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Abstract

An approximate solution is developed to the complex eigenproblem associated with free vibrations of a
discrete system with several viscous dampers, in order to facilitate optimal placement and sizing of added
dampers in structures. The approximate solution is obtained as an interpolation between the solutions of
the two limiting eigenproblems: the undamped eigenproblem and the constrained eigenproblem in which
each damper is replaced with a rigid link. An explicit form of the approximate solution is developed for
cases in which the difference between these limiting eigensolutions is sufficiently small, and an iterative
solution scheme is presented for cases in which the difference is larger. These results allow the efficiency and
tuning of viscous dampers to be investigated by solving only the two limiting real-valued eigenproblems.
The application of the approximate formulation is illustrated for a 10-story building model with added
dampers.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The response of a structure to dynamic loading depends strongly on the capacity of the
structure to dissipate energy. Because the inherent damping in many structures is quite low,
significant advantage can be gained by providing additional dissipation, and in recent decades,
supplemental energy dissipation devices have emerged as an economical alternative to structural
stiffening for improving the performance of engineered structures [1]. Examples of passive energy
dissipation devices include friction dampers, viscoelastic dampers, and viscous fluid dampers [2].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Supplemental dampers have been employed in a variety of contexts, including seismic protection
of buildings [3], suppression of stay-cable vibrations in bridges [4], and mitigation of traffic-
induced vibrations in a pedestrian bridge [5]. While the focus of the present study is on passive
dampers, active damping devices have also found increasing application in structures (see e.g.
Ref. [6]).
Effective tuning of supplemental dampers to optimize their efficiency requires an accurate

representation of the influence of the dampers on the dynamics of the structure. In the present
paper, this influence is investigated by considering the dynamic characteristics of a general discrete
system with several linear viscous dampers. Although supplemental damping devices commonly
exhibit nonlinear and nonviscous characteristics, linear viscous damping is the simplest form of
damping to represent analytically, and the effect of nonlinearity can often be represented with fair
accuracy by equivalent linearization based on equivalent energy dissipation at a representative
frequency and amplitude level.
While the assumption of classical damping (also called proportional damping) is commonly

employed in the dynamic analysis of structures, this assumption is generally not justified for
structures with supplemental dampers. In classically damped systems, the mode shapes are
unaffected by the damping forces, allowing the equations of motion to be transformed into a set
of independent modal equations using the real-valued mode shapes of the undamped system. For
such decoupling to occur, the distribution of damping in the structure must match the distribution
of mass and stiffness through the condition established by Caughey and O’Kelly [7]. Supplemental
dampers are commonly attached at a few distinct locations within the structure, so that the
damping forces do not match the mass or stiffness distribution. Consequently, the undamped
mode shapes generally do not uncouple the equations of motion for structures with
added dampers.
Another common assumption in representing damping, which does not restrict the distribution

of damping forces, is that the structure is lightly damped (see e.g. Refs. [8,9]). In this approach,
which dates back to Rayleigh [10], the damping forces are assumed to be an order of magnitude
smaller than the inertial and stiffness forces, and the damping-induced perturbations of the
eigenfrequencies and mode shapes and are also assumed small. Under these assumptions, each
eigenfrequency is modified by an imaginary part that reflects the dissipation in the undamped
mode shape, and each mode shape is modified by an imaginary part that is orthogonal to the
undamped mode shape. While these assumptions of light damping are usually justified for
inherent damping forces in structures, supplemental damping devices are capable of producing
large forces that can be of comparable magnitude to the inertial and stiffness forces. The large,
localized forces produced by supplemental dampers thus have the potential to perturb the mode
shapes and eigenfrequencies in ways that cannot be represented through the assumptions of
classical damping or of light damping.
In the general case of viscous damping with unrestricted magnitude and distribution, a method

of dynamic analysis using complex modes is well established, having been developed for discrete
systems by Foss [11]. More recently Krenk [12] developed a corresponding formulation for the
damped vibrations of continuous systems. In these methods, the complex eigenvalues and mode
shapes are first evaluated from the homogeneous problem corresponding to free vibrations.
Orthogonality properties of the complex mode shapes then enable a transformation of the
equations of motion to a set of uncoupled modal equations, and the forced response of the system
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can be expressed as a superposition of the modal responses, in a fairly straightforward extension
of classical modal analysis.
In the design of supplemental dampers for structures, it is often desirable to optimize the placement

and sizing of the dampers to minimize response quantities such as displacements, accelerations, and
internal forces. In some cases, the responses in a few specific modes of vibration are known to be of
greatest concern, and rather than optimizing the dampers for a specific loading function, the dampers
can be designed to provide specified levels of damping in these problematic modes, or perhaps to
provide the maximum possible damping in a particular mode. Because values of modal damping are
determined directly from the complex eigenvalue problem corresponding to free vibrations, this
approach considerably simplifies the design optimization problem, eliminating the need to evaluate
forced responses at each step in the optimization. However, even this simpler approach can be time-
consuming for large structures, requiring repeated solving of a complex eigenvalue problem of large
dimension in order to determine the optimal location and sizing of the added dampers.
In this paper, an approximate solution is developed to the complex eigenproblem associated

with free vibrations of a discrete system with several viscous dampers, in order to facilitate
optimal placement and sizing of added dampers in structures. The approximate solution is
obtained as an interpolation between the solutions of two limiting eigenproblems: the undamped
eigenproblem and the constrained eigenproblem in which each damper is replaced with a rigid
link. Preumont [6] previously used these limiting cases of free and fully locked vibrations to
develop approximate solutions for structures with active damping. An explicit expression in the
form of a rational function is obtained for cases in which the difference between these limiting
eigensolutions is sufficiently small, and an iterative solution scheme is presented for cases in which
the difference is larger. The explicit approximation has the same form as the asymptotic
approximation originally obtained by Krenk [13] for a taut cable with a viscous damper attached
near one end, which was subsequently extended to a sagging cable [14], to rotational dampers at
the ends of a beam [12], and to a tensioned beam with a damper near one end [15]. These results
allow the efficiency and tuning of viscous dampers to be investigated by solving only the two
limiting real-valued eigenproblems, rather than repeatedly solving the complex-valued eigenpro-
blem of the damped system with varying location and sizing of the added dampers. The
application of the approximate formulation is illustrated for a 10-story building model with added
dampers.
2. Eigenvalue problem and limiting solutions

The equations of motion for free vibrations of an n-degree-of-freedom linear system with
viscous damping can be written in the following general form:

M€qþ C_qþ Kq ¼ 0 (1)

where M; C; and K are the n � n mass, damping, and stiffness matrices, q is an n � 1 vector of
generalized displacements, and the dot represents differentiation with respect to time t. Expressing
solutions to Eq. (1) as

q ¼ Re½u expðiotÞ� (2)



ARTICLE IN PRESS

J.A. Main, S. Krenk / Journal of Sound and Vibration 286 (2005) 97–122100
yields the quadratic eigenvalue problem

ðKþ ioC� o2MÞu ¼ 0 (3)

Nontrivial solutions require that detðKþ ioC� o2MÞ ¼ 0; and the roots of this characteristic
equation are the eigenfrequencies of the system ok: The corresponding eigenvectors uk are the
vibration mode shapes of the system, and both ok and uk are complex-valued in general. The real
part of ok gives the frequency of damped oscillation, and the imaginary part gives the rate of
decay. Modal damping ratios can be defined as follows, in analogy with the case of classical
damping:

zk ¼ Im½ok�=jokj (4)

Of interest in the present study are damping forces produced by one or more viscous dampers
added to the system, and such forces can be represented by a damping matrix C with the following
form (see e.g. Ref. [16]):

C ¼
Xr

j¼1

cjwjw
T
j (5)

where r is the total number of added dampers, cj is the viscous coefficient of the jth damper, and
the n � 1 vector wj represents the attachment position and orientation of the jth damper.
Preumont [6] has used a similar format to represent the forces in active structural members.
For the five-story shear building model in Fig. 1, for example, the vector w1 associated with the

damper attached between the first floor and the fixed ground is given by

w1 ¼ ½ 1 0 0 0 0 �T (6)

while the vector w2 associated with the damper attached between the third and fourth floors is
given by

w2 ¼ ½ 0 0 �1 1 0 �T (7)

The form of Eq. (5) can thus accommodate dampers attached between two degrees of freedom
within the system, which produce forces due to relative motion, as well as dampers attached
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Fig. 1. Five-story shear building with two viscous dampers.
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Fig. 2. Limiting cases for the system of Fig. 1: (a) undamped system ðc1 ¼ c2 ¼ 0Þ; (b) constrained system ðc1; c2 ! 1Þ:

J.A. Main, S. Krenk / Journal of Sound and Vibration 286 (2005) 97–122 101
between a degree of freedom and a fixed external reference, which produce forces due to absolute
motion.
In investigating the nature of the complex eigenfrequencies and eigenvectors resulting from Eq.

(3) with the special form of damping in Eq. (5), it is helpful to first consider the solutions in the
limiting cases corresponding to those depicted Fig. 2 for the damped shear building model of Fig.
1. The first limiting case corresponds to setting all the damper coefficients cj to zero, for which the
system simply reduces to the undamped case, as depicted in Fig. 2(a). The second limiting case
corresponds to letting cj ! 1 for all dampers, which results in a constrained system, as depicted
in Fig. 2(b). The characteristics of these limiting systems and their eigensolutions are discussed in
the following sections.

2.1. Undamped system

In the first limiting case, when cj ¼ 0 for each damper in the system, Eq. (3) reduces to the
following familiar undamped eigenvalue problem:

ðK� o2
0MÞu0 ¼ 0 (8)

where the subscript 0 denotes the undamped system. For nontrivial solutions detðK� o2
0MÞ ¼ 0;

and the roots of this characteristic equation are the real-valued undamped eigenfrequencies o0k;
with corresponding real-valued eigenvectors u0k; where the index k denotes the mode number,
k ¼ 1; 2; . . . ; n: For convenience, each undamped eigenvector u0k can be normalized such that

uT0kMu0k ¼ 1; uT0kKu0k ¼ o2
0k (9)

It follows from Eq. (8) that the undamped mode shapes also satisfy the well-known orthogonality
conditions: uT0lMu0k ¼ 0 and uT0lKu0k ¼ 0 for o2

0lao2
0k:

2.2. Constrained system

In the second limiting case, as cj ! 1 for each damper in the system, the dampers act as rigid
links, introducing constraints on the motion of the system but providing no dissipation. One
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constraint equation is introduced for each rigid link in the system, and because the attachment
position of the jth link is represented by the vector wj; these constraint equations can be written in
the following form:

uT1wj ¼ 0; j ¼ 1; . . . ; r (10)

where the subscript 1 denotes the constrained system with locked dampers, and the mode
number for the eigenvector u1 is not indicated explicitly because any eigenvector of the
constrained system must satisfy these equations. These r linear constraint equations reduce the
number of degrees of freedom and thus the number of eigensolutions to ðn � rÞ: Because the
equations of motion (1) have been formulated in terms of n generalized coordinates, the constraint
forces in the rigid links appear in the eigenvalue problem for the constrained system as follows:

ðK� o2
1MÞu1 þ R ¼ 0 (11)

where R is a vector of reaction forces produced by the rigid links. This constrained eigenvalue
problem yields real-valued eigenfrequencies o1k and corresponding real-valued eigenvectors u1k;
where the index k denotes the mode number, k ¼ 1; 2; . . . ; ðn � rÞ: In solving the eigenvalue
problem (11), the r constraint equations (10) can be used to reduce the number of generalized
coordinates to ðn � rÞ; thus eliminating the reaction forces and yielding an eigenvalue problem of
reduced size with the same form as the undamped eigenvalue problem (8).
In the system of Fig. 1, for example, locking of the dampers introduces two constraints, which

can be expressed as q1 ¼ 0 and q3 ¼ q4: As depicted in Fig. 2(b), these constraints reduce the
number of degrees of freedom from five to three. Selecting the three generalized coordinates q2; q3;
and q5 then eliminates the necessity of including constraint forces in the equations of motion.
Using these coordinates leads to an eigenvalue problem in the form of Eq. (8) with dimension
three, where the mass associated with q3 is the sum of the masses associated with q3 and q4 in the
original system. The eigenvectors computed from this reduced-dimension problem can then be
expanded to the full dimension of the original problem by simply setting q1 ¼ 0 and q3 ¼ q4 in the
ð5� 1Þ vectors u1k:
Once o1k and u1k have been determined in a given mode k, the reaction forces associated with

that mode, which will prove useful subsequently, can be determined from Eq. (11) as follows:

Rk ¼ ðo2
1kM� KÞu1k (12)

This vector of reaction forces can be expanded in terms of the r independent constraint forces in
the rigid links as follows:

Rk ¼
Xr

j¼1

rkjwj (13)

where rkj is the constraint force in the jth rigid link for vibrations in mode k. Provided that the
dampers are not placed in a redundant manner, the r vectors wj are linearly independent, allowing
the r constraint forces rkj associated with mode k to be uniquely determined from the following
equation, obtained by combining Eqs. (12) and (13), and expressing the summation in Eq. (13) as
a matrix product:

½w1 � � � wr �½ rk1 � � � rkr �
T ¼ ðo2

1kM� KÞu1k (14)
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Because constraint forces do no work through displacements consistent with the constraints,
the product uT1lRk must be zero for any indices k and l, as is readily shown from Eqs. (10) and
(13). Premultiplication of Eq. (12) by uT1k then eliminates the reaction forces, yielding the
following equation:

uT1kKu1k ¼ o2
1ku

T
1kMu1k (15)

As in Eq. (9), each eigenvector u1k can then be normalized such that

uT1kMu1k ¼ 1; uT1kKu1k ¼ o2
1k (16)

Premultiplication of Eq. (11) by uT1l where kal also eliminates the reaction forces, and the same
procedure as in the undamped case can then be used to show that the eigenvectors of the
constrained system satisfy orthogonality conditions analogous to those in the undamped case:
uT1lMu1k ¼ 0 and uT1lKu1k ¼ 0 for o2

1lao2
1k:

The following property, which will prove useful subsequently, follows from the form of the
damping matrix (5) and the fact that the eigenvectors u1 satisfy the constraint equations (10):

Cu1 ¼ 0 (17)

As in Eq. (10) the mode number is not explicitly indicated in Eq. (17) because this property holds
for any eigenvector of the constrained system. It also follows from the symmetry of C that
uT1C ¼ 0:
3. Approximate solution by interpolation

In developing an approximate solution to the quadratic eigenvalue problem (3) for the damped
system, the following approximate representation is assumed for the kth eigenvector, ~uk ’ uk:

~uk ¼ u0k þ aku1k (18)

This linear combination permits exact representation of the limiting eigenvectors, u0k and u1k; by
letting ak ¼ 0 and jakj ! 1; respectively. For finite damping, Eq. (18) is an approximation,
representing an interpolation between these limiting solutions. The accuracy of this interpolative
approximation depends on the closeness of the limiting solutions.
In the case of multiple dampers ðr41Þ; the representation (18) implies certain assumptions on

the relative sizing of the dampers. While a system with r viscous dampers is being considered, the
influence of these dampers on the kth eigenmode is represented in Eq. (18) through a single
coefficient, ak: It is also noted that the limiting eigenvector u1k corresponds to locking of all of the
r dampers, as discussed in the previous section. Consequently, the assumed form (18) is unable to
represent independent locking of specific dampers; rather, implicit in the form of Eq. (18) is an
assumption that all of the dampers lock uniformly as their strength is increased. Also implicit in
the form of Eq. (18) is an assumption that all damping forces in a given mode have the same
phasing. This uniformity in phasing follows from the fact that Cu1k ¼ 0; according to Eq. (17), so
that the damping forces C_q resulting from Eq. (18) are proportional to Cu0k; where u0k is real-
valued. It is demonstrated subsequently that these implicit assumptions correspond to a certain
condition of proportionality among the r damper coefficients, and approximate conditions are
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obtained on the relative sizing implicitly assumed for the dampers. While this assumed
proportionality is restrictive, approximation (18) is still quite broadly applicable, because such
proportional sizing is often desirable to achieve efficiency, as is observed subsequently in an
example.
Because Eq. (18) is an approximation, substitution into Eq. (3) yields an error in the force

balance, given by

ek ¼ ðKþ iokC� o2
kMÞu0k þ akðK� o2

kMÞu1k (19)

where the damping matrix C appears only in the first term of Eq. (19) because of the property
in Eq. (17). In formulating the ‘‘best’’ approximation to the kth eigenmode, it is neces-
sary to determine the values of the mode shape coefficient ak and the eigenfrequency ok

that minimize this error in some sense. A measure of the energy associated with this error can
be obtained by forming the product ~uTk ek; which gives the virtual work done by the residual
forces ek acting through virtual displacements ~uk consistent with the two-component
representation in Eq. (18). The energy associated with the error ek can then be minimized by
requiring the virtual work ~uTk ek to vanish for any value of ak; which yields the following
orthogonality conditions:

uT0kek ¼ 0; uT1kek ¼ 0 (20)

Combined with Eq. (19), these conditions yield the following equations:

uT0kðKþ iokC� o2
kMÞu0k þ aku

T
0kðK� o2

kMÞu1k ¼ 0 (21)

uT1kðK� o2
kMÞu0k þ aku

T
1kðK� o2

kMÞu1k ¼ 0 (22)

The following relation between the mixed products, obtained by multiplication of the
undamped eigenproblem (8) with uT1k; allows simplification of Eqs. (21) and (22):

uT1kKu0k ¼ o2
0ku

T
1kMu0k (23)

Making use of Eq. (23), taking advantage of the normalization of u0k and u1k according to
Eqs. (9) and (16), and assuming symmetry of M and K; the orthogonality conditions (21) and
(22) become

ðo2
k � o2

0kÞð1þ aku
T
1kMu0kÞ ¼ ioku

T
0kCu0k (24)

ðo2
k � o2

0kÞu
T
1kMu0k ¼ akðo2

1k � o2
kÞ (25)

Elimination of the mode shape coefficient ak from Eqs. (24) and (25) gives the following
equation for the complex eigenfrequency ok:

ðo2
k � o2

0kÞ 1þ
o2

k � o2
0k

o2
1k � o2

k

ðuT1kMu0kÞ
2

� �
¼ ioku

T
0kCu0k (26)

while ak is given by

ak ¼
o2

k � o2
0k

o2
1k � o2

k

uT1kMu0k (27)
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Multiplication of Eq. (26) by ðo2
1k � o2

kÞ and regrouping yields the following quartic equation
in ok:

ðo2
k � o2

0kÞ½o
2
1k � o2

0k � ðo2
k � o2

0kÞð1� ðuT1kMu0kÞ
2
Þ� ¼ ioku

T
0kCu0kðo2

1k � o2
kÞ (28)

The product uT0kCu0k on the right of Eq. (28) is a measure of the dissipation in the kth undamped
mode shape, and with the special form of the damping matrix in Eq. (5), this product can be
expanded as

uT0kCu0k ¼
Xr

j¼1

cjg2kj (29)

where gkj denotes the differential displacement of the kth undamped mode shape across the jth
damper:

gkj ¼ wT
j u0k (30)

It is evident by inspection that Eq. (28) yields the solution o2
k ¼ o2

0k when uT0kCu0k ¼ 0; and that it
yields the solution o2

k ¼ o2
1k when uT0kCu0k ! 1; corresponding to locking of the dampers. For

finite values of uT0kCu0k; Eq. (28) represents an interpolation between these limiting eigensolutions.
Eq. (28) can be rearranged into a form suitable for iterative solution by collecting terms with o2

k

and dividing by the resulting factor, which yields

o2
k ’

o2
0k þ io2

1k

oku
T
0kCu0k

o2
1k � o2

0k � ðo2
k � o2

0kÞð1� ðuT
1kMu0kÞ

2
Þ

" #

1þ i
oku

T
0kCu0k

o2
1k � o2

0k � ðo2
k � o2

0kÞð1� ðuT
1kMu0kÞ

2
Þ

" # (31)

where the bracketed term in the denominator is the same as that in the numerator. Eq. (31) can be
solved iteratively for ok by substituting the current estimate of ok into the right-hand side and
taking the square root to obtain an improved estimate. The undamped eigenfrequency o0k can be
used as the initial estimate of ok; and iteration can be continued until satisfactory convergence in
ok is achieved. Adding and subtracting in the numerator allows elimination of the constant term
o2

0k; and after rearrangement, Eq. (31) can be written in the following nondimensional form,
which is also suitable for iterative solution:

o2
k � o2

0k

o2
1k � o2

0k

’

i
oku

T
0kCu0k

o2
1k � o2

0k

� �

1�
o2

k � o2
0k

o2
1k � o2

0k

ð1� ðuT1kMu0kÞ
2
Þ þ i

oku
T
0kCu0k

o2
1k � o2

0k

� � (32)
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Once ok has been computed from Eq. (31) or (32), the corresponding value of ak can be evaluated
directly from Eq. (27).
4. Linearized explicit approximations

The accuracy of the assumed representation for the damped mode shape (18) depends on the
closeness of the limiting eigensolutions, or equivalently, on the smallness of the perturbations in
the eigenfrequencies and mode shapes induced by locking of the dampers. Formally introducing
an assumption of small perturbations leads to approximations that allow substantial
simplification of Eqs. (27) and (28), yielding simple, explicit approximations for the
eigenfrequency ok and the mode shape coefficient ak: While accuracy is sacrificed through the
introduction of these additional approximations, the simplicity of the resulting explicit form
affords important insights into the influence of the dampers on the eigenfrequencies and mode
shapes.

4.1. Assumption of small perturbations

Following Krenk and Nielsen [14], it is convenient to introduce the notation Dok to denote the
complex-valued perturbation of the kth eigenfrequency produced by the dampers:

Dok ¼ ok � o0k; Do1k ¼ o1k � o0k (33)

where Do1k denotes the real-valued shift in the kth eigenfrequency produced by locking of the r

dampers. It follows from Rayleigh’s theorem on constraints (see e.g. Ref. [8]) that o1kXo0k; and
consequently Do1kX0: The assumption of small perturbations of the kth eigenfrequency can then
be expressed as Do1k=o0k51; which also insures that jDokj=o0k51: Under these restrictions, the
following approximations can be introduced, which will prove useful subsequently in simplifying
Eqs. (27) and (28) for ak and ok; respectively:

o2
k � o2

0k ’ Dokð2o0kÞ; o2
1k � o2

0k ’ Do1kð2o0kÞ (34)

In a manner similar to Eq. (33), the real-valued perturbation of the kth mode shape produced by
locking of the r dampers is denoted

Du1k ¼ u1k � u0k (35)

The vectors u0k and u1k have unit norm with respect toM according to Eqs. (9) and (16), and the
assumption that the perturbation Du1k is small with respect to u0k can then be expressed in a
consistent manner by requiring its norm with respect to M to be much less than unity,
DuT1kMDu1k51: Under this assumption, a simplifying approximation can be introduced for the
mixed product uT1kMu0k; which appears in Eqs. (27) and (32) for ak and ok; respectively. By
forming the product DuT1kMDu1k; with Du1k given by Eq. (35) andM symmetric, it can be shown
that uT1kMu0k is given by

uT1kMu0k ¼ 1� 1
2
DuT1kMDu1k (36)
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Under the small-perturbation assumption DuT1kMDu1k51; the second term in Eq. (36) can be
neglected, and the mixed product can be approximated as

uT1kMu0k ’ 1 (37)

In the following sections, the approximations resulting from these small-perturbation assumptions
will be used to develop explicit linearized approximations for the complex eigenfrequencies and
mode shapes.
4.2. Complex eigenfrequencies

The quartic equation (28) for the complex eigenfrequency ok can be substantially simplified by
introducing the approximation uT1kMu0k ’ 1 from Eq. (37). This leads to cancellation within the
square brackets in Eq. (28), which simplifies to the following cubic equation in ok:

ðo2
k � o2

0kÞðo
2
1k � o2

0kÞ ¼ ioku
T
0kCu0kðo2

1k � o2
kÞ (38)

Collecting terms with o2
k and rearranging as in Eq. (32) gives the following equation:

o2
k � o2

0k

o2
1k � o2

0k

’
i½oku

T
0kCu0k=ðo2

1k � o2
0kÞ�

1þ i½oku
T
0kCu0k=ðo2

1k � o2
0kÞ�

(39)

where the bracketed term in the denominator is the same as that in the numerator. This equation
can be simplified to an explicit equation for the complex-valued frequency increment Dok (33) by
introducing the approximation ok ¼ o0k within the bracketed term and introducing the
approximations from Eq. (34), which are based on the assumption that Do1k=o0k51: The
constant factor o0k appears in each of these approximations, and it then cancels within the
quotients in Eq. (39) to give the following important result:

Dok

Do1k

’
iZk

1þ iZk

(40)

In this equation Zk is a normalized viscous damping parameter defined as

Zk ¼
uT0kCu0k

2Do1k

(41)

The subscript k emphasizes that Zk is a mode-specific parameter, because for a given damping
matrix C; each mode k has, in general, a different value of the parameter Zk: According to Eq. (41)
the influence of the particular mode enters through the undamped mode shape u0k and through
the difference Do1k (33) between the limiting eigenfrequencies.
Eq. (40) has the same form as the asymptotic approximation originally obtained by Krenk [13]

for a taut cable with a viscous damper near one end, and subsequently extended to a sagging cable
[14], rotation dampers at the ends of a beam [12], and to a tensioned beam with a viscous damper
[15]. Taking the real and imaginary parts of Eq. (40) gives

Re½Dok� ’ Do1k

Z2k
1þ Z2k

; Im½Dok� ’ Do1k

Zk

1þ Z2k
(42)
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These approximate relations are plotted in Fig. 3. The real part Re½Dok�; plotted in Fig. 3(a), gives
the shift in oscillation frequency, which increases monotonically with Zk and approaches Do1k as
Zk becomes large and the dampers approach locking. The imaginary part Im½Dok�; plotted in Fig.
3(b), gives the rate of decay of free vibration, which determines the damping in the system. In
contrast with Re½Dok�; the imaginary part Im½Dok� does not increase monotonically, but takes on
a maximum value of 1

2
Do1k when Zk ¼ 1; and tends to zero as Zk becomes large and the dampers

approach locking. An optimal tuning of the dampers for mode k can be defined as that for which
the decay rate Im½Dok� is maximized, corresponding to Zoptk ¼ 1: It is noted that the curve for the
imaginary part in Fig. 1(b) has the same form as the ‘‘universal estimation curve’’ identified
numerically by Pacheco et al. [17] for a taut cable with viscous damper.
As discussed by Krenk and Nielsen [14], the form of Eq. (42) implies that the complex

frequency increment Dok traces a semi-circle in the complex plane with diameter Do1k: This
semi-circle, depicted in Fig. 4, is conveniently parameterized as follows by an angle yk; where the
subscript k emphasizes that yk is a mode-specific parameter, like Zk (41):

Re½Dok� ’
1
2
Do1kð1� cos ykÞ; Im½Dok� ’

1
2
Do1k sin yk; 0pykop (43)

Because each mode has, in general, a different value of Zk; each mode occupies a different position
on the semi-circle of Fig. 4, given by yk: Using Eq. (42), the nondimensional viscous damping
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parameter Zk can be expressed as follows:

Zk ’
Re½Dok�

Im½Dok�
(44)

Substituting Eq. (43) into Eq. (44) then gives the following expression relating Zk and yk:

Zk ’ tan 1
2
yk

� �
(45)

Eq. (45) shows that the semi-circle of Fig. 4 is traced in a clockwise sense with increasing Zk; since
yk ¼ 0 when Zk ¼ 0 and yk ! p as Zk ! 1:
It is interesting to consider the form of the explicit approximation (40) for small values of Zk;

corresponding to solutions near the undamped limit. With the restriction Zk51; Eq. (40) simplifies
to Dok ’ iDo1kZk: Substitution of the definition of Zk (41) into this relation then allows
cancellation of the factor Do1k to give

Dok ’ i 1
2
uT0kCu0k (46)

The restriction Zk51 used to obtain Eq. (46) can be expressed in the following alternative form
using the definition of Zk in Eq. (41):

1
2
uT0kCu0k5Do1k (47)

It is noted that the approximation in Eq. (46) is equivalent the result that is obtained through the
assumption of light damping (see e.g. Refs. [8,9]). According to Eq. (46), the real part of the
frequency increment is approximately zero, Re½Dok� ’ 0; while the imaginary part Im½Dok�

increases approximately linearly with uT0kCu0k; where uT0kCu0k represents the dissipation in the
undamped mode shape. This approximation corresponds to the leftmost portion of the curves in
Fig. 3, and the light damping approximation is clearly unable to capture the optimal portion of
the curves and the transition to locking for large Zk:

4.3. Complex mode shapes

In the assumed form of approximation for the kth complex mode shape in Eq. (18), a single
coefficient ak is used to enforce a smooth transition between the limiting mode shapes, u0k and u1k:
As discussed previously, implicit in this representation is an assumption of proportionality among
the r damper coefficients, such that locking of the dampers occurs uniformly. In the following
section, approximate conditions on the relative sizing of dampers are obtained for which this
assumption is justified. In cases where the assumed form (18) is appropriate, consideration of the
complex-valued coefficient ak affords insight into the nature of the complex mode shapes, as it
represents the relative magnitude and phasing of the two components, u0k and u1k:
An expression for ak was previously obtained in Eq. (27), and introduction of the small-

perturbation approximation uT1kMu0k ’ 1 (37) into this expression gives

ak ’
o2

k � o2
0k

o2
1k � o2

k

(48)

This equation can be simplified by introducing the approximations from Eq. (34), which are based
on the assumption that Do1k=o0k51: The constant factor o0k from these approximations cancels
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within the quotient in Eq. (48), to give the simplified approximation

ak ’
Dok

Do1k � Dok

(49)

Substituting the explicit approximation for Dok in Eq. (40) into Eq. (49) then shows that ak is
related to the normalized viscous damping parameter Zk as follows:

ak ’ iZk (50)

The approximate representation of the complex mode shape (18) can then be expressed as

~uk ¼ u0k þ iZku1k (51)

The magnitude of ~uk in Eq. (51) grows without bound as Zk ! 1; and it is convenient to
renormalize ~uk to remain bounded. This can be accomplished using the angle yk; which defines the
position on the semi-circle of Fig. 4 and is related to Zk by Zk ’ tanð1

2
ykÞ according to Eq. (45).

Substituting this relation into Eq. (51) and renormalizing through multiplication by cosð1
2
ykÞ

yields the following alternative expression for ~uk:

~uk ¼ cosð1
2
ykÞu0k þ i sinð1

2
ykÞu1k (52)

It is evident from the expressions in Eqs. (51) and (52) that ~uk reduces to u0k in the undamped limit
when Zk ¼ 0 and yk ¼ 0; and reduces to u1k in the constrained limit when Zk ! 1 and yk ! p:
For intermediate values of Zk and yk; both components contribute to the complex mode shape,
with the contribution of u0k purely real and the contribution of u1k purely imaginary. At optimal
damping (Zk ¼ 1 and yk ¼ p=2) the two components contribute with equal magnitude.
The evolution in time of the displaced profile associated with ~uk is given by q ¼

Re½~uk expðioktÞ�; according to the assumed expression for the generalized displacements in Eq.
(2). Introducing Eq. (51) into this expression gives the following expression for the generalized
displacements as a function of time:

q ¼ expð�oI
ktÞ½u0k cosðoR

k tÞ � Zku1k sinðoR
k tÞ� (53)

In this expression, the notation oR
k ¼ Re½ok� and oI

k ¼ Im½ok� has been introduced for
convenience. The exponential factor in Eq. (53) gives the decay resulting from dissipation in
the dampers, while the expression in brackets gives the oscillation of the displaced profile. When
Zk ¼ 0; it follows that oI

k ¼ 0 and oR
k ¼ o0k; and Eq. (53) expresses a nondecaying synchronous

oscillation of the whole system in the real-valued undamped mode shape u0k: When Zk ! 1; it
follows that oI

k ¼ 0 and oR
k ¼ o1k; and Eq. (53) expresses a nondecaying synchronous oscillation

in the real-valued constrained mode shape u1k:
For finite Zk; Eq. (53) shows that both components contribute to the displaced profile, with u1k

leading u0k in phase by 901, and thus the decaying oscillation of the system is no longer
synchronous. At instants when sinðoR

k tÞ ¼ 0; the displaced profile is given by the undamped mode
shape u0k; and one quarter period later, at instants when cosðoR

k tÞ ¼ 0; the displaced profile is
given by the constrained mode shape u1k: When the displacements of the undamped component
u0k reach their peak values, the velocities of the undamped component vanish, and thus there are
no damping forces at this instant. One quarter-period later, when the displacements of the
undamped component are very nearly zero, the velocities of the undamped component reach their
peak values, and the damper forces also reach their peak values at this instant. These observations
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illustrate that the generalized displacements given by Eq. (53) correspond to all damping forces
having the same phasing. As discussed previously, such an assumption of uniform phasing in the
damping forces is implicit in the assumed representation for the mode shape in Eq. (18), and the
validity of this assumption depends on the relative sizing of the dampers, which is discussed in the
following section.

4.4. Sizing of dampers

According to the approximations in Eqs. (40) and (51), the influence of the r dampers on the kth
eigenfrequency and mode shape depends on the single parameter Zk; defined in Eq. (41). The
product uT0kCu0k in Eq. (41) can be expanded as in Eq. (29) to give the following expression for Zk

in terms of the r viscous coefficients cj:

Zk ¼ 1
2

Xr

j¼1

cjg2kj=Do1k (54)

where gkj denotes the differential displacement of the kth undamped mode shape across the jth
damper, defined in Eq. (30). In the case of a single damper ðr ¼ 1Þ; the summation contains only
one term, and Eq. (54) can be solved for the damper coefficient to give

c ¼ 2ZkDo1k=g2k (55)

in which the j subscripts have been dropped for this case of a single damper. Eq. (55) gives the
value of the viscous coefficient necessary to achieve a desired value of the parameter Zk; optimal
damping in mode k, for example, corresponds to Zk ¼ 1: In the case of multiple dampers ðr41Þ;
there generally exist multiple combinations of the viscous coefficients cj corresponding to any
given value of Zk: In contrast with the single damper, Eq. (54) is then insufficient to uniquely
specify the r damper coefficients corresponding to a desired value of Zk; and additional constraints
on the relative sizing of the dampers are required.
As mentioned previously, implicit in the assumed two-component representation of the

mode shape in Eq. (18) is an assumption that the damper coefficients are scaled in a propor-
tionate manner such that the dampers lock uniformly as their strength is increased. It was
also noted previously that this type of proportionate scaling is often desirable in order to improve
the efficiency of the dampers, as is observed subsequently in an example. The form of the
implicitly assumed proportionality among the damper coefficients is investigated in this section
by identifying the relative scaling that minimizes the error resulting from the assumed mode
shape in Eq. (18). The conditions thus derived provide the additional constraints necessary
to uniquely specify each of the r damper coefficients to achieve a desired value of the para-
meter Zk:
Eq. (19) gives the error in the force balance resulting from the assumed form of the mode shape

in Eq. (18), and this error can be expressed in the following alternative form by introducing the
vector Rk (12) of reaction forces associated with the kth mode of the constrained system:

ek ¼ ½iokC� ðo2
k � o2

0kÞM�u0k þ ak½ðo2
1k � o2

kÞMu1k � Rk� (56)

in which the substitution Ku0k ¼ o2
0kMu0k from the undamped eigenvalue problem (8) has also

been introduced. The terms involving M can be combined by introducing the approximation for



ARTICLE IN PRESS

J.A. Main, S. Krenk / Journal of Sound and Vibration 286 (2005) 97–122112
ak in Eq. (48) to give

ek ’ ðo2
k � o2

0kÞMDu1k þ iokCu0k � akRk (57)

where Du1k is defined in Eq. (35). Introducing the approximation o2
k � o2

0k ’ Dokð2o0kÞ from
Eq. (34), the error in force can be written as

ek ’ ð2o0kÞDokMDu1k þ iokCu0k � akRk (58)

Because both Dok and Du1k are assumed small, the first term in Eq. (58) is of higher order and is
neglected. Requiring the remaining terms to cancel then gives

iokCu0k ¼ akRk (59)

This equation corresponds to the requirement that the damper forces are equivalent to the
reaction forces necessary to equilibrate vibrations in the kth constrained mode, scaled by the
factor ak: The damping forces on the left side of Eq. (59) depend on the first component u0k of the
assumed mode shape (18), while the reaction forces on the right depend on the second component
aku1k; since Rk depends on u1k according to Eq. (12). Expanding the damping matrix C and the
reaction force vector Rk using their known forms in Eqs. (5) and (13), the force balance in Eq. (59)
becomes:

o0k

Xr

j¼1

ðcjwjw
T
j Þu0k ¼ Zk

Xr

j¼1

rkjwj (60)

in which the approximations ok ’ o0k and ak ’ iZk (50) have been introduced. Combining the
summations then gives

Xr

j¼1

ðo0kcjgkj � ZkrkjÞwj ¼ 0 (61)

where gkj is defined in Eq. (30). Provided that the dampers are not placed in a redundant manner,
the r vectors wj are linearly independent, and for Eq. (61) to be satisfied, the quantity in
parenthesis must equal zero for each value of j, giving the following equations:

cj ¼
Zk

o0k

rkj

gkj

; j ¼ 1; . . . ; r (62)

These equations uniquely specify the value of each of the r viscous damper coefficients
corresponding to a desired value of the parameter Zk; optimal damping in mode k, for example,
corresponds to Zk ¼ 1: Eq. (62) implies a relative sizing among the r viscous coefficients that can
be expressed with respect to a reference damper ðj ¼ 1Þ as follows:

cj

c1
¼

rkj

rk1

gk1

gkj

(63)

Eqs. (62) and (63) dictate that the coefficient of the jth damper should be sized in a manner that is
proportional to the jth constraint force in the kth constrained eigenmode rkj ; and that is inversely
proportional to the differential displacement across the jth damper in the kth undamped
eigenmode gkj : Subject to the small-perturbation assumptions, this type of scaling insures uniform
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locking of the r dampers in mode k, thus insuring the accuracy of the present approximate
formulation.

4.5. Placement of dampers

The semi-circular form of Fig. 4, predicted by Eq. (40), indicates that the maximum damping
that can be provided in a given mode is proportional to Do1k (33), the difference between the
limiting eigenfrequencies. Because this frequency difference is produced by locking of all the
dampers, it is independent of the sizing of the dampers and depends only on their location. The
optimal placement for added dampers can thus be determined independently of their sizing by
identifying the attachment locations for which locking of the dampers produces the largest
frequency shift. This frequency difference can be evaluated directly from Eq. (33) after solving the
limiting eigenvalue problems (8) and (11). However, solving the constrained eigenvalue problem
(11) for all possible damper locations could be tedious for a large structure with several added
dampers, and thus it is helpful to consider the factors that influence Do1k: In this section, an
approximate expression is obtained for Do1k that provides guidance in determining the damper
locations that maximize this frequency difference.
Premultiplication of the constrained eigenvalue problem (11) by uT0k; which is equivalent to the

requirement of zero virtual work through virtual displacements corresponding to the undamped
mode shape, gives the following equation:

uT0kKu1k � o2
1ku

T
0kMu1k þ uT0kR ¼ 0 (64)

With the assumption of symmetric M and K; the first two terms can be combined using Eq. (23)
to give

ðo2
1k � o2

0kÞu
T
1kMu0k ¼ uT0kR (65)

By expanding the vector of reaction forces Rk in terms of the r independent constraint forces rkj

using Eq. (13), Eq. (65) can be written as:

ðo2
1k � o2

0kÞu
T
1kMu0k ¼

Xr

j¼1

rkjgkj (66)

where gkj (30) is the displacement across the jth damper in the kth undamped mode shape. No
approximations have been introduced in obtaining Eq. (66), and consequently, this relation is
exact. Introducing the small-perturbation approximations, o2

1k � o2
0k ’ Do1kð2o0kÞ (34) and

uT1Mu0 ’ 1 (37), Eq. (66) yields the following approximation for the frequency difference Do1k:

Do1k ’
Xr

j¼1

rkjgkj

2o0k

(67)

This approximation is of limited use in actually estimating the frequency difference Do1k;
because determination of the constraint forces rkj requires solving the constrained eigenvalue
problem (11), and if Eq. (11) is to be solved, the frequency difference Do1k should be evaluated
directly from Eq. (33) rather than using this approximation. However, Eq. (67) does clearly
indicate that larger values of differential displacement gkj lead to larger values of Do1k: This
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suggests that to maximize Do1k; the dampers should be placed so as to maximize the
displacement across the dampers in the kth undamped mode shape. In this way, potentially
effective locations for added dampers can be identified through consideration of the undamped
mode shape alone.
5. Multi-story building example

The applicability of the foregoing approximate formulation and its use in determining the
optimal placement and sizing of added dampers are now illustrated through numerical examples.
A simplified multi-story shear-type building model is considered, as depicted in Fig. 1. This
building model has uniform floor mass M and uniform interstory stiffness K. In the general case
of n stories and r added dampers with viscous coefficients cj; the quadratic eigenvalue problem (3)
associated such a system can be written in nondimensional form as follows:

2 �1

�1 2 �1

. .
.

�1 1

2
66664

3
77775þ i ~o

Xr

j¼1

~cjwjw
T
j � ~o2
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(68)

where ~o ¼ o=
ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
is a nondimensional complex angular frequency, u ¼ ½u1 � � � un�

T is the
corresponding complex-valued vector of floor displacements, and the ~cj ¼ cj=

ffiffiffiffiffiffiffiffiffi
KM

p
are

nondimensional viscous coefficients. The ðn � 1Þ vectors wj represent the attachment positions
of the dampers and have the forms illustrated in Eqs. (6) and (7) for the five-story building of Fig.
1. Only dampers that connect adjacent floors are considered in this example, and consequently,
damping due to absolute motion, as in Eq. (6), can only be achieved for a damper attached
between the ground and the first floor. Dampers attached at higher floors produce forces due to
relative motion, as in Eq. (7). The undamped eigenfrequencies ~o0k and mode shapes u0k can be
readily evaluated from Eq. (68) by setting ~cj ¼ 0 for all j, and the constrained eigenfrequencies
~o1k and mode shapes u1k can be evaluated by using a reduced set of generalized coordinates, as
discussed previously and illustrated in Fig. 2(b). To facilitate numerical solution in the case of
finite damping, Eq. (68) can be recast in state-space form as a linear eigenvalue problem (see e.g.
Ref.[8]), and the nondimensional eigenvalues ~ok and corresponding eigenvectors uk can then be
computed using standard eigensolvers. In the following examples, a 10-story building ðn ¼ 10Þ is
considered.
5.1. Single damper

In the case of a single damper, the index j in Eq. (68) is omitted, and the viscous coefficient is
denoted c. The location of the inter-story damper can be represented by denoting the upper floor
of attachment m, so that the differential displacement across the damper corresponds to the inter-
story displacement between floors m and ðm � 1Þ: According to Eq. (30), the inter-story
displacement across the damper in the kth undamped mode shape is then given by gk ¼ wTu0k;
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Table 1

Influence of damper location m on perturbations of first-mode eigenfrequency and mode shape

m 1 2 4 7

g1 0.0650 0.0636 0.0565 0.0367

Do11=o01 0.1050 0.1018 0.0787 0.0306

DuT11MDu11 0.0108 0.0062 0.0027 0.0022
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Fig. 5. First-mode frequency increment Do1 with varying damper location m. Explicit approximation, —-; m ¼ 1; �;
m ¼ 4; �; m ¼ 7; þ: (a) Locus in complex plane; (b) imaginary part.

J.A. Main, S. Krenk / Journal of Sound and Vibration 286 (2005) 97–122 115
which can be readily evaluated from the undamped mode shape u0k for different damper locations
by varying w:
Eq. (67) suggests that to maximize Do1k and thus to maximize the damping potential in mode

k, the damper should be placed so as to maximize the inter-story displacement across the damper,
gk: The first row of Table 1 presents values of interstory displacement g1 in the first undamped
mode shape with varying damper location m, in which it is evident that the largest inter-story
displacement occurs between the first floor and the ground level ðm ¼ 1Þ:Normalized values of the
first-mode frequency shift Do11=o01 are presented in the second row of Table 1, and these values
confirm that the largest shift in frequency is produced by the first-story damper location ðm ¼ 1Þ:
The values in the second row of Table 1 also enable a check on the appropriateness of the
assumption of small perturbations in eigenfrequency for the first mode of this system with a single
damper. These values show that the appropriateness of the assumption Do11=o0151 improves
with increasing m, while even for m ¼ 1 the assumption is reasonable. Values of DuT11MDu11 in
the third row of Table 1 show that the assumption DuT11MDu1151 of small perturbations in the
first mode shape is also justified.
The validity of the small-perturbation assumptions implies that the linearized approximation

(40) should give accurate estimates of the complex frequency increment Do1; and the plots of
Fig. 5 show good agreement between the explicit approximation and the exact solutions for three
different damper locations (m ¼ 1; 4, and 7). Fig. 5(a) shows loci of the normalized frequency
increment Do1=o01 in the complex plane, as in Fig. 4, while Fig. 5(b) shows the normalized decay
rate Im½Do1�=o01 against the normalized viscous damping parameter Z1; as in Fig. 3(b). For
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Table 2

Deviations from explicit approximation in higher modes ðm ¼ 1Þ

k 1 2 3 4

Do1k=o0k 0.1050 0.1032 0.0995 0.0939

DuT1kMDu1k 0.0108 0.0762 0.2032 0.3845

Im½Doopt
k �=Do1k 0.5294 0.5499 0.5995 0.7127

Zoptk
0.9433 0.9198 0.8750 0.8190
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Fig. 6. Comparison of exact solution with iterative and explicit approximations (m ¼ 1; mode 3). Exact, �; iterative, þ;
explicit, —.
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m ¼ 7; the exact and approximate values are virtually indistinguishable, while deviations are more
significant for m ¼ 1; for which the maximum damping is achieved. These deviations of the exact
values from the explicit approximation correspond to a slight increase in the maximum decay rate
Im½Doopt

1 �=o01 and a slight decrease in the corresponding optimal value of the viscous damping
parameter Zopt1 :
These deviations from the explicit approximation become more significant in the higher modes,

as shown in Table 2 for a first-story damper location ðm ¼ 1Þ: The first row of Table 2 shows that
the normalized eigenfrequency perturbation Do1k=o0k actually decreases slightly with increasing
mode number k, so that the assumption Do1k=o0k51 remains reasonable in higher modes. (It is
noted that while numerical values of Do1k increase with mode number k, the undamped
frequencies o0k increase more strongly with k for this system, leading to a slight decrease of the
ratio Do1k=o0k with increasing k.) In contrast, the mode shape perturbation DuT1kMDu1k

increases strongly with mode number, as shown in the second row of Table 2. This increase in
DuT1kMDu1k renders the assumption DuT1kMDu1k51 less appropriate, leading to increases of the
maximum decay rate from the explicit approximation Im½Doopt

k �=Do1k ¼ 0:5; as shown in the
third row of Table 2, and to decreases of the corresponding optimal viscous damping parameter
from the explicit approximation Zoptk ¼ 1; as shown in the fourth row. Improved agreement with
the exact values can be achieved by using the iterative solution (31) rather than the explicit
approximation (40). This is illustrated in Fig. 6 for the third mode ðk ¼ 3Þ with a first-story
damper ðm ¼ 1Þ; in which the iterative and exact solutions are virtually indistinguishable.
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Table 3

Influence of second damper location m2 in first mode ðm1 ¼ 1Þ

m2 2 5 7 10

Do11=o01 0.2347 0.1949 0.1500 0.1081

DuT11MDu11 0.0426 0.0094 0.0080 0.0103

g12=g11 0.9777 0.7840 0.5649 0.1495

r12=r11 1.0000 0.8137 0.5867 0.1613

c2=c1 1.0228 1.0378 1.0386 1.0789
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5.2. Two dampers

In the case of two dampers, the viscous coefficients are denoted c1 and c2; and the upper floors
of attachment are denoted m1 and m2; where m1am2: A first-story location is considered for the
first damper ðm1 ¼ 1Þ; at which a single damper is known to produce the greatest effect in the first
mode, and different locations for the second damper are considered. Based on the first-mode
inter-story displacements in Table 1, it would be expected that a location of m2 ¼ 2 for the second
damper would produce the greatest effect, and this is confirmed by the value of the frequency shift
Do11 in the first row of Table 3, which is highest for m2 ¼ 2 and decreases with increasing m2:
The norm of the mode shape perturbation DuT11MDu11 in the second row of Table 3 is also
highest for m2 ¼ 2; thus leading to improved accuracy in the explicit approximation but decreased
damping for larger values of m2:
In order to insure uniform action of the two dampers in the first mode and thus maximize the

accuracy of the assumed mode shape (18), the viscous coefficients should be proportioned
according to Eq. (63), which for the first mode gives c2=c1 ¼ ðr12=r11Þðg12=g11Þ

�1: The third row of
Table 3 shows the ratio of the inter-story displacements g12=g11; determined from the undamped
mode shape u01; and the fourth row of Table 3 shows the ratio of the constraint forces r12=r11;
determined from the constrained mode shape u11 using Eq. (14). The fifth row of Table 3 shows
the resulting ratio of the damper coefficients c2=c1: It is observed that for this system with uniform
floor mass and inter-story stiffness, the ratio c2=c1 is approximately unity and is fairly insensitive
to the location m2 of the second damper.
Each value of the ratio c2=c1 defines a locus of the frequency increment Do1 in the complex

plane, which can be determined by increasing both c1 and c2 in Eq. (68) according to this fixed
ratio and repeatedly solving for o1: In Fig. 7, the exact values of Do1; evaluated in this way, are
compared with values corresponding to the explicit approximation (40) for three different
locations of the second damper (m2 ¼ 2; 5, and 7, with m1 ¼ 1). The exact values for each damper
location m2 in Fig. 7 were computed with c2=c1 ¼ 1; which corresponds very nearly to the
proportional scaling given by Eq. (63), as shown in Table 3. Reasonable agreement is observed
between the exact and approximate values with the dampers proportioned in this way. The
discrepancies are most significant for m2 ¼ 2; for which the perturbations Do11 and Du11 are
largest, as shown in Table 3. As illustrated previously in Fig. 6, improved accuracy can be
achieved by using the iterative solution (31) rather than the linearized approximation (40).
Fig. 8 shows a comparison of the approximate representation of the first mode shape, ~u1 ¼

u01 þ a1u11 (18), with the exact mode shape u1 evaluated numerically from Eq. (68). This
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comparison corresponds to Z1 ¼ 1; near optimal damping in the first mode, with damper locations
given by m1 ¼ 1 and m2 ¼ 5; and with the dampers proportioned according to c2=c1 ¼ 1: To
obtain the best possible accuracy in the approximate representation, the coefficient a1 is evaluated
from Eq. (27), in which no small-perturbation approximations have been introduced, and the
approximate eigenfrequency o1 in this expression for a1 is evaluated iteratively from Eq. (31). To
facilitate comparison, both the exact and approximate mode shapes are normalized so that the
displacement across the first damper is purely real, Im½wT

1 u1� ¼ 0; and so that the real part has unit
norm with respect to M; Re½uT1 �MRe½u1� ¼ 1: The approximate mode shape is generally least
accurate around optimal damping, since it reduces to the exact mode shape in the undamped and
constrained limits. However, Fig. 8 shows excellent agreement between the exact and approximate
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mode shapes, even in this case near optimal damping and with the moderately large value of the
eigenfrequency perturbation Do11 shown in Table 3.
Fig. 9 shows the influence of the relative sizing of the dampers c2=c1 on the loci of Do1 in the

complex plane, with damper locations given by m1 ¼ 1 and m2 ¼ 5: The loci in Fig. 9 are exact,
and were evaluated numerically by increasing both c1 and c2 in Eq. (68) according to the specified
ratio and repeatedly solving for o1: The loci in Fig. 9(a) correspond to c2=c1p1; where c2=c1 ¼ 1
corresponds to proportional scaling, as specified by Eq. (63). In these cases, the first damper
begins to lock before the second damper. The limiting curve labeled c2=c1 ! 0 corresponds to the
case of first letting c1 ! 1 with c2 ¼ 0 and then letting c2 ! 1 while the first damper remains
locked. In this limiting case, two local maxima of the decay rate Im½Do1� are observed, both of
which are less than the maximum value of Im½Do1� in the case of proportional scaling, c2=c1 ¼ 1:
As c2=c1 decreases from the case of proportional scaling, the loci in Fig. 9(a) deviate from a nearly
semi-circular form and tend towards the limiting curves associated with c2=c1 ! 0; thus resulting
in decreased damping. Similar features are observed in Fig. 9(a), corresponding to c2=c1X1; for
which the second damper begins to lock before the first. It is thus observed that the proportional
scaling (63), which is implicit in the assumed representation of the mode shape (18) leads to the
maximum efficiency in a given mode.
6. Conclusions

An approximate solution has been developed for the complex eigenfrequencies of a discrete
system with several viscous dampers. The approximate solution is developed through an
interpolation procedure, in which a given mode shape has been represented as a linear
combination of the mode shapes corresponding to the two limiting eigenproblems: the undamped
eigenproblem and the constrained eigenproblem in which each damper has been replaced with a
rigid link. The requirement of zero virtual work through arbitrary virtual displacements consistent
with this two-component representation yields approximations for the complex eigenfrequency
and for the relative magnitude and phasing of the two components of the complex mode shape.
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The validity of the two-component mode shape representation requires uniform locking of each
damper in the system, as this approximation is unable to capture independent locking of a specific
damper with other dampers remaining compliant. However, when the dampers are intended to
work together to damp a particular mode, this condition of uniform locking is desirable, and
explicit conditions have been obtained on the relative sizing of the dampers to insure such uniform
locking. The advantage of the proposed approximation is that the efficiency and tuning of viscous
dampers in a given mode can be investigated by solving only the two limiting eigenproblems,
rather than repeatedly solving the complex eigenvalue problem of the damped system with
different values of the viscous coefficients. A simple iterative procedure has been presented for
efficient evaluation of the complex frequencies.
For cases in which the difference between the undamped and fully locked mode shapes is

sufficiently small, an explicit approximation for the complex eigenfrequency has been obtained,
having the same form as asymptotic approximations previously derived for cables and beams with
a single concentrated damper near one end. This approximation indicates that as the strength of
the dampers is increased, the complex eigenfrequency in a given mode traces a semi-circle in the
complex plane, originating at the undamped eigenfrequency and terminating at the eigenfre-
quency of the constrained system with locked dampers. The maximum damping that can be added
in a given mode is thus proportional to the shift in the eigenfrequency induced by locking of the
dampers. This frequency shift has been shown to increase with the differential displacement across
the damper in the undamped mode shape, indicating that to maximize damping in a given mode,
the damper should be placed so as to maximize the displacement across the damper in that
undamped mode shape. Application of this approximate formulation has been illustrated for a 10-
story shear building with one or two added dampers. For this system, the explicit approximation
has been shown to be fairly accurate, and improved accuracy can be achieved through an iterative
scheme.
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Appendix A. Alternative derivation for single damper

In the case of a single damper, the approximate cubic equation (38) for the complex
eigenfrequencies ok can be obtained in an alternative way using an exact analytical expression
recently obtained by Gürgöze [16] for the characteristic equation of a discrete system with several
added dampers. Gürgöze extended a result previously obtained by Cha and Wong [18] to obtain
an expression for the characteristic equation as the determinant of a reduced-order matrix. The
dimension of this reduced matrix is given by the number of added dampers rather than the
number of degrees of freedom, while each term in the matrix contains a summation over all
modes. In the case of a single added damper this matrix reduces to a single term, given in Eq. (18)
in Ref. [16]. Neglecting inherent damping, this characteristic equation can be written as follows
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using the present notation:

1þ ico
Xn

k¼1

g2k
o2

0k � o2
¼ 0 (A.1)

where c is the viscous coefficient of the single damper, o0k denotes the kth undamped frequency,
and gk denotes the differential displacement across the kth undamped mode shape. This differential
displacement is defined in Eq. (30) as gkj; where the subscript j denotes the damper number, but in
Eq. (A.1) the subscript j is omitted for this case of a single damper. The values of o for which Eq.
(A.1) is satisfied are the complex-valued eigenfrequencies ok of the damped system. To clarify the
limit associated with c ! 1; is it convenient to divide Eq. (A.1) by c, giving the following equation:

1

c
þ io

Xn

k¼1

g2k
o2

0k � o2
¼ 0 (A.2)

Clearly the first term tends to zero as c ! 1; so the summation in the second term must also tend
to zero in this limit. The values of o for which this summation vanishes are then the real-valued
eigenfrequencies o1k of the system in which the damper has been replaced with a rigid link.
When a particular eigenfrequency or is of interest, it is convenient to isolate the rth term of the

summation in Eq. (A.2) as follows:

Xn

k¼1

g2k
o2

0k � o2
r

¼
g2r

o2
0r � o2

r

þ
Xn

kar

g2k
o2

0k � o2
r

(A.3)

As c ! 0; the rth eigenfrequency approaches its undamped value or ! o0r; and in this limit the
isolated term in Eq. (A.3) tends to infinity and the other terms in the summation become
unimportant. As c ! 1; it follows from Eq. (A.2) that the summation on the left-hand side of
Eq. (A.3) tends to zero, which requires cancellation of the rth term with the remaining terms in the
summation on the right-hand side of Eq. (A.3). In the limit as c ! 1 and or ! o1r; Eq. (A.3)
can then be written as follows:

Xn

kar

g2k
o2

0k � o2
1r

¼
g2r

o2
1r � o2

0r

(A.4)

Eq. (A.4) gives a simple single-term expression for the value of the summation on the right-hand
side of Eq. (A.3) in the limit as c ! 1 and or ! o1r: Provided the limiting eigenfrequencies, o0r

and o1r; are fairly close to each other so that changes in or are small, the value of the summation
on the right hand of Eq. (A.3) is quite insensitive to changes in or; and it can be approximated by
its known value for or ! o1r in Eq. (A.4):

Xn

kar

g2k
o2

0k � o2
r

’
g2r

o2
1r � o2

0r

(A.5)

Using this approximation, Eq. (A.3) becomes

Xn

k¼1

g2k
o2

0k � o2
r

’ g2r
1

o2
0r � o2

r

þ
1

o2
1r � o2

0r

� �
(A.6)
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Combining the two terms on the right-hand side and substituting this approximation into Eq.
(A.2) then gives

1

c
þ iorg2r

o2
1r � o2

r

ðo2
0r � o2

r Þðo2
1r � o2

0rÞ
’ 0 (A.7)

which can be rearranged to yield

ðo2
r � o2

0rÞðo
2
1r � o2

0rÞ ’ iorcg2r ðo
2
1r � o2

r Þ (A.8)

According to Eq. (29), uT0rCu0r ¼ cg2r in the case of a single damper, and thus Eq. (A.8) is
equivalent to Eq. (38), apart from the use of the subscript r to denote the mode number, rather
than k as in Eq. (38).
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