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Abstract

The work presented in this paper concerns the behaviour of porous media when exposed to a normal
incidence sound field. A propagating wave model based on lumped parameter concepts of acoustic mass,
stiffness and damping is used to investigate the absorption phenomena due to the wave propagation in the
layer(s) and interference effects due to the wave reflection–transmission at the interfaces of the layer(s).
Results from the theoretical model have been validated by measurements on samples of consolidated
rubber granulate material. Two typical installations where a layer of porous material is placed next to a
rigid wall, and where it is placed at a distance from a rigid wall are used as reference cases. The geometrical
and physical properties of porous materials can be described by such parameters as the non-dimensional
shape factor and the porosity. The propagating model introduced is used to investigate the effect of these
two parameters on acoustic absorption and thus relate the physical properties to the acoustic behaviour.
r 2004 Elsevier Ltd. All rights reserved.

PACS: 43.55.Ev
1. Introduction

In this paper the acoustic behaviour of rigid-frame porous materials is discussed. This area has
been investigated by several researchers [1–4], but one of the most significant contributions is by
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Johnson et al. [2]. In their work they established high- and low-frequency limits for the dynamic
tortuosity and permeability and introduced a parameter to describe the characteristics of
connected pores. Their expressions for tortuosity and permeability are widely used in models for
rigid-frame porous materials. The thermal effects in such materials have been discussed by
Lafarge et al. [3] using a similar approach to that in Ref. [2].
The theory in this field is quite complex as it involves acoustics, dynamics of fluids and

statistics; thus simplification is necessary in order to improve the physical understanding of the
absorption mechanisms and in such a way as to simplify the design procedures of sound insulation
with porous material linings. Brennan and To [5] described rigid-frame porous materials in terms
of acoustic mass, stiffness and damping lumped parameters. These concepts are further developed
in this paper by introducing the non-dimensional shape factor M and the porosity, h, effects. Also,
a propagating wave model based on lumped parameter concepts is used so that the absorption
phenomena due to the wave propagation in the layer(s) and interference effects due to the wave
reflection–transmission at the interfaces of the layer(s) are separately discussed and analysed.
Absorption and reflection coefficients are derived with reference to a plane acoustic wave, which is
incident normal to the surface of the porous layer, but this analysis could be applied also to plane
waves that are incident to the surface of the layer at an angle provided the porous material is
locally reacting.
The model is validated by measurements of acoustic absorption on samples of consolidated

rubber granulated material produced at the University of Bradford, for which data of flow
resistivity, tortuosity and porosity were available [6].
Two typical installations are studied using the model, one where a layer of porous material is

placed next to a rigid wall, and the other where the porous material is placed at a distance from a
rigid wall.
2. Acoustic waves in porous materials

In this section, the theoretical background of sound propagation in rigid-frame porous material
is reviewed. For plane wave sound propagation in gases contained within rigid-frame porous
materials the wave equation is given by [7]

q2p
qx2

�
sr0
k

� � q2p
qt2

�
sh

k

� �
qp

qt
¼ 0; (1)

where p is pressure and t is time, k is the effective bulk modulus of the gas, r0 the density of air, h
the porosity of the material, s is the flow resistivity and s is the structure factor. Assuming a
solution with time and space dependence of the form ejðot�kcxÞ; the complex impedance, Zc, and
the complex wavenumber, kc, in a pore are given by [1]

Zc ¼ ðrekÞ
1=2; kc ¼ o

re

k

� �1=2
; (2,3)

where o is the circular frequency. To describe the harmonic response of a locally reacting rigid-
frame porous material, knowledge of these two parameters is sufficient.
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2.1. Effective density and bulk modulus

Most models of rigid-frame porous materials are based on the work by Johnson et al. [2] and
Lafarge et al. [3]. Expressions for the complex density and the bulk modulus are, respectively,
given by

re ¼ r0a1 1þ j
Zh

r0a1k0o
1� j

4r0a
2
1k2

0o

Zh2L2

� �1=2
 !

; (4)

k ¼
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g� ðg� 1Þ 1þ j Zh
r0 Pr k0

0o
1� j

4r0Prk02
0o

Zh2L02

� �1=2� ��1
; (5)

where P is the static pressure aN is the tortuosity, k0 is the viscous permeability, k0
0 is the thermal

permeability, Z is the viscosity, g is the ratio of the specific heats, Pr is the Prandtl number, L is the
characteristic viscous dimension and L0 is the characteristic thermal dimension.
The network of pores in a rigid-frame porous material can be seen as a system of small necks

and volumes. Therefore equivalent acoustic mass, damping and stiffness effects for the whole
material can be derived. If the real and imaginary parts in Eqs. (4) and (5) are isolated then it is
possible to identify the effects of density and bulk modulus in terms of mass, stiffness and
damping whose impedances are given by [8]

Zm ¼ jom; Zk ¼ �j
k

o
; Zc ¼ c; (6a2c)

where m, k, c are the equivalent acoustic mass, stiffness and damping for the porous layer,
respectively. The frequency responses of these equivalent acoustic impedances are visualized in
Fig. 1(a) which shows that the mass effect rises proportionally with frequency while the stiffness
effect decays proportionally with frequency and the damping effect is constant throughout. As
shown in Fig. 1(b), the impedances of the equivalent acoustic mass and stiffness are complex with
phase 7901, respectively, while the impedance of equivalent damping is positive-real.
Fig. 1. Equivalent mass, stiffness and damping impedances.
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Following the formulation presented by Brennan and To [5] the normalized effective density
can be expressed as follows:

re

r0a1
¼ 1þ

ð1þ ðOM=2Þ2Þ1=2 � 1

2O2

( )1=2

� j
ð1þ ðOM=2Þ2Þ1=2 þ 1

2O2

( )1=2

; (7)

where O ¼ o=ot; with ot ¼ hZ=k0r0a1; and the non-dimensional shape factor M ¼ 8a1k0=hL2

which depends on the microstructure of the material. The equivalent acoustic mass impedance given
in Eq. 6(a) can be expressed in terms of the real and imaginary components of the complex density
given in Eq. (7) with a positive real part and a negative imaginary part. The top plot in Fig. 2 shows
that the real part of the complex density is almost constant for the whole frequency range while the
bottom plot in Fig. 2 indicates that the imaginary part varies as 1/o at low frequencies such that
Oo1. Therefore, the equivalent acoustic mass contribution in a porous material is proportional to
the real part of the complex density whereas the imaginary part of the complex density provides the
equivalent acoustic damping effect due to the interaction between the rigid frame of the material
and the fluid contained in the pores. At low frequencies, when Oo1, the damping-like behaviour
(imaginary part) dominates over the mass like behaviour (real part) whereas at higher frequencies,
such as O41, it is the mass which dominates over the damping, and ot is the transition frequency
from the damping to the mass-like behaviour for the reference case where M ¼ 0.
Different authors have suggested different values for M according to the specific structure of

the material, for example M ¼ 1 for cylindrical slits [2], M ¼ 5 or 6 for two granular materials
[9,10]. According to the top plot in Fig. 2, the mass effect significantly varies with M at low
frequencies, but this is not significant, since when Oo1 the damping (which is not affected by
variation of M) dominates over the mass-like behaviour. In contrast, at higher frequencies when
O41 it is the damping effect that appreciably varies with M but in this case the mass effect (which
is not affected by variation of M) dominates over the damping effect.
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Fig. 2. Absolute values of the real and imaginary parts of the normalized effective density with reference to increasing

values of the non-dimensional shape factor M (1–5). The arrows indicate rising values of M and the thick line

corresponds to M ¼ 5.
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Similar to the effective density, the bulk modulus given in Eq. (5) can also be expressed in terms
of real and imaginary parts to give:

k
gP

¼
Ō
2
þ g

Ō2
þ g2

þ j
Ōðg� 1Þ

Ō2
þ g2

; (8)

where a term ŌM 0=2 has been neglected in the derivation [5]. This expression includes a thermal
dimensionless coefficient M 0 ¼ 8k0

0=hL02; where k0
0 is the thermal permeability and L0 is the

characteristic thermal dimension. Also in this case the frequency is written in non-dimensional
form Ō ¼ o=ōt; where ōt ¼ otðM=A0Þ with A0 ¼ 8Pr k0

0=hL2:
The equivalent acoustic stiffness k given in Eq. 6(b) can be expressed in terms of the real and

imaginary components of the complex bulk modulus given in Eq. (8). The top plot in Fig. 3 shows
that the real part is nearly constant for the whole frequency range while the bottom plot indicates
that the imaginary part varies in proportion with o at low frequencies such that Oo1: Thus, the
equivalent acoustic stiffness effect in a porous material is due to the real part of the complex bulk
modulus whereas the imaginary part provides the losses. Brennan and To [5] have analytically
compared the viscous and thermal damping effects for a material that has similar pore sizes
throughout its volume. They found that even at the frequency when the loss factor is maximum,
the viscous damping is much greater than the thermal losses, which can thus be neglected.
However Henry et al. [11] have shown that this approximation is not valid for very thin layers
directly in contact with an impervious rigid backing. Also, as shown in the top plot of Fig. 3, the
reactive stiffness term is approximately 0.85 over the whole frequency range.
In conclusion a rigid-frame porous material can be described by a complex density and a

complex bulk modulus which represent, respectively, equivalent acoustic mass–viscous damping
behaviour and equivalent acoustic stiffness–hysteretic damping behaviour.
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Fig. 3. Absolute values of the real and imaginary parts of the effective bulk modulus.
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2.2. Acoustic wavenumber and impedance

Once the complex density and bulk modulus have been determined, the wavenumber and the
impedance can be calculated. However these are rather complicated expressions that could be
simplified by assuming that the thermal losses can be neglected; also the bulk modulus can be
considered to be constant with frequency and given by k ¼ P: This will have a small effect on the
predicted wavenumber and impedance at high frequencies [5]. The expressions for the impedance
and wavenumber, normalized to the corresponding value in air, thus become

Ẑc ¼
1

h

a1
g

� �1=2 re

ra

� �1=2

; k̂c ¼ ða1gÞ1=2
re

ra

� �1=2

: (9,10)

Eq. (9) represents the average characteristic impedance of a porous medium and thus includes the
corresponding porosity (ratio of the cross-sectional area of one channel and the surface area per
channel). Although these are relatively simple mathematical expressions, they do not provide a
direct physical interpretation of the reflection of incident waves to the porous material (acoustic
impedance) and propagation/dissipation (acoustic wavenumber) of acoustic waves in the porous
material. However, as discussed in Section 2.1 they can be reformulated in terms of equivalent
acoustic mass, stiffness and damping concepts by isolating the real and imaginary parts. The plot in
Fig. 4a shows that the real and imaginary parts of the characteristic acoustic impedance normalised
with reference to the value in air Z0 are respectively positive and negative. At low frequencies where
Oo1, the amplitude of the real part varies with frequency as 1=

ffiffiffiffi
o

p
and indicates a dissipative

behaviour. For higher frequencies, when O41, the real part converges to a constant value which
indicates a typical viscous damping behaviour and the amplitude of the imaginary part varies with
frequency as 1/o and thus it indicates an equivalent acoustic stiffness behaviour.
The propagation and dissipation of sound in a porous material is determined by the acoustic

wavenumber. These phenomena can be illustrated by considering the real and imaginary parts of
the acoustic wavenumber normalised with reference to the value in air k0 which are shown in
Fig. 4b. At low frequencies when Oo1, the amplitude of the real part varies with frequency as
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1=
ffiffiffiffi
o

p
which indicates a dispersive propagation phenomena [12]. In contrast, at higher

frequencies, when O41, the real part becomes constant which indicates non-dispersive wave
propagation and the amplitude of the imaginary part varies with frequency as 1/o which indicates
a typical hysteretic loss behaviour [12].
3. Reflection, transmission of sound in finite layers of porous materials

A simple representation of a propagating time harmonic wave in a generic medium 1 (fluid)
which impinges on a semi-infinite medium 2 (porous material) is shown in Fig. 5 where r1 and c1
are, respectively, the density and speed of sound in the fluid on the left-hand side and r2 and c2
are, respectively, the density and speed of sound in the porous material on the right-hand side.
The wave impinging on medium 2 (incident wave) is partly absorbed/dissipated inside the medium
itself, and partly reflected. For this system the reflection and transmission coefficients can be
specified as follows: the interface reflection coefficient is defined as the ratio between the reflected
and the incident sound pressure and the interface transmission coefficient is equal to the ratio of
the transmitted and the incident sound pressure:

r ¼
pr

pi

¼
Pr

Pi

; t ¼
pt

pi

¼
Pt

Pi

; (11,12)

where pi ¼ Pie
jðot�k1xÞ; pr ¼ Pre

jðotþk1xÞ; pt ¼ Pte
jðot�k2xÞ are the sound pressure of the incident,

reflected and transmitted waves and Pi, Pr, Pt are the relative complex amplitudes (phasors) for
t ¼ 0 and x ¼ 0 at the interface. By taking into account the continuity of pressure and of the
normal component of the particle velocity at the interface between the two media [8], it is possible
to derive expressions for both r and t:

r ¼
z2 � z1

z2 þ z1
; t ¼

2z2

z2 þ z1
; (13,14)
z1 = ρ1c1 z2 = ρ2c2

t
p

Transmitted wave
i

p
Incident wave

r
p

Reflected wave

medium 2medium 1

Fig. 5. Incident, transmitted and reflected waves in a simple case of waves impinging a semi-infinite porous material.
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where z1 ¼ r1c1 and z2 ¼ r2c2 are the characteristic impedances of the two media. Fig. 5
illustrates wave reflection and propagation in a semi-infinite porous medium where the incident
harmonic wave (solid line) is partially reflected (dashed line) and partially transmitted within the
layer where it decays because of the damping effects of the porous material. Note that there is a
phase shift for the reflected and transmitted waves at the interface between the fluid and porous
material, which is due to the complex part of the characteristic impedance.
In the case of a finite thickness layer of porous material the global reflection and transmission

coefficients can also be defined. Fig. 6 shows the wave propagation paths for a general case of an
incident plane acoustic wave to a layer of porous material of finite thickness. In this case the
incident wave transmitted into the layer will generate standing waves due to the interference of the
positive and negative going acoustic waves in the layer [13]. These two propagating components
will give rise, respectively, to indirect reflections of sound into the first medium and to
transmission of sound into the third medium as shown in the schematic of Fig. 6. The reflection of
the incident wave in layer one is therefore given by two components: first the direct reflection of
the incident wave at the interface between the first medium and the layer of porous material and
second the indirect reflection due to the negative components of the propagating waves within the
layer that will transmit back into the first medium an acoustic wave each time they impinge on the
left-hand side interface of the porous layer of thickness d1. As a result the global reflection
coefficient is given by [14]

RL ¼ r12 þ
t12t21r23e

�jk22d1

1� fr21r23e�jk22d1g
(15)

(if the porous material is rigidly backed, then r23 ¼ 1).
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Fig. 6. Schematic showing the patterns of the incident, reflected and transmitted waves for a generic layer of porous

material.
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Similarly the sound transmission into the third medium is given by the positive components of
the propagating waves within the layer that will transmit into the third medium an acoustic wave
each time they impinge on the right-hand side interface of the porous layer. Thus the global
transmission coefficient T is found to be [14]:

T ¼
t12t23e

�jk2d1

1� r21r23e�jk22d1
: (16)

If, as shown in Fig. 7, a rigid backing is placed at a distance from the right-hand side of the
porous layer in such a way as to leave an air gap, then standing waves are generated in both the
layer of porous material and the air gap. Following the same mechanisms described above, these
standing waves will produce series of forward and backward sound transmissions effects between
the layer of porous material and the air gap and this will result into an overall indirect reflection of
sound into the first medium such that, as described in Ref. [14], the total reflection coefficient is
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Fig. 7. Schematic of a layer of porous material of thickness d1 placed at a distance d2 from a rigid wall.
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given by

RAG ¼ RL þ rAG; (17)

where

rAG ¼
t1e

�j2ðk2d1þk3d2Þ

ð1� r1e�jk22d1Þ
2
ð1� r2e�jk32d2Þ � ð1� r1e�jk22d1Þ � t2e�j2ðk2d1þk3d2Þ

(18)

and t1 ¼ t12t21t23t32r34; t2 ¼ t23t32r21r34; r1 ¼ r21r23 and r2 ¼ r32r34; and d2 is the cavity depth. The
combination of the wave models for the three cases considered in this paper, semi-infinite, rigidly
backed and rigidly backed with an air gap, together with the simplified expressions for the
characteristic acoustic impedance and wavenumber given in Section 2, provides a direct
interpretation of the physical phenomena that control the absorption properties of rigid-frame
porous materials.
In order to validate the wave model and the simplified representation of the complex impedance

and wavenumber presented in this paper, measurements of acoustic absorption coefficient with an
impedance tube have been taken on three samples of consolidated rubber granulate materials with
different physical and geometrical properties, which are given in Table 1, produced at the
University of Bradford [6]. The absorption coefficient is the quantity that describes their acoustic
absorption properties and it is derived from the reflection coefficient by means of equation [8]:

A ¼ 1� jRj2; (19)

where R is the reflection coefficient of the layer. Measurements of normal incidence absorption
coefficients have been performed using the technique developed in Ref. [15]. The wave model has
then been used to compare theoretical results with the experimental absorption coefficients
measured for the three samples. Data of porosity, tortuosity and flow resistivity were available for
the samples, characterized by different grain sizes as summarized in Table 1. Figs. 8a–c show
theoretical and experimental curves of absorption coefficients for the three samples (J, K and L)
under rigid backing conditions. In general the theoretical predictions agree quite well with the
experimental results. In Fig. 8d the absorption coefficient concerning sample L with a 26mm air
gap is given which also indicates good agreement between theoretical and measured absorption.
There has been considerable discussion about the suitable value of non-dimensional shape factor
M (see Refs. [2,9,10]), and specific values have been proposed for different pore shapes in porous
media. In the present study a procedure of least squares fit of the theoretical plots and
experimental data has been adopted so that MJ ¼ 6, MK ¼ 3.5 and ML ¼ 3.
Table 1

Non-acoustic properties for three samples of consolidated rubber granulate material (measured at the University of

Bradford)

Sample Grain size (mm) Porosity (%) Tortuosity aN Flow resistivity R (N sm�4) Thickness (mm)

J 1.4–2 36.0 1.63 1.98
 104 20

K 1–1.4 35.5 1.64 5.15
 104 20

L 0.71–1 36.4 1.61 9.22
 104 20
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Fig. 8. Plots of theoretical (dashed line) and experimental (solid line) curves for the absorption coefficient: (a) sample J,

(b) sample K, (c) sample L, (d) sample L with 26mm air gap. The tuned frequency ot is 3644, 9290 and 17,371 rad/s for

the three samples, respectively.
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4. Non-dimensional shape factors and porosity effects

In the following subsections the wave model presented in Section 3 and the simplified
expressions for the complex impedance and wavenumber given in Section 2 are used to briefly
introduce the absorption characteristics of porous media in two practical application cases, where
a layer of porous material is placed next to a rigid wall or placed at a distance from it.
Following the effects of non-dimensional shape factors and porosity are investigated. The

analysis is carried out with reference to values for the tortuosity, porosity and other non-
acoustical parameters used in Ref. [6] and here summarized in Table 2, which correspond to
measured values for random packing of beads.
The dash–dotted line in Fig. 9 represents the absorption coefficient for the semi-infinite case.

The impinging sound energy is absorbed according to the physical and geometrical properties of
the material itself; however, in general the acoustic absorption is small in the low-frequency region
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where the porous layer reacts as an equivalent acoustic spring and approximately settles on a fixed
value in the high-frequency region, which is controlled by the equivalent acoustic damping effect.
When the material is characterized instead by a finite thickness the shape of the curve is
characterized by an oscillating pattern that becomes more and more pronounced as the thickness
of the layer becomes smaller. This oscillating phenomena could be explained by considering the
wave propagation model described in Fig. 6. In this case, the reflection of sound is determined by
the direct reflection at the interface plus a series of ‘‘delayed’’ indirect reflections that comes from
the acoustic waves propagating within the layer. The amplitudes and phases of these delayed
indirect reflections depend upon three phenomena: first, the transmissions coefficients at the left-
hand interface; second, the reflections at the left- and right-hand interfaces which, for relatively
thin layers, determine the generation of standing waves and third, the dissipation of the
propagating waves within the layer. Considering a given damping effect in the porous material,
for relatively thick layers even the first indirect reflection is negligible since the energy of the first
Table 2

Data for the non-acoustical parameters used in the model [9]

Parameter Value

Porosity h 0.4

Viscous permeability k0 1.5e�9m2

Tortuosity aN 1.37

Density r0 at 20 1C 1.2 kgm�3

Dynamic viscosity Z at 20 1C 18.22e�6 N sm�2

Ratio of specific heats g 1.4

nd1

0.1

0.4

0.8

Fig. 9. Absorption coefficient curves corresponding to three different values of the layer thickness (solid lines) and

reference curve for a semi-infinite porous material (dash–dotted line). All the curves are plotted for a value of M ¼ 5.

d1n ¼ 0.1, 0.4, 0.8.
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transmitted wave to the layer is dissipated within the layer itself before it reflects back to the left-
hand side interface. However, as the thickness of the layer becomes smaller the dissipation of the
first indirect reflection is reduced. Moreover there are some frequencies where standing waves are
generated within the layer so that there could be several indirect reflections that constructively
contribute to form the reflected wave. These indirectly reflected waves will have varying phase that
at some frequencies will destructively interfere with the directly reflected wave and at other
frequencies will instead constructively interfere with the directly reflected wave. As a result, the
absorption coefficient is characterized by an oscillatory curve that, as shown in Fig. 9, becomes
more uneven as the thickness gets smaller. The curve with the widest oscillations in Fig. 9
corresponds to a thin layer: d1n ¼ d1=lt ¼ 0:1; where lt is the wavelength corresponding to the
tuned frequency ot: In this case there is nearly no absorption up to O ¼ 1 while with a normalized
thickness d1n ¼ 0:4 the absorption is brought down to O ¼ 0.2. Also, for frequencies such that
1oOo10 the absorption could vary by factors of 720% in comparison to that of the semi-
infinite layer.
Fig. 10a shows the absorption coefficient curves for a layer with normalized thickness d1n ¼ 0:1

and variable normalized cavity depth d2n ¼ d2=lt ¼ 0:05; 0:1; 0:2: Fig. 10b shows similar plots but
this time with a fixed cavity depth d2n ¼ 0:1 and a variable layer of normalized thickness d1n ¼

d1=lt ¼ 0:05; 0:1; 0:2: As seen for the rigidly backed case the absorption coefficient is characterized
by an oscillatory variation with frequency. The nature of this phenomenon is similar to that
described above for the rigidly backed system except that in this case the indirect reflections are
controlled by the waves propagating in the two layers (porous layer and air gap). As the air gap is
increased the frequency amplitude of the first oscillation of the absorption curve is widened so that
the absorption effect is extended to lower frequencies. Considering the absorption coefficient for the
other case where the air gap is kept constant but the thickness of the layer is increased, which is
shown in Fig. 10b, the oscillation effect in the absorption curve is smoothened over frequency.
Fig. 11a shows absorption curves for a rigidly backed layer with normalized thickness d1n ¼

d1=lt ¼ 0:2 and three different values of M (1, 3, 5) where lt is the wavelength corresponding to
nd1nd2

(a) (b)
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Fig. 10. Absorption coefficient curve for the air gap case. (a) The solid line corresponds to the limit case of cavity depth

d2n reducing to 0 (rigid backing case). The curves are plotted for a value of M ¼ 5. d1n ¼ 0.1, d2n ¼ 0, 0.1, 0.2. (b) The

curves are plotted for a value of M ¼ 5 and d1n ¼ 0.05 (solid line), 0.1 and 0.2; d2n ¼ 0.1.
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Fig. 11. (a) Absorption coefficient curves for rigid backing case and increasing values of M (1; 3; 5, respectively) and for

d1n ¼ d/lt ¼ 0.2. The thick line corresponds to M ¼ 5. (b) Absorption coefficient curves for the air gap case and

increasing values of M (1; 3; 5 respectively) and for d1n ¼ d/lt ¼ 0.2 d2n ¼ d2/lt ¼ 0.1. The thick line corresponds to

M ¼ 5.
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the tuned frequency ot. A different value of M indicates different properties of the material, and
from the curves shown in the figure, it is clear that the knowledge of M can be helpful at the design
stage of the material. In detail, a high value for M means less absorption coefficient oscillations in
the high-frequency region, according to the higher values of damping represented by the
imaginary part of the complex density as highlighted in Fig. 2. Fig. 11b shows similar plots but for
the air gap case. In detail the cavity depth is d2n ¼ 0.1 and the thickness of the layer d1n ¼ 0.2. The
effect is similar to that found for the rigidly backed configuration with a reduction of the
oscillatory effect of the absorption at the higher frequencies.
The effect of the different volume of pores on the complex impedance has been presented in

Section 2. Fig. 12 shows the corresponding curves of absorption coefficient for h ¼ 0.4, 0.7 and 1
(solid curve for h ¼ 1) for a rigidly backed layer of non-dimensional thickness d1n ¼ 0.1. It can be
seen that reducing the porosity generates greater oscillations and smaller absorption, as the
impedance of the surface becomes bigger.
5. Conclusions

The study presented in this paper is concerned with the acoustic properties of rigid-frame
porous materials. Starting from the representation of the acoustic behaviour in terms of lumped
parameter concepts (equivalent acoustic mass, stiffness and damping), a macroscopic wave model
is presented which gives insight to the propagation, reflection and dissipation phenomena within a
porous layer. This model has been experimentally validated by measuring absorption coefficients
of a rubber granulate consolidated material with an impedance tube. Furthermore the effects of
non-dimensional shape factor and porosity on absorption coefficients have been studied with the
aim of connecting the geometrical and physical properties with the acoustic behaviour of rigid-
frame porous materials.
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nd1

Fig. 12. Absorption coefficient curves for porosity h ¼ 0.4 (dotted line) h ¼ 0.7 (dashed line) and h ¼ 1 (solid line).

M ¼ 5 and d1n ¼ 0.1. Rigid backing case.
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