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Abstract

A method is described by which the individual flexural wave components in a beam can be measured in
real time. Attention is focussed on the case in which two propagating waves and a single near-field wave
exist, although the case of two near fields is also considered. Because the presence of the near field is
included, the measurements can be taken close to the force, boundary or discontinuity from which the near
field arises. Potential applications include intensity measurement, active control and adaptive-passive
vibration control.

The wave components are measured by digitally filtering and combining the outputs of an array of
sensors, with an array of three, equally spaced sensors being considered in detail. The filters are designed in
the frequency domain using a wave decomposition approach, and implemented in the time domain as FIR
filters. Design, implementation and performance issues are discussed and an experimental implementation
described. It is seen that accurate estimates of the amplitudes of the wave components can be obtained
using FIR filters of moderate order, and that the method is relatively insensitive to sensor miscalibration
and measurement noise.
© 2004 Elsevier Ltd. All rights reserved.
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Nomenclature w beam displacement
X position along beam
a sensor location Y vector of sensor outputs
EI bending stiffness 0 beam rotation
f frequency (Hz) e calibration error
s sampling frequency Y wavelength
g filter impulse response, FIR filter p mass per unit length
coefficient o filter weight function
G filter frequency response ¢ wave amplitude
H i0G 10) frequency
k wavenumber
m time step Subscripts
ny filter delay
n; number of terms in FIR filter j sensor number
p arbitrary variable, distributed load k filter coefficient number
S sensor matrix m time step number
t time n value at Nyquist frequency
v velocity N near field

1. Introduction

Knowledge of the amplitudes of the various wave components that can propagate in a structure
can provide valuable information concerning the vibrations of a structure, especially at higher
frequencies. Typically, these wave amplitudes are estimated retrospectively in the frequency
domain, by processing blocks of time-domain data. While this approach is satisfactory in many
situations, applications exist for which real-time estimates are more useful. These include the
measurement of vibrational energy flow [1,2], particularly that due to transient and other non-
stationary excitation, active vibration control [3-5], where real-time estimates of the amplitude of
a given wave component can be used as a reference or error signal, and adaptive-passive control,
where the contribution of a given wave component can again be used to quantify the performance
of the system and adapt its properties. The specific case of active control in the presence of a near
field is considered in detail in a companion paper [6].

This paper describes the real-time measurement of the amplitude of individual wave
components in a beam undergoing flexural vibration. The case considered is that in which two
propagating waves and a single near-field wave exist. The amplitude of the wave component (e.g.
the positive-going propagating wave component) at any particular time will, in general, be a sum
of a number of different frequency components. The real-time measurements are provided by
filtering the outputs of an array of sensors, with the specific case of three, equally spaced sensors
being considered in detail. The approach is similar to that described in Ref. [2], where far-field
conditions were assumed. However, those conditions mean that the sensor array must be located
at a significant distance from any discontinuity, excitation point or boundary, since these features
create a near field which affects the sensor outputs if they are placed within about half a
wavelength of the near-field source. This precludes the use of the far-field method in many
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practical situations, or severely restricts the frequency range over which accurate measurements
can be taken. The case considered here allows for the existence of the near field produced by an
‘upstream’ source, so that accurate measurements can be taken so long as any near field produced
by a ‘downstream’ source is negligible.

The technique used is based on wave decomposition and reconstruction, and follows the
approach of Ref. [2] except that here a near-field wave is also taken into account. The outputs of
the sensors are digitally filtered. The filters are designed using a wave decomposition approach in
the frequency domain and implemented in the time domain as FIR filters. In the next section,
some results concerning wave motion in beams are reviewed. The required filter frequency
responses are then determined, and issues concerning the filter design, implementation and
performance are discussed. Application to real-time intensity measurement is considered. Finally
some experimental results are presented. The general case in which there are two near fields is
amenable to the same approach and is discussed in Appendix A.

2. Measurement of bending wave amplitudes

Consider a thin beam lying along the x-axis. If the effects of shear deformation and rotary
inertia can be neglected, then the displacement w(x, f) satisfies
o*w ®w
— — = t 1
o TP p(x, 1), (1)
where EI and p are the bending stiffness and mass per unit length of the beam and p(x,¢) is the
applied force per unit length. A list of symbols is given in the nomenclature.'

Suppose now that all quantities vary time harmonically as exp(iwt). The beam displacement can
be written as

El

w(x, 1) = Re{ W (x, w)e™}. )

In this paper, the notation is adopted in which the lower- and upper-case symbols (e.g. w(z) and
W (w)) represent the same variable in the time and frequency domains, respectively, and the
explicit time dependence will normally be suppressed. In a region in which no applied forces act,
the displacement can be expressed as the sum of wave components

W(w) = jp(0)e ™ + & ()™ + &y ()™ + Dy ) (w)e, (3)

where &7, (w) are the complex amplitudes of the positive- and negative-going propagating waves
at frequency w and @f,,W(co) those of the positive- and negative-going near fields. The near-field
components decay exponentially in the positive and negative x-directions, respectively, and are
thus spatially localised, decaying in amplitude by a factor of about 0.04 in half a wavelength. In
Eq. (3), k = {/pw?/EI is the wavenumber. In the presence of damping, k has a (usually small)
negative imaginary part so that the amplitude of a propagating wave component decays gradually
in the direction of propagation. In this paper, it will be assumed that this decay is negligible over
distances of the order of the sensor separations.

"The lower case symbol (e.g. p(r)) is used to represent a variable in the time domain, while the upper case, P(w),
represents the same variable in the frequency domain.
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The subscript W in Eq. (3) indicates that it is the transverse displacement W (w) of the beam
that has been decomposed into the wave components @y,. The wave amplitudes @y are thus
referred to as displacement wave amplitudes. However, all response quantities (transverse
velocity, acceleration, shear force, etc.) vary time harmonically under the passage of a wave. Thus
one could equally define the amplitudes of the wave components in terms of the amplitude of any
such response quantity. For example one may equally refer to velocity waves, which have
amplitudes @y = iwPy, or acceleration waves which have amplitudes &4 = —w’®y: the
superposition of such waves then gives the velocity or acceleration of the waveguide, respectively.
Whichever is chosen is purely a matter of convenience and might depend, e.g. on the particular
output signal from the sensors.

2.1. Frequency domain decomposition

The aim is to measure the instantaneous amplitudes of the individual wave components in real
time using various sensors. Generally, these will be the sum of contributions at various
frequencies. In this paper, the particular case of the array of sensors shown in Fig. 1 is considered.
The array comprises three equally spaced sensors located at x = 0, +a. The sensors are assumed
to give point measurements of the same kind, for example acceleration or velocity, e.g. but the
method can easily be extended to an array containing sensors of different kinds or distributed
sensors (e.g. strain gauges of non-negligible length).

The outputs of the sensors are filtered and combined to yield estimates of the amplitudes of the
different wave components at the centre of the array, x = 0. These filters are referred to as wave
filters or wave component filters. The filters are designed in the frequency domain as described in
this section. They are subsequently implemented in the time domain by convolving the sensor
outputs with the impulse responses of various filters. The implemented filters have frequency
responses which approximate the idealised designs.

In the design of the wave filters, it is assumed that the near-field @, is negligible, although its
contaminating effects are included in the simulations described later. This implies that any
discontinuities, forces, boundaries, etc. are assumed to be far enough to the right (half a
wavelength or so) so that the consequent near field has decayed to a negligible level. The positive-
going near-field @3 may have a significant amplitude, however, so that measurements can be
taken arbitrarily close to such a source. It is, however, straightforward to include the near-field @},
(see Appendix A).

Suppose the sensors measure displacement. If the near-field @) is ignored, then, for the
frequency component , the displacement in the region around the array can be written as

W(x,0) = ®Te ™ 4 ofe™ 4 @&k, (4)
The subscript W is omitted for simplicity. The vector of sensor outputs is then
W(—a,w)

Y() =< W(0O,w) (5)
W(a, »)
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Fig. 1. Near-field sensor array comprising three sensors.

and hence
@-&-
Y(0) = S(0)®(w), ®(w)=4¢ P 5,
oy
where the sensor matrix
eika efika eka
S(w) = | 1 1
efika eika efka
The wave amplitudes are consequently given by

Dd(0) = G(w)Y(®), G(w)=S"!(w).

511

(6)

(7

(8)

The frequency response matrix G(w) can be found by inverting S(w) but the resulting expression is
not given here. The determinant of S equals 4i sin ka(cosh ka — cos ka), and hence S is singular if
the separation a is half a wavelength: this imposes an (quite high) upper frequency limit for the

array.

As defined above, the matrix G provides wave amplitudes of the same response variable as the
sensor outputs, i.e. displacement measurements give displacement wave amplitudes. Similarly,
acceleration measurements would give acceleration wave amplitudes. This need not be the case,
however. For example if the sensors measure velocity, then G would provide estimates of velocity-
wave amplitudes, while iwG and G/(iw) would provide estimates of acceleration-wave and

displacement-wave amplitudes, respectively.
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2.2. Time-domain reconstruction

In general, more than one frequency component will be present and each wave component will
be the superposition of these various frequency components. Thus

¢m=F1@w»=1wmmwwu ©)

where F~' {-} is the inverse Fourier transform. Since the inverse transform of a product is equal
to the convolution of the individual inverse transforms, then

P(1) = g(1) x y(0), (10)
where * denotes convolution and g(¢) is a matrix of impulse responses, which are the inverse
Fourier transforms of the elements of G(w). In a practical implementation an approximation to
these is found. The examples below involve a digital implementation, with FIR filters being used.

The steps in implementing the wave filters are thus to specify the details of the sensor array, to
determine the matrices S(w) and G(w), and to design filters whose impulse responses approximate
g(?) to acceptable accuracy.

One issue that arises is that the required filters are typically non-causal, so that g(7) is non-zero
for t<0. This is not surprising, since estimates at any particular time are made for the amplitudes
of the wave components at x = 0 from sensor measurements taken at various locations. It takes
some time for waves to propagate from one location to another, so exact estimation of the
amplitudes of the wave components requires knowledge of the future output of the downstream
sensor. In practice, these effects are not important for applications where ‘real-time’ performance
is not crucial, such as response and intensity estimation—in effect, a small delay can be
incorporated into the filtering process before the measurement is produced. These time delays
have more profound consequences for applications such as active control.

3. FIR filter implementation

Practical implementations will be predominantly digital, with FIR filters being used in this
paper. The sensor outputs are sampled at the sampling frequency f;, with the Nyquist frequency
(and cut-off frequency of the anti-aliasing filters) defining a maximum frequency of interest and
hence a maximum sensor spacing. The estimated amplitude of a wave component at time step m is
then

%=Z(Z@Mma, (11)

Jj=1,3 \k=0,K

where the length of the filters is K+ 1. The implemented filters are causal and of finite length. They
are consequently approximations to the ideals defined above.

There are a number of ways of designing FIR filters. Here the ‘time delay” approach described
in Ref. [2] is adopted. A n; = (2ny + 1) term filter is designed by time-delaying the filters in G by n,
time steps, which is equivalent to multiplying G by exp(—iwn,/f,). A weighted least-squares
procedure is then used to fit the implemented frequency response G to that of the appropriate
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element of G, i.e. so as to minimise the sum over frequency of (a(w)|G(w) — G(w)|2), where a(w) is
a chosen weight function. The causal filter will then produce an estimate of ¢,, at time step m+n,;.
Only small values of n, are required.

The accuracy of the implemented filters depends on the number of terms and is generally worst
for low frequencies and for frequencies close to the Nyquist frequency. Consequently, these
frequency ranges can be zero-weighted in the least-squares estimation if required. In practice,
however, the low- and high-frequency components of the signals will often be filtered out (e.g. by
the anti-aliasing filters and by a.c. coupling) and this will substantially ameliorate the effects of the
poor approximation in these frequency ranges.

Another issue concerns exactly which frequency responses to implement. Here two types are
considered, these being G and H = iwG. The first is a direct implementation of the frequency
domain design. The second, with an additional term (iw), in effect estimates velocity wave
amplitudes from sensor measurements of displacement, rather than displacement wave
amplitudes. The numerical examples show a somewhat better approximation for a given number
of terms (primarily because the filters in G become infinite at zero frequency while those in H vary
much less with frequency) and a somewhat better performance.

3.1. Numerical examples

In this section some numerical examples are presented. The filters were designed using the
Matlab function invfreqz, with the ideal frequency responses defined at 256 equally spaced
frequencies up to the Nyquist frequency f,. The implemented FIR filter coefficients were found
using uniform weighting over the frequency range from 0.1f, to 0.9f, and zero weighting
elsewhere. The results are given for a sensor spacing a = 0.1 4,, where 4, is the bending wavelength
at the Nyquist frequency.

Figs. 2-5 show various ideal and implemented filter frequency responses for wave amplitude
filters of the two types described above with n;=5. Figs. 2 and 4 show the filters for the
downstream propagating wave ¢ (¢) (e.g. Gi1, G12, G13) while Figs. 3 and 5 show the filters for the
near-field wave ¢7(?) (e.g. Gs1, G3). Note that Gy, = Gy, while the near-field filters Gy; are real
with G33 = G3;. Generally, the real part of G is approximated better than the imaginary part,
while the approximation for H tends to be better than that for G. This is due in part to the fact
that the filter coefficients are constrained to be real, and hence the imaginary part of G must be
zero at both zero and the Nyquist frequency, and in part to the fact that G becomes infinite at zero
frequency. Increasing the filter length gives better approximation. Figs. 6 and 7 show cases with
ng = 15, while Fig. 8 shows Gy; for various n; A good approximation is produced by filters of
relatively low order.

3.2. Performance considerations

In practice, the performance of the system is compromised by a number of factors so that the
measured wave amplitudes @ will differ from the actual wave amplitudes ® for various reasons.
First, the measured sensor outputs

Y = diag(l + &.)(Y + Sy®@y) +n, (12)
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differ from Y. Here diag(-) is a diagonal matrix, &. represents sensor magnitude and phase
miscalibration and n,, represents measurement noise. The term Sy gives the contribution due to
the negative-going near field which is neglected in the design but which may, in practice, exist and
will then contaminate the sensor outputs. Secondly, the implemented frequency responses G are
only approximations to the ideals because of filter approximations. Finally, errors and
uncertainties in the values of the parameters in the sensor array S (e.g. the wavenumber and
the locations of the sensors in the examples above) mean that the actual matrix S differs from the
matrix S of Eq. (7) from which the filters are designed.
The measured wave amplitudes are then

® = GY, (13)

where Y is given by Eq. (12) and where Y = S®. Given that there are three sensors in the array,
many factors affect the performance and clearly the situation can become very complicated.

3.2.1. Accuracy and cross-sensitivity
Suppose that Y =Y and that the sensor matrix S is known exactly, so that the measured
amplitudes are

O = GSOD. (14)
G11 GlZ Gl3
0 10 0
2 8 \ 2
4 6 4
§ -6 4 6
8 ( 2 8 (
-10 0 -10
0.5 1 0 0.5 1 0 0.5
10 0 10
8 -2 8
2 6 -4 6
S
= 4 6 4
2 -8 2
0 -10 0
0.5 1 0 0.5 1 0.5

f/f,

Frequency/Nyquist frequency, f/f,..

Fig. 2. Ideal (---) and implemented (—) downstream propagating wave amplitude filters G1;, G|, and Gj3: a = 0.1 4,,

ng= 5.
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15 L 5
\ 4
B 10 -10
5 -15
Oo 05 1 -20 0 0.5 1

f/fn fifn
Frequency/Nyquist frequency, f/f,.

Fig. 3. Ideal (---) and implemented (—) near-field wave amplitude filters G3; and G3;: @ = 0.1 4, ny= 5.

0 Hu 4 Ha, 0 His
-0.5 3 -1
7 1 2 2
[
-1.5 1 -3 \
-2 0 -4
0 0.5 1 0 0.5 1 0 0.5 1
0 6 0
-1 -1
41—
-2+ 2
E
2
-3 -3
-4 0 -4
0 0.5 1 0 0.5 1 0 0.5 1

f/fn
Frequency/Nyquist frequency, f/f,.

Fig. 4. Ideal (- --) and implemented (—) downstream propagating wave amplitude filters H;, Hj» and Hi3: a = 0.1 4,
ng= 5.

The accuracy (e.g. |$+/¢+|, |<}5N, ¢ x|, etc.) and cross-sensitivity (e.g. |(}5+/q§_|, |(}5+, ¢ nl, etc.) of
the measurements then depends only on inaccuracies in the filter matrix G. Fig. 9 shows examples
for filters designed using n; =5 and 15. Generally, the measurements are accurate and fairly
insensitive to the presence of other wave components except at low and high frequencies, and
error decrease with increasing filter order, as one would expect.
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H H
6 31 0 32
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4 — —
-4
g
E
= -6
) -
8
0 ' -10 :
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i f/fn

Frequency/Nyquist frequency, f/f,.

Fig. 5. Ideal (---) and implemented (—) near-field wave amplitude filters H3; and Hsy: a = 0.14,, n;= 5.

0 G11 10 GlZ 0 G13
2 8 2
-4 6 -4
8
X -6 4 6
-8 2 -8
-10 0 -10 A
0 0.5 1 0 0.5 1 0 0.5 1
10 H 0 10 A
8 2 8
6 \ 4 6
o
E 4 6 4
2 -8 2
0 -10 0
0 0.5 1 0 0.5 1 0 0.5 1
i

Frequency/Nyquist frequency, f/f,.

Fig. 6. Ideal (---) and implemented (—) downstream propagating wave amplitude filters G1;, G, and G3: a = 0.1 4,,
ng= 15.

3.2.2. Sensor matrix uncertainty: sensitivity to wavenumber
Suppose now that the sensor outputs are perfect so that Y =Y, while the implemented filters
are perfect and hence G is known exactly. Errors now arise solely from inaccuracies in the sensor
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Hll H12 H13
0 4 0
-0.5 3 -1
g z 2
-1.5 1 -3 \
-2 0 4
0 0.5 1 0 0.5 1 0 0.5 1
0 6 0
-1 1
4t~
® oL
£ 2 2
2
-3 3
-4 0 -4
0 0.5 1 0 0.5 1 0 0.5 1

f/f

n

Fregquency/Nyquist frequency, f/f,.

Fig. 7. Ideal (---) and implemented (—) downstream propagating wave amplitude filters Hy;, H; and H3: a = 0.1 4,,
ng= 15.

locations and the wavenumber in the sensor matrix S. The measured wave amplitudes are now
® = GSOD.
The sensitivity to a parameter u (e.g. wavenumber, sensor location, etc.) is such that

oo = Ga—s(l). (15)
ou ou

Errors in the estimated value of the wavenumber k& produce errors in the measured wave
amplitudes. As an example, Fig. 10 shows the relative errors in the measured wave amplitudes
‘5(1) / d)‘ caused by relative errors ok /k in the wavenumber k. Clearly, the sensitivity to this error is
fairly low, being approximately 1 or less.

3.2.3. Sensor matrix uncertainty: sensitivity to sensor location

It was assumed that the sensors are equally spaced, so that an error in sensor placement will
produce errors in the measured wave amplitudes. For example, suppose that the rightmost sensor
is attached at x = x; instead of x = a. The sensitivity to this misplacement is then found from
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0 01 02 03 04 05 06 07 08 09 1
(@ /fn

Imag

(b)

Fig. 8. Ideal and implemented downstream propagating wave amplitude filters Gy;, a = 0.14,, various n,, (a) Re{Gy;}
and (b) Im{G,;}: — ideal; ——ny;=2;-- - -- ng=23 ..... ng=25 —ng=9;----- ng = 15.
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Fig. 9. PerfoKmance of thrs:ejr-sensor array, a=0.14,; n;=15 and 15: accuracy: |(AD+/(I>+|; ----- I@;/(I’Xrl; Cross-
sensitivity: [ /@7 |; ----- |@y/DE; ... 1D /DT
Eq. (15) with
oS 0 0 0
—=k| 0 0 0o |. (16)
X1 . .
—ie ika 1elktl —eka

Fig. 11 shows the relative wave amplitude errors caused by relative placement errors dx,/a. The
sensitivity to this form of error can be large, especially at low frequencies where ka is small, and
emphasises the need for accurate sensor placement. It also illustrates an advantage of the wave
approach compared to the finite difference approach. The sensor spacing for the wave approach
can be substantially larger than that for the finite difference approach, which requires that ka < 1.
This larger sensor spacing can result in substantially reduced sensitivity to sensor misplacement.
The sensitivity to any other sensor misplacements can be found by combining the results of this
and the previous subsection.

3.2.4. Conditioning and the effects of noise and miscalibration

The condition number of the sensor matrix S is an indicator of the total effects of
miscalibration, noise, etc. on the estimates and the resulting sensitivity of the matrix G to these
sources of error. Fig. 12 shows this condition number for the example sensor array as a function
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Sensitivity to 8k / k
1.5 T T
tf T :
=3
S
Dy
o5fp ————m— — — — — — T 7 .
0 | 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ka
Fig. 10. Sensitivity of three-sensor array to ok/k: — |0®t/®T|; ___ |0®T /|- - - - |5¢;/d§+ RN Rl 2y el

of frequency. At low frequencies the condition number is high, the sensors being closely spaced
compared to the wavelength, but the condition number decreases with increasing frequency.

4. Measurement of intensity

As an illustrative application of the foregoing, consider the measurement of the instantaneous
flow of energy along the beam, i.e. the structural intensity. This is given by

i(x, 1) = —q(tyu(t) — m(D0(0), (17
where
m(t) = EI 62_w (1) = —EI Ef_w (18)
=S 1WE ox3

are the bending moment and shear force, respectively, while v = 0w /0r and 6 = 3*w/0x 0t are the
translational and rotational velocities of the beam.

The same wave approach was developed in Ref. [2] for the far-field case where there are only
propagating waves and only two sensors are required. Two methods were described. The first
involves estimating the wave amplitudes and the energy flow associated with each. The second,
and perhaps the simpler, is to estimate the bending moment and shear force directly, and hence to
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Sensitivity to position of rightmost sensor

10 \

B¢/ ¢

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ka

Fig. 11. Sensitivity of three-sensor array to placement of rightmost sensor, dx;/a: — [6®T/®|, |6®~ /d|;
007, /@7 |.

estimate the intensity from Eq. (17). This method will be outlined here when a near field is present.
This approach is in contrast to the finite difference technique [1] which involves four sensors,
equally and closely spaced. The wave approach is much more accurate and much less sensitive to
miscalibration, errors in sensor spacing and so on, partly because only three sensors are required
and partly because the sensors can be spaced further apart (up to one half-wavelength).

In the frequency domain the moment and shear are related to the wave amplitudes by

()
M(w) } , [ -1 —1 1 ] !
=EIK*| . . Dy () (19)
{ O(w) —ik ik Kk @JJ\;’W (@)

and are hence related to the sensor measurements Y by

Miw) el 0T sy 20)

Q) |~ Sk ik k]S (@)@ (
Real-time estimates of the bending moment and the shear force can thus be found by time-domain
reconstruction and FIR filter design as described in Sections 2.2 and 3, with the terms in the filter

frequency responses being those in parentheses in Eq. (20), e.g. EI k>Gyy, iE1K> Gy, ete. These can
be combined with real-time estimates of linear and angular velocity (either measured directly or
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10°
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Condition number

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 12. Condition number of sensor matrix S for three-sensor array.

obtained via time-domain reconstruction) to yield a real-time estimate of instantaneous intensity
using Eq. (18).

5. Experimental implementation

The experimental set-up comprised a steel beam of dimensions 50.6 x 6.4 x 5630 mm suspended
at four points along its length. One end was embedded in a sand box to reduce reflections. While
wave component measurements can be taken equally in reverberant or non-reverberant
conditions, the presence of the sandbox reduces any resonant effects, so that the spectra of the
wave amplitudes incident on the sensors become more uniform. This ensures that relative and
absolute measurement errors are more-or-less uniform over the whole frequency range. The beam
was excited by a Ling V201 shaker and accelerations measured using PCB type 352C22
accelerometers. Test signals were generated and measurements processed in real time using a PC
with Matlab, Simulink, the Real-Time Workshop and the Real-Time Windows Target. Other
equipment included a power amplifier and reconstruction filters.

Various experiments were performed to illustrate the measurement of wave components.
Throughout, the sampling rate was 1024 Hz. FIR filters were designed with zero weighting being
applied apart from the frequency range from 0.1f, to 0.9f, . The measured wavenumber of the
beam was such that k = 0.8269,/f.
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Fig. 13. Experimental configurations with locations of accelerometers and shaker indicated (all dimensions in m).

It is very difficult to make meaningful comparisons in the time domain, since no reference
measurement of wave amplitude can be made. Furthermore, the time signals are contaminated by
errors introduced by the poor approximation of the filters at low and high frequencies, so that
visual comparison for broad-band excitation can be misleading. Consequently, sinusoidal signals
are predominantly used here in numerical simulations and for experimental verification. However,
the approach is equally applicable to non-sinusoidal waveforms, as its use in active vibration
control [6] demonstrates.

In the experiments, the estimates from the three-sensor, near-field array were compared with
estimates from a two-sensor array mounted on the beam but located in the far field. Since the
damping in the beam is very small, the propagating waves at the two sensor array locations have
the same amplitudes but different phases. However, because the wave motion is dispersive,
different frequency components take different times to travel between the arrays and hence direct
comparison in the time domain is not meaningful except for time harmonic behaviour.

The outputs from these two sensors were filtered using the results of Ref. [2], which assume that
far-field conditions exist. The accuracy of these measurements is relatively well established. The
outputs of the three sensors were filtered using the near-field filters described above. Various
experimental configurations were investigated and two are shown in Fig. 13. The first is intended
to investigate the far-field performance and to verify that estimates from the near-field array are
the same as those provided by the more established far-field technique. The second configuration
is one in which there are known relations between the wave amplitudes.

The first series of experiments involved discrete frequency excitation with all three
accelerometers (A, A, and Aj) located in the far field as shown in Fig. 13(a). The signals from
the outer sensors A; and A; were filtered using the far-field method of Ref. [2]. This allows the
performance in the far field to be assessed. Fig. 14 shows an example. The estimates of the
amplitudes of the propagating wave components using both the near-field and far-field arrays
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Fig. 14. Estimated amplitudes of wave components using near-field array, sinusoidal disturbance at 100 Hz:
configuration 1, array located in the far field; (- - - -) estimates from far-field array, ngy = 15: (a) —— ¢+ (1), ng = 5,
----- ¢t (1), ng =15, (b) —— ¢~ (), ng =5, ----- ¢~ (1), ng = 15; -~ ¢*(¢) far-field array; (c) —— ¢}(2), na = 5,
s RO, g =155 - - - - $T(¢) far-field array.

agree well. There is little difference between the estimates provided by the near-field array with
ng =5 or 15. The estimated amplitudes of the near-field wave are much smaller than those of the
propagating waves. It should of course be almost zero, but a non-zero estimate is produced due to
cross-sensitivity, noise, filter inaccuracy, etc.

In the second series of experiments, the sensors were mounted as shown in Fig. 13(b).
Broadband excitation in the 51-460 Hz frequency band was applied. The three-sensor array is
mounted in the near field at the end of the beam, while the two-sensor array is once again in the
far field. This arrangement enables the broadband performance to be assessed when a near field
exists. In Fig. 15(a), the spectral densities of the estimated amplitudes of the propagating waves
are compared. The spectral densities of the amplitudes of both positive and negative going wave
components, estimated using both the near- and far-field arrays, are nearly equal, as one would
expect since there is little energy dissipation in this region of the beam. The disagreement at low
frequencies (and, to a lesser extent, at high frequencies) arises from the different forms taken by
the near-field and far-field filters and the weighting that has been applied to the estimation of the
filter coefficients.
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Fig. 15. Spectral densities of the estimated amplitudes of the wave components, ny = 5: (a) —— ¢, near-field array;
----- ¢~, near-field array; ---¢~, far-field array; -.-.-.- ¢%, far-field array; (b) ----- ¢~, near-field array; — 5,
near-field array; ———— ¢, theoretical.

The estimate of the amplitude of the near-field wave component is shown in Fig. 15(b). The
positive-going propagating wave should have the same magnitude as the negative-going
propagating wave, since the magnitude of the reflection coefficient is 1, and this behaviour is
observed. However, the magnitude of the near-field wave component should be /2 exp(—kd)
times that of the negative going wave, where d = 0.066 m. This is because the reflection coefficient
at the free end is (1 — 7) and the near field attenuates over a distance of 0.066 m from the free end
to the centre of the sensor array. This theoretical estimate is also shown in Fig. 15(b) and agrees
well with the measured amplitude.

6. Concluding remarks

This paper concerned how filters can be designed to provide real-time estimates of the
amplitudes of the various flexural wave components in a beam vibrating in bending. It was
assumed that two propagating components and a single near-field wave are present. The outputs
of three sensors are filtered, with the filters being designed in the frequency domain and
implemented in the time domain as FIR filters. Performance issues were considered, numerical
examples presented and an experimental implementation described. Application to the
measurement of structural intensity was briefly described, with application to active vibration
control being considered in some detail elsewhere [6]. The method can be extended
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straightforwardly for arrays comprising sensors of different types (e.g. some combination of strain
gauges, piezoelectric patches and accelerometers), or an over-determined array comprising four or
more sensors could be used to improve accuracy—the only substantive difference is in the form of
the sensor matrix S of Eq. (7). The same approach can also be used if both positive-going and
negative-going near fields are considered, except that at least four sensors are required (see
Appendix A).

Generally, filters of only moderate order provide accurate, robust estimates except at low and
high frequencies. There is a trade-off in the length of the FIR filters between accuracy (large n,)
and small group delays (small n,), and hence the best choice of filter length would depend on the
specific application in mind—for active control processing delays are probably more important,
while for intensity measurement accuracy is likely to be more important.
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Appendix A. Two near-field waves

If both near fields are significant, the wave components can be measured using an array of at
least four sensors. The approach is the same as that described in Section 2 except that the sensor
matrix S(w) is different and hence so, too, are the frequency and impulse response matrices G(w)
and g(?).

Consider the case of four displacement sensors attached at the four points (x;, x», x3, x4). The
displacement of the beam at frequency w is given by Eq. (3) as the sum of wave components.
Hence the vector of sensor outputs is

W(.Xl 5 (U)
W(x2, ®)
Y(w) = W (x5, ) (A.1)
W (x4, )
and hence
@+
>
Y(w) = S(0)®P(w), D(w)= ot (° (A.2)

Py
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where the sensor matrix

e*ikxl elkX] ekal ekx|
—ikx ikx: —kx kx
e 2 etz eTi2 it
S@) = | e kn ek (A.3)
e A3 e A3 e 3 e 3
e—ikX4 eikX4 e—kX4 ekX4

The vector of wave amplitudes ®(w) is again given by Eq. (8). Since S is (at least) 4 x 4 the
situation is best treated numerically, by inverting S to find G(w).
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