the relative eccentricity ‘‘e’’, the
Fig. 17. Comparison of rotational ‘‘alpha’’ parameter of proposed method with that implied by the IBC provisions: (a)

au=aIBC; (b) and (c) ad=aIBC for 5% and 10% damping ratio, respectively.



ARTICLE IN PRESS

T.L. Trombetti, J.P. Conte / Journal of Sound and Vibration 286 (2005) 265–312292
rotational ‘‘alpha’’ parameter of the proposed method is significantly smaller than its IBC
counterpart. On the contrary, for small values of ‘‘g’’ and especially for small values of ‘‘g’’
combined with small values of ‘‘e’’, the ‘‘alpha’’ parameter of the proposed method is significantly
larger than its IBC counterpart.
11. Numerical verification of the ‘‘alpha’’ method

Numerical verification of the ‘‘alpha’’ method is performed through direct numerical
integration of the equations of motion, Eq. (1), of linear elastic one-story 3-dof eccentric
systems to obtain the ‘‘exact’’ maximum rotational response, juyjmax: Estimation of juyjmax
through Eq. (22) requires numerical evaluation of the dimensionless rotational parameter a
and of juyjmax	ne: In each case described below, parameter a is evaluated using either the
closed-form expression in Eq. (14) for undamped systems or the empirical analytical expressions
in Eq. (16) for damped systems. For each earthquake record considered in this study, the res-
ponse parameter juyjmax	ne is obtained through numerical integration of the equation of
motion of an sdof oscillator of the same mass and uncoupled lateral stiffness as the eccentric
system.
The same set of 125 earthquake records used in Section 8 is used in the numerical verification

study. The eccentric systems considered here are characterized by the following wide ranges of
structural parameter values: relative eccentricity ‘‘e’’ varying between 0% and 24% ð0pep0:24Þ;
modal damping ratio varying between 5% and 15% ð0:05pxp0:15Þ; g ¼ oy=oL varying between
1.18 and 1.73 ð1:18pgp1:73Þ: These ranges of parameter values cover the majority of cases of
seismic isolated structures [6]. Fig. 18 is similar to Fig. 13 with rjuyjmax=juyjmax replaced by
rjuyjmax=juyjmax	ne and the addition of aIBC: Figs. 19(a)–(f) compare the ‘‘exact’’ maximum
rotational response (in radians) with the corresponding estimations obtained using (a) the ‘‘alpha’’
method (using both the alpha damped and alpha undamped parameters), (b) the SRSS method of
modal combination [29], and (c) the method proposed by the International Building Code (IBC)
(formerly Uniform Building Code (UBC)) [6,31]. Note that in the cases presented in Figs.
19(a)–(f), the ‘‘alpha’’ method provides an estimation of the maximum rotational response that is
comparable or superior in accuracy to the estimation obtained via the SRSS method of mode
combination. It is also observed that in general the estimation according to the IBC overestimates
the maximum rotation developed by structures characterized by large values of ‘‘g’’ and ‘‘e’’ as
shown in Fig. 18 and illustrated in Figs. 19(e), (c), and (f). Conversely, it underestimates (up to
several fold) the maximum rotation developed by structures characterized by low damping and
small values of ‘‘g’’ and ‘‘e’’ as shown in Fig. 18 and illustrated in Fig. 19(a). On the other hand,
for large values of ‘‘g’’ and ‘‘e’’ and for large damping ratio (e.g., x ¼ 15%), the IBC provisions
may overestimate the maximum rotational response by a factor of two as illustrated in Figs. 19(e)
and (f).
In summary, the above comparative numerical results together with other results not presented

here show that (1) the ‘‘alpha’’ method is sufficiently accurate for engineering purposes and (2) the
‘‘alpha’’ method provides a maximum rotational response estimation of comparable accuracy
with that given by the SRSS method. However, the ‘‘alpha’’ method has the following advantages
over the latter: (1) it reduces the 3D problem to that of an sdof system and a simple calculation/
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estimation of the structural ‘‘g’’ parameter10 and the relative eccentricity ‘‘e’’ to be used in a simple
code-like formula to estimate the maximum rotational response, (2) for a given linear elastic 3-dof
eccentric system, it provides, at minimum computational cost, immediate insight into the heart of
the lateral torsional coupling problem and the resulting effects on the maximum deformation
response of the system due to earthquake excitation (e.g., quick comparison of alternative design
solutions11 and direct estimation of additional deformation in corner isolators due to rotational
10For fairly regular structures, g can be evaluated directly from the basic layout of the eccentric system through

simple exact and/or approximate formulas.
11Since it is bounded between 0 (non-eccentric case) and 1, the rotational parameter a can be readily used as a formal

index for the tendency of a given structure to develop a rotational response under dynamic excitation.
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response effects), and (3) it is perfectly suited for the incorporation of accidental eccentricity in
seismic design. The above numerical verification shows that in general, the rotational ‘‘a’’
parameter obtained from the proposed simplified method is more accurate than the current IBC
provisions, which do not account for structural parameter ‘‘g’’. The dependence of the maximum
rotational response on parameter ‘‘g’’ has already been recognized indirectly and qualitatively (on
a case-by-case basis) by other researchers [2,3,12,22]. Thus, the present work formalizes into a
simple, physically based formula the behavioral trends identified in previous research work and
represented graphically in Fig. 12.
12. Experimental verification of the ‘‘alpha’’ method

Experimental verification of the ‘‘alpha’’ method consisted of a suite of shaking table tests
performed on the medium size shaking table in the Department of Structural Engineering at Rice
University in Houston, Texas. A versatile small-scale one-story 3-dof building model able to
simulate a wide range of eccentric conditions was designed and constructed specifically for these
tests.

12.1. Targeted prototype structure

In order to design and fabricate a meaningful small-scale model representative of a real seismic
isolated building, a prototype structure was selected. A target prototype structure consisting of a
four-story building 20m� 20m in plan and resting over 25 base isolators located at the nodes of a
square 5m� 5m grid as shown in Fig. 20 is considered in this study, as it represents a reasonable
example of seismic isolated building structure [6]. Considering a distributed mass of 1000 kg=m2

for each floor, the inertia characteristics of the target prototype structure are:
�

Fig

(a)

(N

Im

(N

IB

co
total mass of the superstructure: m ¼ 2� 106 kg;

�
 polar mass moment of inertia of the superstructure with respect to the center of mass: IP ¼

1:3̄� 108 kgm2;

�
 mass radius of gyration of the superstructure with respect to the center of mass: r ¼ 8:16m:
Assuming an uncoupled lateral natural period of vibration of TL ¼ 2 s for the target prototype
structure, the following prototype characteristics can be deduced:
�
 lateral stiffness (in any direction) of the 25 isolators combined: k ¼ 2� 107N/m;

�
 rotational stiffness of the total base isolation system about the center of mass: kyy ¼

2� 109 Nm=rad;
. 19. Maximum rotation response versus eccentricity ‘‘e’’ for several earthquake excitations and dynamic systems:

Friuli 1976 Tolmezzo record (N–S comp.), g ¼ 1:18; x ¼ 5%; (b) Kern County 1952 Taft Lincoln School record

–S comp.), g ¼ 1:41; x ¼ 5%; (c) Northridge 1994 Rancho Palos Verdes record, (E–W comp.), g ¼ 1:73; x ¼ 5%; (d)
perial Valley 1953 El Centro record (E–W comp.), g ¼ 1:18; x ¼ 15%; (e) Landers 1992 Desert Hot Springs record
–S comp.), g ¼ 1:41; x ¼ 15%; (f) Kobe 1995 Oka record (N–S comp.), g ¼ 1:73; x ¼ 15%; SRSS estimation (- - - - -),
C estimation (—), ‘‘alpha damped’’ estimation ð� � �Þ; ‘‘alpha undamped’’ estimation ð� � �Þ; ‘‘exact’’ results from
mplete 3D time domain integration ð� � �Þ:
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�
 ratio of lateral to rotational natural period for zero eccentricity: g ¼ oy=oL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kyy=r2k

p
¼

1:225;

�
 rotational natural period of vibration for zero eccentricity: T0 ¼ 1:632 s:

12.2. Model structure

12.2.1. Rationale

To accommodate the characteristics of the Rice University shaking table (on which these tests
were performed) and for ease of model construction, model instrumentation, and response data
acquisition, the time scale factor lT ¼ Tp=Tm ¼ 5 and the length scale factor lL ¼ Lp=Lm ffi 40
were selected. Given the characteristics of the theory to be verified, we chose to construct a linear
elastic one-story building model characterized by: (a) null longitudinal eccentricity ðey ¼ 0Þ; (b)
adjustable distance between the center of mass and the center of stiffness (i.e., system eccentricity)
along the transversal (x-) direction, and (c) other dynamic characteristics which remain constant.
Thus, the model had to satisfy the following requirements:
�
 maintain a linear elastic behavior throughout the shaking table tests;

�
 have a precisely located and fixed center of stiffness;

�
 have a precisely located and movable center of mass;

�
 have a precisely defined mass radius of gyration for the case of zero eccentricity;

�
 have a constant value of its uncoupled lateral natural period of vibration throughout the
shaking table tests;
�
 have a constant value of the dimensionless structural parameter ‘‘g’’.

In order to satisfy the above requirements, a model was built consisting of a carbon fiber sandwich
plate supported by nine (three rows of three) solid plexiglas column rods fixed to both the carbon
fiber top plate and a plexiglas base plate.
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12.2.2. Design specifications

From the above scaling factors and requirements, the model must have an uncoupled lateral
natural period of vibration of TL ¼ 0:40 s; a mass radius of gyration of about r ¼ 20:4 cm; and a
parameter g ¼ 1:225:
12.2.3. Weight and dimensions
The carbon fiber sandwich top plate is squared 50 cm� 50 cm in size, see Fig. 21, and weighs

0.550 kg. The nine plexiglas column rods are 6.35mm in diameter, 225mm in length and are
located at the nodes of a 20 cm� 20 cm square grid. The plexiglas columns were sized, assuming a
Young’s modulus for the plexiglas of 294300N=cm2; to achieve a lateral stiffness of the model of
2000N/m, which leads to a model uncoupled lateral natural period of 0.40 s for a total model
mass of 8.00 kg. Particular attention (accuracy of location and consistency of clamping
conditions) was paid to the connections of the column rods to both the top carbon fiber
sandwich plate and the base plexiglas plate, so as to locate precisely the center of stiffness at the
geometric center of the top plate.
Four weights of 1.850 kg each (including the clamping bolts) can be fixed to the top carbon fiber

sandwich plate in various configurations as shown in Fig. 22. The locations at which these added
weights could be positioned were carefully computed in order to obtain precisely transversal
relative eccentricities of e ¼ ex ¼ 0%; 2%; . . . ; 18%; and 20% of the equivalent diagonal De as
defined in Section 2, while maintaining a constant value of parameter g ¼ 1:225: Hooks and
mounts for the displacement and acceleration transducers,12 with a total weight of approximately
12The string potentiometers used as displacement transducers were located externally to the model.
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Fig. 22. The reduced scale model as built.
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1.100 kg,13 were attached to the top carbon fiber sandwich plate. Their positions and masses
were taken into account in determining the precise clamping locations of the added weights.
The resulting total mass of the model (neglecting the weight of the column rods) amounts to
9.05 kg, 13% in excess of the target 8.0 kg mass. Photographs of the model as built are shown in
Fig. 22.

12.3. Static characteristics of the model

The model was first subjected, through a weight and pulley system, to a monotonically
increasing horizontal static load up to 27.1N applied at the center of stiffness in the longitudinal
(y-) direction in order to determine the experimental static load–displacement curve shown in
Fig. 23. This maximum static equivalent lateral force was selected based on a predicted absolute
lateral acceleration response of the model of 0.3 g, which corresponds to a peak table acceleration
of 0.10 g ( ¼ peak ground acceleration in the model world) and a dynamic amplification factor of
3. It is observed from Fig. 23 that the model behaves linearly up to at least 15.2mm of lateral
deformation. The experimental lateral stiffness amounts to 1800N/m, which is close to the target
value of 2000N/m. This 10% reduction in the lateral stiffness is mainly due to the imperfect
clamping of the plexiglas column rods.
13This weight also includes an additional mass used to cancel the mass eccentricity caused by the hooks and mounts

for the displacement transducers and accelerometers.
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12.4. Instrumentation and data acquisition for dynamic measurements

In order to measure the dynamic response of the physical model described above, a set of three
string potentiometers and a set of three piezoelectric accelerometers were used as shown in Fig. 22.
Each of these two sets of transducers is sufficient to completely determine the measured in-plane
response (either displacement or acceleration) of the rigid top plate along the 3 dofs uxðtÞ; uyðtÞ;
and uyðtÞ; at the (adjustable) center of mass of the eccentric system. Special rigid mounts in
plexiglas were fixed on the base plate of the model to provide the necessary reference points to
measure the relative displacement response of the top plate with respect to the base. The uniaxial
shaking table displacement and acceleration were also measured through the built-in shaking
table actuator LVDT and an additional accelerometer, respectively. All these transducers outputs
were acquired at a sampling rate of 4 kHz through a LabView-controlled dynamic signal
acquisition board hosted in a Pentium computer.

12.5. Dynamic characteristics of the model

In order to determine the actual dynamic characteristics of the model, a series of dynamic
experiments were performed including both snap-back (free vibration) tests and white noise base
excitation tests using the shaking table.
Fig. 24 shows the experimentally identified transfer function (both magnitude and phase)

between base acceleration and roof (top plate) acceleration of the model in the longitudinal (y-)
direction for null eccentricity condition. This transfer function was obtained through a white noise
base excitation test and using the Bartlett’s procedure of spectral estimation [33,34]. The resonant
frequency is located at f L ¼ oL=ð2pÞ ¼ 2:2Hz; which corresponds to the actual uncoupled lateral
natural frequency of vibration of the model. Using the half-power bandwidth method [29],
the damping ratio of the system in the uncoupled longitudinal mode of vibration is estimated at
about 6%.
Fig. 25 represents the Fourier amplitude spectrum of the free vibration rotational response of

the model induced by an initial rotational deformation for null eccentricity condition. The
spectral peak in the Fourier amplitude spectrum provides the actual uncoupled rotational natural
frequency at f y ¼ oy=ð2pÞ ¼ 2:75Hz: The above experimentally identified uncoupled longitudinal
and rotational natural frequencies of vibration allow the experimental determination of the
structural parameter g ¼ oy=oL ¼ f y=f L ¼ 2:75=2:2 ¼ 1:25; which is very close to the target
design value of g ¼ 1:225:

12.6. Comparison between target and actual model characteristics

The actual uncoupled lateral natural frequency of the model is 2.2Hz, which is 12% lower than
the corresponding target design value due to the smaller stiffness and larger mass of the model as
compared to the target design values. The time scaling factor lT ¼ 5 selected for this experimental
dynamic study gives a prototype uncoupled lateral natural frequency of 0.44Hz. This prototype
dynamic characteristic, although differing from the targeted prototype value of 0.5Hz, is
nonetheless still representative of common real seismic isolated buildings, which validates the
model constructed for the purpose of the present investigation.
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decoupled longitudinal vibration (eccentricity ¼ 0).
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The actual effective mass radius of gyration of the model is evaluated from the theoretical
expression g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kyy=ðr2kÞ

p
using:
�
 the experimentally identified g parameter ðg ¼ 1:25Þ;

�
 the experimentally identified value of the total lateral stiffness k; andP

�
 the value of the torsional stiffness defined as kyy ¼

9
i¼1 kir

2
i where ki denotes the lateral

stiffness of a single column (base isolator) and ri is the distance between the ith column and the
center of mass of the system. Here, the lateral column stiffness ki is taken as one-ninth of the
experimentally identified total lateral stiffness k:

The above evaluation procedure gives an actual effective mass radius of gyration of the model of
rm ¼ 19:0 cm as compared to a target design value of 20.4 cm. Preserving the length scale factor
lL ¼ 40; it follows that the prototype mass radius of gyration is rp ¼ 7:60m instead of the initial
targeted value of 8.16m.

12.7. Testing procedure

The small-scale model was tested on the Rice University uniaxial shaking table controlled to
reproduce the following eight earthquake records: Imperial Valley 1940 (El Centro record, N–S
comp.), Parkfield 1966 (Cholame # 2 record, E–W comp.), Friuli 1976 (Breginj record, N–S
comp.), Friuli 1976 (Tolmezzo record, N–S comp.), Montenegro 1979 (Bar record, E–W comp.),
Montenegro 1979 (Petrovac record, N–S comp.), Irpinia 1980 (Brienza record, N–S comp.), and a
synthetic earthquake record compatible with the european seismic code (Eurocode8) design
response spectrum. All these earthquake records were scaled both in time and amplitude. Note
that different length scalings were used for the selected earthquake records, so as to obtain scaled
table acceleration records with a peak acceleration in the range between 0.1 and 0.15 g. This range
was selected in order to induce a relative displacement response of the model that is large enough
to be measured accurately by the displacement transducers, but small enough not to threaten the
structural integrity of the model. The model was tested for the aforementioned eight earthquake
records and for the 11 added weight configurations corresponding to a transversal relative
eccentricity from 0% to 20% with an increment of 2%. Thus, a suite of 88 shaking table tests was
performed for the experimental verification of the ‘‘alpha’’ method. The eight earthquake records
as reproduced by the Rice University shaking table are shown in Fig. 26.

12.8. Test results

As the main objective of the experimental tests is to validate the accuracy and robustness of the
proposed simplified method, the maximum rotational response determined experimentally,
juyjmax	 exp; was compared with the corresponding estimation obtained using Eq. (22) where
juyjmax	ne was also determined experimentally by testing the structural model under condition of
null eccentricity. Notice that in Eq. (22), juyjmax	ne together with the mass radius of gyration r can
be introduced either at the prototype or at the model level; the rotational response juyjmax in
radians is the same at the prototype and model levels. Given the experimentally identified
damping ratio x ¼ 6:0%; Eq. (17d) is used to estimate the ‘‘a’’ parameter in Eq. (22) for all tests
performed.
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Fig. 26. Earthquake records (as reproduced by the shaking table): (a) Imperial Valley 1940, El Centro Record N–S

comp.; (b) Montenegro 1979, Bar record E–W comp.; (c) Montenegro 1979, Petrovac record N–S comp.; (d) Friuli
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N–S comp.; (g) Synthetic earthquake (EC8 spectrum compatible); (h) Irpinia 1980, Brienza record, N–S comp.
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12.8.1. Measured maximum rotations and corresponding estimations provided by the proposed

simplified ‘‘alpha’’ method
Figs. 27(a)–(h) compare measured maximum rotational responses with their corresponding

estimations obtained using the proposed ‘‘alpha’’ method and the IBC provisions as a function of
the relative eccentricity ‘‘e’’. As in the numerical verification, it is found that the ‘‘alpha’’ method
(with the alpha-damped parameter ad) is sufficiently accurate for engineering purposes and is
generally more accurate than the IBC provisions, except in the case of the Friuli Breginj record
(Fig. 27(e)) which is a very short, impulsive strong ground motion (Fig. 26). For the structural
parameter g ¼ 1:25 of the model, the ‘‘alpha’’ method (using ad) is particularly accurate at levels
of relative eccentricity ‘‘e’’ ranging from 0% to 8%. In most cases, the IBC provisions
underestimate significantly the actual maximum rotational response. It is also observed that the
‘‘alpha’’ undamped method provides a conservative upper bound (envelope) for the maximum
rotational response. Note in Figs. 27(a)–(h) the small but non-zero maximum rotational response
obtained experimentally for zero nominal eccentricity due to a small accidental eccentricity of the
model.

12.8.2. Other experimental results

In this section, a number of simplifying assumptions and behavioral trends used and identified
in developing the simplified ‘‘alpha’’ method are verified experimentally.
Fig. 28 shows the measured maximum longitudinal displacement response, juyjmax; at the center

of mass of the model as a function of the transversal relative eccentricity ‘‘e’’ for each of the 8
earthquake records considered. It is observed that, for a given base excitation, juyjmax does not
change significantly with increasing eccentricity ‘‘e’’ and can be reasonably approximated by the
maximum longitudinal displacement response for null eccentricity, juyjmax	ne: Note the
similarities between the experimental results in Fig. 28 and the corresponding numerical
simulation results shown in Fig. 15.
Fig. 29 compares the values of the rotational parameter ‘‘a’’ as obtained from Eq. (17d) with

the corresponding values of r � juyjmax=juyjmax	ne obtained experimentally and those obtained
according to the IBC provisions. In all cases, except for the Friuli Breginj record, the proposed
alpha-damped ðadÞ parameter is in good agreement with the experimental results being close to
their mean, while the alpha parameter recommended by the IBC provisions14 generally
underestimates the experimental results, especially for relative eccentricities ‘‘e’’ ranging from
0% to 10%. The alpha-undamped ðauÞ parameter provides a conservative upper-bound (envelope)
of the experimental results.
Figs. 30(a) and (b) show the free vibration rotational response (snap-back test) of the model

with relative eccentricities of 2% and 4% of the equivalent diagonal De; respectively. Note the
pronounced beating behavior in the free vibrational response, consistent with the analytical
prediction given by Eq. (10c).
Figs. 31(a) and (b) display the free vibration longitudinal displacement response of the model

structure with relative (transversal ex) eccentricities of 2% and 4% of De; respectively, and null
longitudinal eccentricity ðey ¼ 0Þ: Note the absence of any visible beating phenomenon in these
experimental longitudinal displacement responses, which is consistent with the analytical
14aUBC ¼
juyjmax	by	UBC � r
juyjmax	ne	exp

¼
ffiffiffiffiffi
12

p
e:
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Fig. 27. Experimentally observed rotational responses ð� � �Þ and their corresponding estimations using the ‘‘a’’
method (—, alpha damped; - - - - -, alpha undamped) and using the IBC provisions (—�—): (a) Imperial Valley 1940, El

Centro Record N–S comp.; (b) Montenegro 1979, Bar record E–W comp.; (c) Montenegro 1979, Petrovac record N–S

comp.; (d) Friuli 1976, Breginj record N–S comp.; (e) Parkfield 1966, Cholame record, E–W comp.; (f) Friuli 1976,

Tolmezzo record, N–S comp.; (g) Synthetic earthquake (EC8 spectrum compatible); (h) Irpinia 1980, Brienza record,

N–S comp.
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prediction given by Eq. (10a) and the small value of the ratio A3=A1 for the present model as
shown in Fig. 4 (where F ¼ e=ðg2 	 1Þ ¼ 1:778e).
Fig. 32 plots the free vibration response (snap-back test) of the model in the uy–uy plane for a

relative transversal eccentricity ‘‘e’’ of 4% of De: It is observed that in every longitudinal response
cycle, the maximum rotational response occurs almost concurrently with the maximum
longitudinal response as discussed earlier in this paper. The strong similarities between the
experimental results given in Fig. 32 and the numerical simulation results shown in Fig. 9 provides
further validation of the theory presented earlier in the paper.
Fig. 33 compares free vibration (snap-back test) longitudinal and transversal responses

of the model for a transversal relative eccentricity of 4% of De: Notice the presence of a very
small transversal displacement response of the model, which can be due to a number of
reasons such as (1) an imperfect initial deformation applied in the snap-back test (small x-
component), (2) the presence of a small accidental eccentricity in the longitudinal (y-) direction of
the model, and/or (3) the effects of the (small) restoring forces from the displacement transducers
(string potentiometers). The theory presented earlier in the paper (Eq. (12b)) predicts zero
transversal displacement response for null longitudinal eccentricity ðey ¼ 0Þ and an initial
deformation along the longitudinal (y-) direction only, which is practically reproduced by the
small-scale model.
Consistency between analytical predictions and experimental results shown in Figs. 30–33

further validate the construction of the small-scale model used for this experimental verification
study.
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Fig. 30. Free vibration rotational response of model structure: (a) system eccentricity ¼ 2% of De; (b) system
eccentricity ¼ 4% of De:
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13. Conclusions

The analytical, numerical, and experimental investigations presented in this paper provide
(a) new insight into the understanding of dynamic lateral–torsional coupling in linear elastic
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Fig. 31. Free vibration longitudinal displacement response of model structure: (a) system eccentricity ¼ 2% of De; (b)
system eccentricity ¼ 4% of De:

-15 -10 -5 0 5 10 15
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Longitudinal Displ.  [mm]

R
ot

at
io

n 
 [R

ad
]

Fig. 32. Time evolution of rotation versus longitudinal displacement responses for the model structure in free vibration

(system eccentricity ¼ 4% of De).
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one-story 3-dof eccentric systems, (b) sensitivity of coupled lateral–torsional response of eccentric
structures to basic controlling system parameters, and (c) a new, physically based, simplified
procedure to predict the maximum rotational response of eccentric systems.
In this paper, an important dimensionless response parameter, called the ‘‘alpha’’ parameter, is

identified as the product of the mass radius of gyration of the structure and the ratio of the
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maximum rotational to the maximum longitudinal displacement response developed by a one-
story eccentric system in free vibration, i.e., a ¼ rjuy;max=uy;maxjfv: It is shown that the
corresponding dimensionless parameter under forced vibration, rjuy;max=uy;maxjforced; is only
weakly excitation dependent and therefore strongly system dependent.
The ‘‘alpha’’ parameter is shown to depend on only two system parameters, namely the relative

eccentricity ‘‘e’’ of the system and g ¼ oy=oL where oL is the lateral uncoupled natural circular
frequency of the system and oy is the natural circular frequency of rotational vibration of a
corresponding non-eccentric structure. It is also shown that for undamped structures, the ‘‘alpha’’
parameter depends on ‘‘e’’ and ‘‘g’’ through the single system parameter F ¼ e=ðg2 	 1Þ:
Structures characterized by large values of ‘‘alpha’’ are prone to develop large rotational

dynamic response, while structures with small values of ‘‘alpha’’ are less prone to rotate
when responding dynamically. Thus, sensitivity analysis of the ‘‘alpha’’ parameter with respect
to physical structural parameters is crucial in understanding the dynamic behavior of
laterally–torsionally coupled systems. Such sensitivity analysis was performed in the paper and
the results are in agreement with past research work. For a specific structure, parameter ‘‘alpha’’
provides, at minimum computational cost, immediate insight into the heart of the torsional
coupling problem.
A fundamental result was obtained, namely that parameter ‘‘alpha’’ has an upper bound of

unity, thus limiting the maximum rotational response developed in free vibration from an
imposed initial deformation by any eccentric, linear elastic one-story system to the maximum
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longitudinal displacement at the center of mass divided by the mass radius of gyration of the
structure (i.e. juy;maxjp 1

r juy;maxj). Furthermore, since the rotational parameter ‘‘a’’ is bounded
between zero (non-eccentric case) and unity, this parameter can be readily used as a formal index
for the inherent property of a given structure to develop a rotational response under dynamic
excitation.
The aforementioned unique properties of the ‘‘alpha’’ parameter form the basis of the proposed

simplified analysis procedure, called the ‘‘alpha’’ method, presented in this paper. Using this
procedure, the maximum rotational response of a given system due to seismic excitation can be
estimated, through a simple code-like formula, as juyjmax ¼ ajuyjmax	neð1=rÞ where juyjmax	ne is
the maximum longitudinal displacement developed by an sdof oscillator of same mass and
uncoupled lateral stiffness as the eccentric system. In the case of earthquake excitation, juyjmax	ne
can be readily obtained from a response spectrum [29]. A compact exact closed-form expression
for the ‘‘alpha’’ parameter is given for the undamped case, and empirical analytical expressions
based on least-squares fitting of numerical dynamic simulation data are provided for the damped
case.
An extensive numerical verification of the ‘‘alpha’’ method was carried out based on a set of 125

historical earthquake records over a wide range of structural parameters encompassing the
majority of design situations for seismic isolated structures.
An experimental verification was performed through snap-back and shaking table tests of a

small-scale building model. A suite of 88 individual shaking table tests were performed using 8
historical and synthetic earthquake records appropriately scaled in time and amplitude. The test
model, 50 cm� 50 cm in plan, was carefully designed for adjustable (between 0% and 20% of the
equivalent diagonal De) transversal eccentricity between the center of mass and the center of
rigidity and other dynamic characteristics kept constant. This model is representative of a realistic
prototype seismic isolated structure consisting of a four story building, 20m� 20m in plan, with
an uncoupled lateral natural period of 2.27 s.
The numerical and experimental verification results show that the ‘‘alpha’’ method (1) is

sufficiently accurate for design purposes to estimate the maximum rotational response developed
by an eccentric system under seismic excitation, (2) is on the average significantly more accurate
than the current IBC provisions for base-isolated structures, which do not account for structural
parameter g and in the majority of cases considerably underestimates the maximum rotational
response, (3) is robust to a wide range of variation of system parameters, and (4) is at least as
accurate as the widely used SRSS modal combination method for maximum rotational response
prediction. Furthermore, through its simple formulation, the ‘‘alpha’’ method can be readily and
effectively used for practical design purposes and it is perfectly suited for the incorporation of
accidental eccentricity (generally prescribed to e ¼ 3:5% corresponding to 5% of the side of a
structure square in plan) in seismic analysis and design.
The ‘‘alpha’’ method, even though specifically developed for seismic isolated structures, could

also be applied to other structural systems such as one-story building structures with rotationally
symmetric lateral stiffness and deepwater fixed offshore towers subjected to dynamic excitations
such as earthquakes, earth tremors, wind-, fluid-, underground traffic-, and machine-induced
vibrations.
Undergoing research by the first author indicates that the ‘‘a’’ parameter introduced in this

paper for linear elastic eccentric one-story systems is larger than the corresponding ‘‘a’’ parameter
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ð¼ rjuy;maxj=juy;maxjÞ for nonlinear eccentric one-story systems made up of bilinear inelastic
resisting elements (e.g., seismic isolators) [28].
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