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Abstract

In this paper the free vibration frequencies of an Euler—Bernoulli tapered beam are deduced, in the
presence of a concentrated mass at the end, and of a concentrated linear damper at an arbitrary section
along the beam. The frequency equation is deduced and analytically solved in terms of Bessel functions.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Quite recently, the exact free vibration analysis of Euler—Bernoulli beams in the presence
of a linear dashpot has been performed by several authors. More particularly, a cantilever
beam with a tip mass and a single dashpot at an arbitrary location has been studied in Ref. [1],
and the resulting eigenvalue problem leads to complex solutions. Subsequently, the authors
have examined [2] a generally restrained beam with a concentrated mass and a single dashpot
placed at arbitrary sections, using an exact approach and employing the symbolic software
Mathematica [3].

In this paper a beam with a power law variation of cross-section area is introduced, with
concentrated mass at the left end and a concentrated linear dashpot at an arbitrary location. In
fact, using some results from Ref. [4], the solution of the differential equation of motion is
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obtained in terms of Bessel functions, and subsequently various boundary conditions are dealt
with.

2. The equation of motion

The equations of motion for the tapered beam in F ig 1 are given by

2
aaz {EI(Z) }+ A(z) =0, O<z<z, (1)
0’ 0
= 2{EI() }—i—pA(z)a;z:O, zo<z<lL, )
where
A(2) = Ao (1 te %) 1(z) = ( n cL) ) 3)

and A4, and [, are the cross-sectional area and moment of inertia of the section at left, respectively,
z is the abscissa such that —L/c<z<L, L is the span of the beam, E is the Young modulus, p is
the mass density, ¢ is the taper ratio of the cross-section (with ¢> — 1), ¢ is the time, z. is the
variable location of the dashpot and # is a numerical exponent which will be usually equal to 1 or
2, as already described in Ref. [4].

The cross-sectional area A(z) and the moment of inertia /(z), as given in Eq. (3), can be
introduced into Egs. (1), (2), the following variable { = (1 + ¢z/L) can be introduced, and finally
the variables can be separated as follows:

on((, 1) = Vi(()e" (4)

| Lic L

Fig. 1. Structural system.
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with 4 = 1,2. The equations of motion become:

d*v, &3, d2V1 4
2L a2 L g 2yt 1) ’—ﬁ—Vh=o
d¢t d¢ ct
with
B4:_/12L4pA0
EI,

The general solutions of these equations are given by

Vi) = ¢i (CLIAD) + CrY o) + CaLu(@) + CaKn().

= L (Ca() + Co Yol @) + CrL($) + CsKn(d)

Va(e) "

with

o= (2 VE).

c

1043

)

(6)

(7

®)

©)

where J, Y, I and K are the Bessel functions of the first and second kinds and their modified

versions.

From Eqgs. (7), (8) rotations, bending moments and shear stresses can be deduced, using the

recurrence formulae for the Bessel functions (see Ref. [5]):

hO=-- qﬁ 72 (Cat®)+ Co Y1) = Cala) + Cakopr (),

00 =~ 2 CoTa@)+ CoY @) = Cla( @)+ Cok i)
M) = %{gm (CiJni2(d) + C2 Y pia(@) + C3lui2(h) + CaKpya(9h)),
M) = %{f” (CsJus2(@) + CoYura(@®) + Crllyya(@®) + CoKosa (),
7)) = %fﬁ) (Colnir(@) + C2Y it ) + Calr () — Ciopir (D))
T5(0) = %ymﬂm(qﬁ)  Co¥uit(@)+ Crlui(d) — CyKoar (9)).

The boundary conditions can be written as follows:
At z =0, and therefore at { = 1 we have

(10)

(11)

(12)

(13)

(14)

(15)
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Clamped end.:

i) =0, y,(1)=0.
Supported end.

Vi(1)=0, M(1)=0.
Free end:

M(1)=0, T,(1)=0.
Sliding end.
Y (1) =0, T,(1)=0.
Concentrated mass M at free end.
Ti(1) — kELB* V(1) =0, My(1)=0

with u = M /pAyL.
At the variable dashpot section {, with constant damping coefficient d we have:

VI(CC) - V2(Cc) =0,
l/jl(Cc) - Wz(Cc) =0,

MI(CL') - M2(Cc) =0,

idp* |EI
n@%n@wiﬂbﬁwm=a
where 1 = ~/—1.

At the right end, where z = L and { = 1 4 ¢ the boundary conditions are given by
Clamped end.:

Val+0) =0, yy(l+0)=0.
Supported end.

Vo(l+6) =0, My(1+¢)=0.
Free end:

M>(14¢)=0, Tr(1+c¢c)=0.
Sliding end.

Yo(1+0)=0, Tr(1+¢)=0.

(16)

(17

(18)

(19)

(20)

21)

(22)

(23)

24)

(25)

(26)

27)

(28)

Eight boundary conditions must be chosen, in order to correctly define the resulting boundary
value problem, whose solution creates no difficulties, except for the presence of complex conjugate

eigensolutions.
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First three free vibration frequencies against the dashpot location, with different values of ¢ and d

L A 2 23
c=0.5 d=>5
0 —14.7137 £138.4510 —15.6995 +1214.139 —16.1472 £1575.504
0.1 —10.4803 +1i39.3739 —4.08247 £1i215.938 —0.60720 £i577.014
0.2 —7.17209 £140.0362 —0.04962 £+1216.376 —2.77372 £1576.996
0.3 —4.58664 +140.4248 —1.51057 £1216.323 —5.86407 £1576.908
0.4 —2.67433 +i40.6005 —4.60770 £1i216.236 —2.08133 +£1576.995
0.5 —1.37897 £+140.6563 —6.04713 £1216.232 —0.16969 +1577.041
0.6 —0.59843 £ 140.6656 —4.96275+1216.329 —3.88082 £1576.958
0.7 —0.19896 + i140.6648 —2.62883 +1i216.386 —5.93104 +£1576.977
0.8 —0.04098 +140.6641 —0.77024 +1216.384 —3.11415 £1577.055
0.9 —0.00265 £ 140.6640 —0.06544 +1216.379 —0.37864 £+ 1577.045
d=10
0 —28.6738 +131.8704 —30.7039 £ 1206.880 —31.8927 £1570.778
0.1 —21.2133 £135.0677 —7.93406 £+ 1214.645 —1.20537 £1576.922
0.2 —14.3045 +i38.0833 —0.09813 +£1i216.367 —5.54592 +1576.852
0.3 —9.20076 £139.6923 —3.01243 £1i216.154 —11.7204 £+ 1576.497
0.4 —5.36742 £140.4076 —9.21135 £1215.802 —4.15768 £1576.848
0.5 —2.76352 +i40.6332 —12.0973 +£1i215.788 —0.33895 +£1577.030
0.6 —1.19759 £ 140.6706 —9.93663 +£1i216.176 —7.75552 £+ 1576.699
0.7 —0.39796 £ 140.6672 —5.26114 £1216.406 —11.8668 £1576.775
0.8 —0.08197 +i40.6643 —1.54051 +£1i216.396 —6.2301 +1577.088
09 —0.00531 £140.6640 —0.13088 £1216.380 —0.7573 +£1577.049
c=1 d=>5
0 —14.0982 £ 154.8858 —16.4451 £1267.469 —17.2567 £1693.375
0.1 —9.92666 £155.3916 —4.11797 £1268.896 —0.49360 £ 1694.708
0.2 —6.64324 +155.8192 —0.03788 +£1i269.237 —3.03346 £+ 1694.687
0.3 —4.12952 £+156.0682 —1.46748 £1269.199 —2.25533 £1694.633
0.4 —2.33320 £156.1729 —4.10258 £1269.147 —1.36673 £1694.705
0.5 —1.16386 £156.2022 —4.99186 +£1i269.158 —0.33926 £1694.722
0.6 —0.48812 £+£156.2057 —3.81123 £1i269.217 —3.47160 £ 1694.675
0.7 —0.15677 £156.2048 —1.88550 +i269.243 —4.44549 4+ 1694.700
0.8 —0.03120 £156.2044 —0.51822 +1i269.240 —2.08037 £1694.733
09 —0.00195 £156.2043 —0.04149 £+1269.238 —0.23147 £1694.728
d=10

0 —29.6739 £150.0365 —32.7195 +£1i261.804 —34.2892 +1689.230
0.1 —20.0041 £152.8212 —8.09978 +1267.882 —0.98257 £+1694.648
0.2 —13.2986 +154.6436 —0.07531 £1269.232 —6.06643 4+ 1694.566
0.3 —8.27300 £ 155.6558 —2.93080 £1269.080 —10.5062 £ 1694.348
04 —4.67452 £156.0782 —8.20329 +1268.872 —2.73177 £1694.637
0.5 —2.32979 £156.1958 —9.98538 £1268.916 —0.67809 £1694.707
0.6 —0.97647 £+£156.2098 —7.62647 £+£1269.153 —6.94092 +1694.521
0.7 —0.31355 £156.2062 —3.77192 £1i269.256 —8.89288 +£1694.618
0.8 —0.06240 £156.2045 —1.03644 +1269.245 —4.16113 +1694.749
0.9 —0.00390 +156.2043 —0.08298 +1i269.238 —0.46294 +1694.729
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3. Numerical examples

All the numerical examples will assume the cross-section variation law as given in Eq. (3), with
the following numerical data: span L = 1m, Young modulus E = 7 x 10! Nm~2, moment of
inertia of the initial cross-section I, = 5.20833 x 107" m*, mass of the initial cross-section pAg =
0.675kgm~! and n = 1.

As a first example, a free—clamped cantilever beam is examined, with a concentrated dashpot at
an intermediate section (. (Table 1). The damping coefficient is assumed to be equal to d =
SNm™'s, and the first three free frequency vibration frequencies /; are given, as a function of the
abscissa (.. As can be observed, the (negative) real part goes to zero as {, increases from 0 to 0.9,
and then it becomes zero, reproducing the classical case of tapered beam without damping, for
which the first frequency is equal to 140.664.

In Table 2, the clamped—free beam is subjected to a concentrated mass at the free end, the
dashpot is supposed to be placed at the mid-span { = 0.5, the taper ratio is equal to ¢ = 0.5. The
first three free vibration frequencies are given against the damping coefficient d and the
nondimensional concentrated mass value.

At u=0 and d = 0 the classical cantilever beam is recovered, and the eigenvalues become
purely imaginary. The imaginary part of the eigenvalues decreases with increasing values of the
ratio between the concentrated mass and the beam mass.

Table 2

First three free vibration frequencies as a function of the ratio pu, with d = 0,5, 10Nm™!s

d u=0 1w=0.1 nw=02 u=0.3 u=04
0 /1 =+i40.644 +i34.4537 +i30.378 +i27.457 +i25.237
Jy  +£i216.379 +i188.349 +i176.419 +i169.897 +i165.799
3 £i577.044 +i514.955 +i495.954 +i486.960 +i481.741
5 A1 —1.3790+£140.656  —0.9444 +i34.452  —0.71254+1i30.378  —0.5703 £i27.458  —0.4747 £i25.238
Jy  —6.0471 £i216.232 —5.8389 £i188.219 —5.8085+£i176.298 —5.8123 +£i169.781 —5.8230 +1165.687
A3 —0.1697 £1i577.041 —0.7861 £i514.937 —1.0690 £i495.929 —1.2201 £i486.932 —1.3132 +i481.710
10 A4 —2.7635+1i40.633  —1.8919 £i34.449  —1.4268 £1i30.380  —1.1418 +i27.461 —0.9504 £+ i25.241
Jy —12.097 £i215.788 —11.685 +£i187.828 —11.626 £i175.934 —11.635+1i169.433 —11.657 £1165.350
3 0.3389 £i577.030 —1.5700 £1i514.883  —2.1353 £1i495.855 —2.4372+1i486.847 —2.6231 +1481.618
d uw=20.5 nw=20.6 nw=20.7 uw=0.8 uw=0.9
0 /41 +£i23477 +i22.039 +i20.835 +i19.8091 +i18.920
Jy  £i162.989 +i160.944 +i159.390 +i158.169 +i157.184
A3 +i478.336 +i475.942 +i474.167 +i472.799 +i471.713
5 A1 —0.4063+i23.4781 —0.3550 +i22.040  —0.3151 +i20.836  —0.2833 +£i19.810  —0.2572 +i18.921
Jy  —5.8341 +1i162.880 —5.8422 £1160.837 —5.8531 £1159.284 —5.8607 £1158.064 —5.8670+1157.075
A3 —1.3761 £i478.304 —1.4213 £i475.909 —1.4555+1i474.133 —1.4821 +i472.765 —1.5035+1471.677
10 2; —0.8133 £i23.481 —0.7106 £1i22.043  —0.6307 £i20.839  —0.5669 +119.812  —0.5147 +118.923
o —11.680 £i162.551 —11.700 £i160.514 —11.718 £1158.966 —11.734 £1i157.750 —11.747 £1156.769

—2.7487 £1478.207

—2.8319 £1475.809

—2.9073 £1474.031

—2.9606 £ 1472.660

—3.0033 £1471.571
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4. Conclusions

The free vibrations of an Euler—Bernoulli beam have been examined, in the presence of a
concentrated dashpot at an intermediate variable section and of a concentrated mass at the tip.
The analysis can be considered exact, in the sense that the differential equations of motion are
solved in terms of Bessel functions, and the resulting boundary value problem is solved using the
symbolic package Mathematica. The paper ends with some numerical examples, in which the
complex conjugate eigensolutions are given as functions of the dashpot location or of the damping
coefficient.
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