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1. Introduction

Among the topics in nonlinear oscillations, free vibration of an oscillator with a nonlinear
spring is one that has attracted considerable interest. In the study of such a nonlinear system,
approximate solutions, rather than the exact one, are often sought because the latter is possible
only for a relatively few nonlinear systems. Consider the following nonlinear system:

%+ if,-(x) =0, x(0)=4, x(0)=0, (1)
i=1

where overdots denote differentiations with respect to time ¢ and f;(—x) = —f,(x). The conser-
vative nonlinear system (1) may be very complex. Therefore, we first consider the following
auxiliary equations:

$+f(0)=0, x0)=A4, %(0)=0, i=12,...,n )

It is assumed that w; (i =1,2,...,n) are the approximations to the true natural frequencies
w.; (i=1,2,...,n) of the nonlinear oscillators modeled by Egs. (2), and w is the approximation to
the true natural frequency w, of the nonlinear oscillator described by Eq. (1).

Natural frequency analysis is useful for the investigation of stability, bifurcation, resonance and
chaos in nonlinear dynamic systems. Now an interesting question arises: What is the relation
between w and w; (i = 1,2,...,n)? The main purpose of this paper is to show that the following
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approximate relation holds:
n
w’ = Z w?. (3)
i=1

The paper then gives two examples to illustrate the applications of Eq. (3). Since any one of
Egs. (2) is simpler than Eq. (1), some of them may have exact solutions. These two examples will
show that if w; (i=1,2,...,n) in Eq. (3) are replaced by w,; (i =1,2,...,n), i.e.,

o = 2": wgi, 4)
i=1

then formula (4) can give good approximate frequencies.

2. Proof of Eq. (3)

Many perturbation techniques exist for constructing analytical approximations to the
oscillatory solution of second order, nonlinear differential equations (1) and (2) [1,2]. These
methods are, in principle, for solving problems with small parameter. But the method of harmonic
balance can be applied to nonlinear oscillatory problems for which the nonlinear terms are not
“small” [1,3]. Therefore, the approximate analytical solutions to Egs. (1) and (2) can be obtained
by using this method.

To proceed, we introduce the transformations 7; = w;t (i = 1,2, ...,n). Hence, Egs. (2) become

X' +fi(x) =0, x(0)=4, ¥(0)=0, i=1,2,...,n, (5)

where the primes indicate the derivatives with respect to t;. The first approximations to Egs. (5)
are taken to be

x(t;))=Acost;, i=1,2,...,n. (6)
Substitution of Eq. (6) into Egs. (5) gives
(—Aw? + a;) cos 7; + (higher-order harmonics) =0, i=1,2,...,n, (7)
where
a,-=72T/Onfl-(Acosr,-)cosridri, i=1,2,...,n 8)

It is assumed that ¢;>0 (i = 1, 2,...,n). Setting the coefficient of cost equal to zero yields
a;=Aw?, i=12,...,n )

Introducing the substitution T = w¢ into Eq. (1) results in

X" + Z fix)=0, x(0)=4, x'(0)=0, (10)
i=1
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where the primes indicate the derivatives with respect to 7. The first approximation to Eq. (10) is
assumed to be

x(t) = Acost. (11)

Substituting Eq. (11) into Eq. (10) gives
(—sz + Z a,~> cos 7 + (higher-order harmonics) = 0. (12)

i=1
Obviously,
2 (" 2 (" _
a; = E/ fi(Acost)costdr = E/ fi(Acost)cost;dt;,, i=1,2,...,n. (13)
0 0

Substituting Eq. (9) into Eq. (12), setting the coefficient of cost equal to zero and solving for w?
gives Eq. (3) at once.

3. Examples

Example 1. Consider the Duffing equation

¥+x+exr* =0 x(0)=4, x(0)=0, (14)

where ¢>0. We first consider the following two equations:
X+x=0, x(0)=4, x0)=0, (15)
¥+ex=0, x(0)=4, x(0)=0. (16)

The approximate frequency of Eq. (16) obtained by using the method of harmonic balance is [1]

wz\/%A. (17)

Since w,; = 1, from Eq. (3) the approximate frequency of Eq. (14) can be written as

[ 3
Wa = 1+13A2. (18)

In order to improve the accuracy of this formula, we note that the exact frequency of the periodic
motion of Eq. (16) is

Wer = 0.847215./2A. (19)

The computation of Eq. (19) is given in detail in Appendix A. Then, from Eq. (4) we have the
following approximate frequency of Eq. (14):

W = + 0. cA”.
V14071777364 (20)
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The exact frequency of the Duffing equation is [4]

—1
/1 + eA? / de eA?
We = —7F— —_— , M=_————0.
2 0 1 — m2sin0 2(1 +&A47)

The corresponding second approximate frequency obtained by using a classical perturbation
method [5] is

21

O = %\/ 8 + 664> + /64 + 96:4° + 30£24°, (22)

For comparison, the exact frequency w, obtained by integrating Eq. (21) and the approximate
frequencies computed by Egs. (18), (20) and (22), respectively, are listed in Table 1. Table 1 shows
that formula (20) is more accurate than formulas (18) and (22) for large values of ¢4%. We also
have

lim 2o - £/ A0 V3 ks — 1o, (23)
e mo0 We T Jo /1 —-05sin%0 T
o 23071 _ 2071
lim 2 2VO0717773 / 0717773 | 8541 = 1.0000.  (24)
e’ =00 We V1 —0.5sin%0 n

Eq. (24) implies that for very large values of ¢4%, Eq. (14) may be replaced by Eq. (16).
The exact periodic solution to Eq. (14) is [6]

x.(t) = Acn(wt, k), (25)
where cn(wt, k) is the cosine Jacobian elliptic function,

_ VTTof and k:f(l_;).

2 1 +eA?

Table 1

Comparison of approximate frequencies with the corresponding exact frequency for the Duffing equation

e’ w. (Eq. (21)) war (Eq. (18)) wa2 (Eq. (20)) wa (Eq. (22))
0.2 1.07200 1.07238 1.06937 1.07200
0.4 1.13891 1.14018 1.13451 1.13891
0.6 1.20173 1.20416 1.19610 1.20173
0.8 1.26118 1.26491 1.25468 1.26118
1 1.31778 1.32288 1.31064 1.31776
2 1.56911 1.58114 1.56062 1.56905
5 2.15042 2.17945 2.14216 2.15018
10 2.86664 2.91548 2.85967 2.86613
100 8.53359 8.71780 8.53096 8.53110
1000 26.8107 27.4044 26.8099 26.8025

10000 84.7275 86.6083 84.7274 84.7013
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Fig. 1. Comparison of the approximate periodic solutions with the exact solution fore =1, 4 = 1.
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Fig. 2. Comparison of the approximate periodic solutions with the exact solution for ¢ = 10, 4 = 100.

The approximate periodic solutions x,;(¢) and x,,(¢) corresponding to Egs. (18) and (20) are

Xq1(f) = Acos gt (26)
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Fig. 3. Comparison of the approximate periodic solutions with the exact solution for ¢ = 100, 4 = 1000.

and
Xao(t) = Acoswyt, 27)

respectively. A comparison of periodic solutions x.(f), x,1(¢) and x,»(?) is presented in Figs. 1-3
forre=1,4=1;e=10, A =100; e = 100, 4 = 1000; respectively. Figs. 1-3 indicate that x,(7)
and x,(¢) are close to x.(¢).

Example 2. Consider the nonlinear differential equation [7]

F+x+exd =0, x(0)=4, x(0)=0, (28)
where ¢>0. The corresponding two auxiliary equations are
4P =0, x0)=4, x(0)=0, (29)
F+ex®=0, x(0)=4, x(0)=0. (30)
For Eq. (29), the method of harmonic balance gives [8]
4\ 1/6
=(—) . 31
w1 <3 A2> (31)

Substituting Eqgs. (17) and (32) into Eq. (3), we obtain the following approximate frequency

of Eq. (28):
4\'"? 3
wp| = \/(ﬁ) + ZsAz. (32)
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Table 2

Comparison of approximate frequencies with the corresponding exact frequency of Eq. (28) for ¢ =1

4 o. (Eq. (35) on (Eq. (32) o (Eq. (34))
0.2 1.83904 1.80230 1.83827
0.4 1.49546 1.46540 1.49182
0.6 1.37529 1.34803 1.36717
0.8 1.35030 1.32559 1.33755
1 1.38139 1.36038 1.36515
2 1.91143 1.92181 1.89550
5 4.28687 4.37338 4.28208
10 8.48810 8.67393 8.48671
100 84.7123 86.6028 84.7218
1000 846.387 866.025 847.215
10000 8330.71 8660.25 8472.15

The exact frequency of Eq. (29) is [9]

_JAr(1/4)  1.07045
S 2J6r3/44V7 4\

el

(33)

Substituting Eqgs. (19) and (33) into Eq. (4) yields another approximate frequency of Eq. (28):

1.14586

wpy = \/W +0.717773¢A4>. (34)

The exact frequency of Eq. (28) is

~1
dx

T /A
22 | Jo \/(3A4/3+£A4)—(3x4/3+8x4)

(35)

We

For comparison, the exact frequency w, obtained by integrating Eq. (35) and the approximate
frequencies computed by Eqgs. (32) and (34), respectively, are listed in Table 2 for ¢ = 1. Table 2
shows that formula (34) is more accurate than formula (32) except when 4 = 2. The relative error
of wpy with respect to w, is less than 1.70% even when 4 = 10000.

The approximate periodic solutions corresponding to Egs. (32) and (34) are, respectively,

xp1(f) = Acoswpt, (36)

Xpo(t) = A cos wpt. (37)

Figs. 4-6 show the comparison of the numerical periodic solution x,,m(z) of Eq. (28) achieved
by using Runge-Kutta (R-K) method and the approximate periodic solutions xp(¢) and xp,(¢)
for:e=1, A=1; e=10, A =100; ¢ = 100, A = 1000; respectively. They show that x;;(¢) and
xpa(t) are close to xXpum(?).
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Fig. 4. Comparison of the approximate periodic solutions with the numerical solution for e =1, 4 = 1.
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Fig. 5. Comparison of the approximate periodic solutions with the numerical solution for ¢ = 10, 4 = 100.

4. Concluding remarks

This paper is concerned with the relation between nonlinear conservative systems (1) and (2).
Formulas (3) and (4) are the main results. When we meet system (1), we may first consider
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Fig. 6. Comparison of the approximate periodic solutions with the numerical solution for ¢ = 100, 4 = 1000.

auxiliary systems (2). Two examples have shown that formulas (3) and (4) can provide good
approximations. Generally speaking, formula (4) is more accurate than formula (3), especially
when the oscillation amplitude A4 is large. Eq. (18) is the well-known result for the Duffing
equation [1,5], and it is consistent with formula (3). In other words, formulas (3) and (4) have been
staring us in the face for a long time and we have not noticed. Formula (3) or formula (4) can be
regarded as “‘a superposition principle” for nonlinear conservative systems.

Finally, it should be pointed out that the result is only valid for the vibrations in the small
vicinity around the equilibrium position. If there is more than one equilibrium position, the
amplitude should be limited in small range. Otherwise, periodic solutions might not exist.
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Appendix A. The computations of w,.;

Eq. (16) can be written as
xdx + ex®dx = 0. (A.1)
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Integrating of Eq. (A.1), with use made of the initial conditions given in Eq. (16), yields

)'c:—1/§(A4—x4), 0<<T. (A.2)

Here, T is the period of the oscillation. Integrating expression (A.2) from ¢ to t = T'/4, we obtain

4\/—/ / (A.3)
\/7 fA \/1_— '
Letting y = u'/*, we have
- V2 Y du V2B(1/4,1/2)  V2r(1/4rd/2)
N fA 0o WA —u JeA — JeAI(3/4)
7.416284
rs/4)r3/2)=—  —— A4
— R TEAPT62) = (A4)
where B(m,n) is the Beta function and I'(n) is the Gamma function. Then,
2
W = 7” — 0.847215./¢A. (A.5)
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